ON RANDOM WALKS AND LEVELS OF THE FORM n^{α}

SARAH DRUCKER, IMOLA FODOR AND EVAN FISHER

1. Introduction. Let $\{X_i, i=1,2,3,\ldots\}$ be a collection of independent and identically distributed random variables with finite expectation μ and finite variance σ^2 . Define $S_n = \sum_{i=1}^n X_i$ for $n=1,2,3,\ldots$. It follows from results such as the Hartman-Wintner law of the iterated logarithm (see [10, p. 293]) that if $\alpha > 1/2$, then $\lim_{n\to\infty} (S_n - n\mu)/n^{\alpha} = 0$ a.s. (The case $\alpha = 1$ is the standard Strong Law of Large Numbers.) An equivalent statement is that for each number $\varepsilon > 0$ the inequality

$$|S_n - n\mu| > \varepsilon n^{\alpha}$$

is satisfied for only finitely many n.

Consider the sequence of events $\{A_n, n = 1, 2, 3, ...\}$ where $A_n = (|S_n - n\mu| > \varepsilon n^{\alpha})$. Let I(A) denote the indicator function of the event A. We consider the random variable $N(\varepsilon)$ where $N(\varepsilon)$ is defined by

(1.1)
$$N(\varepsilon) = \sum_{n=1}^{\infty} I(A_n).$$

 $N(\varepsilon)$ represents the number of indices for which A_n occurs. For notational convenience we suppress, in the notation, the dependence of $N(\varepsilon)$ on α . For $\alpha > 1/2$, this is a finite-valued random variable. Conditions related to the existence of various moments of $N(\varepsilon)$ for a variety of boundaries and settings have been investigated by Lai and Lan [5], Slivka and Severo [9], Slivka [8], Stratton [11], and Griffiths and Wright [4].

In Section 2 of this paper we consider the expected value of $N(\varepsilon)$ for the special case when X_i is normally distributed. In Slivka and

Copyright ©1996 Rocky Mountain Mathematics Consortium

Received by the editors on November 9, 1993, and in revised form on August 17, 1994.

^{1994.}The first and second authors were participants in NSF-REU program held at Lafayette College, Summer 1993.

Severo [9, Theorem 2], explicit upper and lower bounds are derived in this setting where $\alpha=1$. Using a simpler method we derive analogous upper and lower bounds for $E(N(\varepsilon))$ for the more general case $\alpha>1/2$ (Theorem 2.3), which includes the aforementioned bounds as a special case. Theorem 2.4 describes the asymptotic behavior of $E(N(\varepsilon))$ as $\varepsilon\to 0$. This generalizes a result indicated in Slivka and Severo [9] for the case $\alpha=1$.

In part 3 we consider the number of times the random walk $\{S_n, n = 1, 2, 3, ...\}$ lies above a linear boundary. More precisely, we define the random variable $N_+(\varepsilon)$ as

(1.2)
$$N_{+}(\varepsilon) = \sum_{n=1}^{\infty} I(B_n)$$

where B_n is the event defined by $B_n = (S_n > n(\mu + \varepsilon))$ and $I(\cdot)$ is the indicator function defined earlier. This variable has been investigated in Razanadrakoto and Severo [6] where expressions generating the exact distribution of $N_+(\varepsilon)$ are derived. Section 3.1 begins with the derivation of close upper and lower bounds for the expected value of $N_+(\varepsilon)$ in the special case when X_i is normally distributed (Corollary 3.1). We also note an analogous result under the same conditions on the variance of $N_+(\varepsilon)$ (inequality (3.3)).

The primary results in Section 3 concern the first index, if one exists, for which $(S_n > n(\mu + \varepsilon))$ occurs. We define the variable $T(\varepsilon)$ by

$$(1.3) T(\varepsilon) = \begin{cases} \inf\{n \ge 1 : S_n > n(\mu + \varepsilon)\} & \text{if such an } n \text{ exists} \\ \infty & \text{otherwise.} \end{cases}$$

Under the hypothesis that $\{X_i, i = 1, 2, 3, ...\}$ are independent and identically distributed random variables with finite expectation, we derive a general recursive expression generating the exact distribution of $T(\varepsilon)$ (Theorem 3.3).

The final results in Section 3 center around the conditional expectation of $T(\varepsilon)$ given that $T(\varepsilon)$ is finite. Theorem 3.4 describes a relationship between this conditional expectation and the expected value of $N_{+}(\varepsilon)$. We then investigate the asymptotic behavior of the conditional expectation as $\varepsilon \to 0$ in the case where the common distribution function of $\{X_i, i=1,2,3,\ldots\}$ is symmetric and continuous (Theorem

3.5) and in the special case where the common distribution function of $\{X_i, i=1,2,3,\ldots\}$ is normal (Theorem 3.6).

2. The expected value of $N(\varepsilon)$. The following lemmas are employed at several points in the development.

Lemma 2.1. If Y is a nonnegative random variable, then

$$\sum_{n=1}^{\infty} P(Y \ge n) \le EY \le 1 + \sum_{n=1}^{\infty} P(Y \ge n).$$

Proof. See Ash [1, p. 275].

Lemma 2.2. If the random variable Z has a standard normal distribution, then for p > -1,

$$E|Z|^p = \frac{2^{p/2}}{\sqrt{\pi}} \Gamma\left(\frac{p+1}{2}\right).$$

Proof. The result follows immediately using an elementary change of variables. $\quad \Box$

Theorem 2.3. Let $\{X_i, i = 1, 2, 3, ...\}$ be a sequence of independent random variables, normally distributed with mean μ and variance σ^2 . Let $\alpha > 1/2$ and $N(\varepsilon)$ be as defined in (1.1). For $\varepsilon > 0$, (2.1)

$$\begin{split} \rho^{-2/(2\alpha-1)} \frac{2^{1/(2\alpha-1)}\Gamma((2\alpha+1)/(2(2\alpha-1)))}{\sqrt{\pi}} - 1 \\ & \leq EN(\varepsilon) \\ & \leq \rho^{-2/(2\alpha-1)} \frac{2^{1/(2\alpha-1)}\Gamma((2\alpha+1)/(2(2\alpha-1)))}{\sqrt{\pi}} \end{split}$$

where $\rho = \varepsilon/\sigma$.

Proof. It follows from the definition of $N(\varepsilon)$ that

$$EN(\varepsilon) = \sum_{n=1}^{\infty} P(|S_n - n\mu| > \varepsilon n^{\alpha})$$

$$= \sum_{n=1}^{\infty} P(|Z| > \rho n^{\alpha - 1/2})$$

$$= \sum_{n=1}^{\infty} P(\rho^{-2/(2\alpha - 1)} |Z|^{2/(2\alpha - 1)} > n)$$

where Z has a standard normal distribution. The application of Lemmas 2.1 and 2.2 to the latter sum yields inequality (2.1). \Box

Remarks. 1) We note that, as expected, the bounds on $E(N(\varepsilon))$ are based on ε and σ through $\rho = \varepsilon/\sigma$.

2) For the case $\alpha = 1$, Theorem 2.3 reduces to Theorem 2 in Slivka and Severo [9].

Examples. The following examples demonstrate the relative closeness of the upper and lower bounds in Theorem 2.3 when ρ is small.

- 1) Consider the case $\sigma=1$ and $\alpha=1$. If $\varepsilon=.5$ Theorem 2.3 yields the inequality $3 \leq E(N(\varepsilon)) \leq 4$. For $\varepsilon=.1$, the inequality $99 \leq E(N(\varepsilon)) \leq 100$ is obtained from Theorem 2.3.
- 2) Consider the case $\sigma=1$ and $\alpha=3/4$. For $\varepsilon=1$, Theorem 2.3 yields $2 \leq E(N(\varepsilon)) \leq 3$. For $\varepsilon=.5$, it follows that $47 \leq E(N(\varepsilon)) \leq 48$. For $\varepsilon=.1$, we obtain the estimate that $29,999 \leq E(N(\varepsilon)) \leq 30,000$.

Theorem 2.4 describes an asymptotic approximation for $E(N(\varepsilon))$ as $\rho \to 0$ for the general case $\alpha > 1/2$. This includes as a special case a result noted in Slivka and Severo [9, p. 732] for $\alpha = 1$. We apply a method of proof suggested in their paper.

Theorem 2.4. Assume the same hypotheses as in Theorem 2.3. Then

$$\lim_{\rho \to 0} \left| E(N(\varepsilon)) - \left\{ \rho^{-2/(2\alpha - 1)} \frac{2^{1/(2\alpha - 1)} \Gamma((2\alpha + 1)/2(2\alpha - 1)))}{\sqrt{\pi}} - \frac{1}{2} \right\} \right| = 0$$

where $\rho = \varepsilon/\sigma$.

Proof. Let $\Phi(\cdot)$ denote the cumulative distribution function for the standard normal distribution. Then, as in the proof of Theorem 2.3, we obtain

$$E(N(\varepsilon)) = 2\sum_{n=1}^{\infty} \Phi(-\rho n^{\alpha-1/2}).$$

Define the function f by $f(x) = \Phi(-\rho x^{\alpha-1/2})$ and the function ξ by $\xi(x) = \int_0^x ([t] - t + 1/2) dt$ for $x \ge 0$. We apply a standard form of the Euler-MacLaurin summation formula to the latter sum and obtain

$$E(N(\varepsilon)) = 2 \int_{1}^{\infty} f(x) dx + f(1) + \lim_{n \to \infty} f(n) + 2 \int_{1}^{\infty} f''(x) \xi(x) dx.$$

Since $\xi(x) \le 1/8$ for x > 0 and $\lim_{n \to \infty} f(n) = 0$, it follows that (2.3)

$$\left| E(N(\varepsilon)) - 2 \int_0^\infty f(x) \, dx + 2 \int_0^1 f(x) \, dx - \Phi(-\rho) \right| \le \frac{1}{4} \int_1^\infty |f''(x)| \, dx.$$

We apply the change of variables $y = \rho x^{\alpha - 1/2}$ and integration by parts to the integral $\int_0^\infty f(x) dx$ with the result

$$\int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} \Phi(-\rho x^{\alpha - 1/2}) dx$$

$$= \frac{2}{2\alpha - 1} \rho^{-2/(2\alpha - 1)} \int_{0}^{\infty} [1 - \Phi(y)] y^{(3 - 2\alpha)/(2\alpha - 1)} dy$$

$$= \rho^{-2/(2\alpha - 1)} \left\{ \lim_{y \to \infty} [1 - \Phi(y)] y^{2/(2\alpha - 1)} + \int_{0}^{\infty} y^{2/(2\alpha - 1)} \phi(y) dy \right\}$$

where $\phi(\cdot)$ denotes the density function of the standard normal distribution. Using standard bounds on the tail probabilities of the standard normal distribution (see Feller [2, p. 175]) or other methods, it is easily shown that

$$\lim_{y \to \infty} [1 - \Phi(y)] y^{2/(2\alpha - 1)} = 0.$$

Applying Lemma 2.2 with $p=2/(2\alpha-1)$ to the last integral in (2.4) results in

$$\int_0^\infty f(x) \, dx = \rho^{-2/(2\alpha - 1)} 2^{(2 - 2\alpha)/(2\alpha - 1)} \pi^{-1/2} \Gamma((2\alpha + 1)/(2(2\alpha - 1))).$$

Since $\Phi(\cdot)$ is bounded, the Lebesgue dominated convergence theorem can be used to obtain

$$(2.6) \qquad \lim_{\rho \to 0} \int_0^1 \Phi(-\rho x^{\alpha - 1/2}) \, dx = \int_0^1 \lim_{\rho \to 0} \Phi(-\rho x^{\alpha - 1/2}) \, dx = \frac{1}{2}.$$

We now show that

(2.7)
$$\lim_{\rho \to 0} \int_{1}^{\infty} |f''(x)| \, dx = 0.$$

Elementary calculations show that there exist constants $C_1 > 0$ and $C_2 > 0$ depending only upon α so that (2.8)

$$|f''(x)| \le C_1 \rho x^{\alpha - 5/2} \exp\left(-\frac{\rho^2 x^{2\alpha - 1}}{2}\right) + C_2 \rho^3 x^{3\alpha - 7/2} \exp\left(-\frac{\rho^2 x^{2\alpha - 1}}{2}\right).$$

Consider $\int_1^\infty x^{\alpha-5/2} \exp(-\rho^2 x^{2\alpha-1}/2) dx$. In the case $\alpha < 3/2$, it is clear that $\int_1^\infty x^{\alpha-5/2} \exp(-\rho^2 x^{2\alpha-1}/2) dx < C$ for some positive constant C independent of ρ . Therefore, for $\alpha < 3/2$, it follows that

(2.9)
$$\lim_{\rho \to 0} \rho \int_{1}^{\infty} x^{\alpha - 5/2} \exp\left(-\frac{\rho^{2} x^{2\alpha - 1}}{2}\right) dx = 0.$$

Consider the case $\alpha > 3/2$. The change of variables $y = \rho^2 x^{2\alpha-1}/2$ yields the existence of a constant C independent of ρ so that

$$\int_0^\infty x^{\alpha - 5/2} \exp(-\rho^2 x^{2\alpha - 1}/2) dx$$

$$= C \rho^{(3 - 2\alpha)/(2\alpha - 1)} \int_0^\infty y^{-(2\alpha - 1)/2(2\alpha - 1)} \exp(-y) dy.$$

It follows from this that (2.9) holds for all $\alpha > 3/2$.

For $\alpha = 3/2$, the same change of variables results in the equality

$$(2.10) \qquad \int_{1}^{\infty} x^{\alpha - 5/2} \exp(-\rho^{2} x^{2\alpha - 1}/2) \, dx = \frac{1}{2} \int_{\rho^{2}/2}^{\infty} y^{-1} \exp(-y) \, dy.$$

The latter can be written as

(2.11)
$$\int_{\rho^2/2}^1 y^{-1} \exp(-y) \, dy + \int_1^\infty y^{-1} \exp(-y) \, dy.$$

Clearly, $\lim_{\rho\to 0} (1/2)\rho \int_1^\infty y^{-1} \exp(-y) dy = 0$. We also observe that

(2.12)
$$\int_{\rho^2/2}^1 y^{-1} \exp(-y) \, dy < \int_{\rho^2/2}^1 y^{-1} \, dy = \ln 2 - 2 \ln \rho.$$

Since $\lim_{\rho\to 0} \rho \ln \rho = 0$, (2.10)–(2.12) yield the validity of (2.9) for the case $\alpha = 3/2$ and hence for all $\alpha > 1/2$.

We now consider the integral $\int_1^\infty x^{3\alpha-7/2} \exp(-\rho^2 x^{2\alpha-1}/2) dx$. For $1/2 < \alpha < 5/6$, it is clear that there exists a constant C independent of ρ so that $\int_1^\infty x^{3\alpha-7/2} \exp(-\rho^2 x^{2\alpha-1}/2) dx < C$. Therefore,

(2.13)
$$\lim_{\rho \to 0} \rho^3 \int_1^\infty x^{3\alpha - 7/2} \exp(-\rho^2 x^{2\alpha - 1}/2) dx = 0.$$

The case $\alpha > 5/6$ follows as before. With the change of variables $y = \rho^2 x^{2\alpha - 1}/2$, we obtain

$$\int_{1}^{\infty} x^{3\alpha - 7/2} \exp(-\rho^{2} x^{2\alpha - 1}/2) dx
< \int_{0}^{\infty} x^{3\alpha - 7/2} \exp(-\rho^{2} x^{2\alpha - 1}/2) dx
= C \rho^{(5 - 6\alpha)/(2\alpha - 1)} \int_{0}^{\infty} y^{(2\alpha - 3)/(2(2\alpha - 1))} \exp(-y) dy$$

for some constant C independent of ρ . It is easily seen that the last integral converges. Therefore, (2.14) is valid for $\alpha > 5/6$.

Consider the case $\alpha = 5/6$. We obtain

(2.15)
$$\int_{1}^{\infty} x^{3\alpha - 7/2} \exp(-\rho^{2} x^{2\alpha - 1}/2) dx = \frac{3}{2} \int_{\rho^{2}/2}^{\infty} y^{-1} \exp(-y) dy.$$

Write the latter integral as in (2.11). Clearly,

(2.16)
$$\lim_{\rho \to 0} \rho^3 \int_1^\infty y^{-1} \exp(-y) \, dy = 0.$$

From (2.14)–(2.16) and the fact that $\lim_{\rho\to 0} \rho^3 \ln \rho = 0$, it follows that (2.13) holds for $\alpha = 5/6$ and hence for all $\alpha > 1/2$. Thus, (2.7) holds for all $\alpha > 1/2$.

Combining (2.5)–(2.7) proves (2.2).

Examples. 1) In the case $\alpha = 1$, Theorem 2.4 demonstrates that

$$\lim_{\rho \to 0} |E(N(\varepsilon)) - (\rho^{-2} - 1/2)| = 0.$$

This is the same result described in Slivka and Severo [9, p. 732]. (Note there is a misprint in that paper.)

2) In the case $\alpha = 3/4$, it follows from Theorem 2.4 that

$$\lim_{\rho \to 0} |E(N(\epsilon)) - (3\rho^{-4} - 1/2)| = 0.$$

- 3. The variable $N_{+}(\varepsilon)$. Recall the definition of $N_{+}(\varepsilon)$ as given in (1.2). This variable was studied in Razanadrakoto and Severo [6] where, among other things, they derived an expression for the probability generating function of $N_{+}(\varepsilon)$.
- 3.1. The expected value and variance of $N_{+}(\varepsilon)$. We begin this section with two results that complement those in Section 2 of the present paper for the special case $\alpha = 1$.

Corollary 3.1. Let $\{X_i, i = 1, 2, 3, ...\}$ be a sequence of i.i.d. random variables, normally distributed with mean μ and variance σ^2 . For $\varepsilon > 0$,

(3.1)
$$(\rho^{-2} - 1)/2 \le EN_{+}(\varepsilon) \le \rho^{-2}/2$$

where $\rho = \varepsilon/\sigma$.

Proof. From the definition of $N_{+}(\varepsilon)$ in (1.2) we note that

(3.2)
$$EN_{+}(\varepsilon) = \sum_{n=1}^{\infty} P(S_n > n(\mu + \varepsilon)).$$

The result (3.1) follows from Theorem 2.3 and the symmetry of the random variables $\{X_i, i=1,2,3,\dots\}$.

With the hypotheses and notation of Theorem 3.1, the following result on the variance of $N_{+}(\varepsilon)$ holds:

(3.3)
$$3\rho^{-4}/4 - 1/8 \le \operatorname{Var}[N_+(\varepsilon)] \le 3\rho^{-4}/4 + 1/8.$$

The proof, which we omit, makes use of a series representation for the variance of $N_{+}(\varepsilon)$ derived in Razanadrokoto and Severo [6, p. 181] and follows along the lines of the proof of Theorem 2.4.

3.2. On the distribution and conditional expectation of the random variable $T(\varepsilon)$. Let $\{X_i, i = 1, 2, 3, ...\}$ be a collection of independent and identically distributed random variables with finite expectation μ . For Theorem 3.3 and Theorem 3.4 we make no further assumptions concerning the distribution of the random variables.

Recall that the random variable $T(\varepsilon)$, defined by (1.3), describes the first index, if one exists, for which the event $(S_n > n(\mu + \varepsilon))$ occurs. It follows from Razanadrakoto and Severo [6] that $T(\varepsilon)$ is a defective random variable, i.e., $P(T(\varepsilon) < \infty) < 1$. As in their work, we consider the equivalent event that $(S'_n > 0)$ for $S'_n = \sum_{i=1}^n X'_i$ with $X'_i = X_i - (\mu + \varepsilon)$.

For arbitrary $\varepsilon \geq 0$, define τ_n and a_n for $n = 1, 2, 3, \ldots$, by

(3.4)
$$\tau_n = P(T(\varepsilon) = n)$$

and

$$(3.5) a_n = P(S_n > n(\mu + \varepsilon)).$$

Let $\tau(s)$ represent the generating function of $\{\tau_n\}$. That is, we define $\tau(s)$ by

(3.6)
$$\tau(s) = \sum_{n=1}^{\infty} \tau_n s^n.$$

Applying a result in Feller [3, Theorem 1, p. 413], it is immediate that

(3.7)
$$\log \frac{1}{1 - \tau(s)} = \sum_{n=1}^{\infty} \frac{s^n}{n} P(S'_n > 0)$$
$$= \sum_{n=1}^{\infty} \frac{s^n}{n} P(S_n > n(\mu + \varepsilon))$$
$$= \sum_{n=1}^{\infty} \frac{a_n}{n} s^n.$$

In order to determine the distribution of $T(\varepsilon)$ from its generating function, we use the following lemma which is used for an analogous purpose in Razanadrokoto and Severo [6].

Lemma 3.2. Let $\{u_i, i = 0, 1, 2, ...\}$ and $\{v_i, i = 0, 1, 2, ...\}$ be sequences of real numbers, and assume that $U(s) = \sum_{j=0}^{\infty} u_j s^j$ and $V(s) = \sum_{j=0}^{\infty} v_j s^j$ are such that U(s), V(s), and their nth derivatives exist for $0 < s < \eta$ for some $\eta > 0$. If

$$U(s) = \exp(V(s)) \quad \textit{for } 0 < s < \eta,$$

then

$$u_n = n^{-1} \sum_{j=1}^n j v_j u_{n-j}, \qquad n = 1, 2, \dots$$

Proof. See Razanadrakoto and Severo [6, p. 180].

Theorem 3.3 provides a recursive formula that generates the exact distribution of the defective random variable $T(\varepsilon)$.

Theorem 3.3. Let $\{X_i, i = 1, 2, 3, ...\}$ be independent and identically distributed random variables with finite expectation μ . Let $\varepsilon \geq 0$. Then, with the notation defined in (3.4) and (3.5),

(3.8)
$$\tau_n = -n^{-1} \sum_{j=1}^n a_j \tau_{n-j} \quad \text{for } n = 1, 2, \dots,$$

where τ_0 is defined as $\tau_0 = -1$.

Proof. With τ_0 as defined in the hypotheses, the relation described in (3.7) can be rewritten as

(3.9)
$$\sum_{n=0}^{\infty} (-\tau_n) s^n = \exp\left[-\sum_{n=1}^{\infty} \frac{a_n}{n} s^n\right].$$

The result (3.8) is obtained by applying Lemma 3.2 with $u_n = -\tau_n$ and $v_n = -a_n/n$.

Example. Let $\{X_i, i = 1, 2, 3, ...\}$ be a sequence of independent standard normal random variables. The following probabilities are obtained (correct to the number of decimal places shown) from Theorem 3.3:

n	P(T(1) = n)	P(T(.5) = n)	P(T(.01) = n)
1	.158655	.308538	.499601
2	.0267391	.0722773	.124917
3	.00830393	.032322	.0624605
4	.00318112	.0179333	.0390383
5	.00135864	.0111152	.027327
6	.000620403	.00737263	.0204954
7	.000296445	.00511974	.0161035
8	.000146376	.00367504	.0130842
9	.0000740955	.00270495	.0109035
10	.0000382454	.0020304	.00926796

We have noted earlier that the variable $T(\varepsilon)$ is a defective random variable. Therefore, it is of interest to consider the conditional expectation of $T(\varepsilon)$ given that $T(\varepsilon)$ is finite.

Theorem 3.4. Let $\{X_i, i = 1, 2, 3, ...\}$ be independent and identically distributed random variables with finite expectation μ . Let $\varepsilon > 0$.

Then

(3.10)
$$E[T(\varepsilon)|T(\varepsilon) < \infty] = \frac{P(N_{+}(\varepsilon) = 0)}{P(N_{+}(\varepsilon) > 0)} EN_{+}(\varepsilon).$$

Note. The probabilities appearing in (3.10) can be expressed as $P(N_+(\varepsilon) = 0) = P(T(\varepsilon) = \infty)$ and $P(N_+(\varepsilon) > 0) = P(T(\varepsilon) < \infty)$.

Proof. Since

$$P(T(\varepsilon) = n | T(\varepsilon) < \infty) = \frac{\tau_n}{P(T(\varepsilon) < \infty)},$$

it follows that

(3.11)
$$E[T(\varepsilon)|T(\varepsilon) < \infty] = \left(\sum_{n=1}^{\infty} \tau_n\right)^{-1} \sum_{n=1}^{\infty} n\tau_n.$$

Let $\tau(s)$ represent the generating function of $\{\tau_n, n = 1, 2, 3, ...\}$ as defined in (3.6). Then (3.11) can be rewritten as

(3.12)
$$E[T(\varepsilon)|T(\varepsilon) < \infty] = \frac{\tau'(1)}{\tau(1)}.$$

A simple calculation using (3.7) leads to

(3.13)
$$\frac{\tau'(s)}{1 - \tau(s)} = \sum_{n=1}^{\infty} P(S_n > n(\mu + \varepsilon)) s^{n-1}.$$

Recall that

(3.14)
$$E(N_{+}(\varepsilon)) = \sum_{n=1}^{\infty} P(S_n > n(\mu + \varepsilon)).$$

Therefore, (3.13) and (3.14) imply that

(3.15)
$$\tau'(1) = (1 - \tau(1))EN_{+}(\varepsilon).$$

We apply (3.15), (3.12), and the note following the statement of Theorem 3.4 to obtain

$$\begin{split} E[T(\varepsilon)|T(\varepsilon)<\infty] &= \frac{1-\tau(1)}{\tau(1)}EN_+(\varepsilon) \\ &= \frac{P(T(\varepsilon)=\infty)}{P(T(\varepsilon)<\infty)}EN_+(\varepsilon) \\ &= \frac{P(N_+(\varepsilon)=0)}{P(N_+(\varepsilon)>0)}EN_+(\varepsilon). \end{split}$$

Example. For $\{X, i=1,2,3,\ldots\}$, standard normal random variables, Corollary 3.1 provides close upper and lower bounds on $E(N_+(\varepsilon))$. Estimates for $P(N_+(\varepsilon)=0)$ can be obtained from the work of Razanadrakoto and Severo [6]. Theorem 3.4 can then be applied to obtain upper and lower bounds for $E[T(\varepsilon)|T(\varepsilon)<\infty]$. For example, with $\varepsilon=.5$, Theorem 3.4 establishes that $1.68 \leq E[T(.5)|T(.5)<\infty] \leq 2.25$.

We consider the behavior of $E[T(\varepsilon)|T(\varepsilon) < \infty]$ as $\varepsilon \to 0$ where the common distribution function of the random variables $\{X_i, i = 1, 2, 3, ...\}$ is continuous and symmetric.

Theorem 3.5. Let $\{X_i, i = 1, 2, 3, ...\}$ be independent and identically distributed random variables with common mean μ and distribution function which is continuous and symmetric. Then, for $\varepsilon > 0$,

$$\lim_{\varepsilon \to 0} E[T(\varepsilon)|T(\varepsilon) < \infty] = \infty.$$

Proof. In order to emphasize the dependence of the probabilities a_n and τ_n on ε , denote a_n as $a_n(\varepsilon)$ and τ_n as $\tau_n(\varepsilon)$. Then for each fixed index $n, n = 1, 2, 3, \ldots$,

$$\lim_{\varepsilon \to 0} a_n(\varepsilon) = 1/2$$

and

(3.17)
$$\lim_{\varepsilon \to 0} \tau_n(\varepsilon) = \tau_n^*$$

where $\{\tau_n^*, n = 1, 2, 3, ...\}$ is the solution to the recursive relation described in (3.8) with a_i equal to 1/2.

Due to the symmetry and continuity of the common distribution of the random variables $\{X_i, i=1,2,3,\ldots\}$, τ_n^* can be equivalently characterized by $\tau_n^* = P(S_1' \leq 0, S_2' \leq 0, \ldots, S_{n-1}' \leq 0, S_n' > 0)$ where $S_n' = \sum_{i=1}^n X_i'$ with $X_i' = X_i - \mu$. As a result, the probability generating function for $\{\tau_n^*, n=1,2,3,\ldots\}$, denoted here by $\tau^*(s)$, satisfies relation (3.7) (replace τ with τ^*) with a_j equal to 1/2. It follows from this that

$$\tau^*(s) = 1 - \sqrt{1 - s}.$$

Therefore,

$$\sum_{n=1}^{\infty} n\tau_n^* = \lim_{s \uparrow 1} \tau^{*\prime}(s) = \infty.$$

Theorem 3.5 follows from this and (3.12).

For the case where $\{X_i, i = 1, 2, 3, ...\}$ are normally distributed random variables, we derive a result characterizing the asymptotic behavior of $E[T(\varepsilon)|T(\varepsilon)<\infty]$ as ε approaches 0. Specifically, we show in Theorem 3.6 that $E[T(\varepsilon)|T(\varepsilon)<\infty]$ increases to ∞ asymptotically as ρ^{-1} where $\rho = \varepsilon/\sigma$.

Theorem 3.6. Let $\{X_i, i = 1, 2, 3, ...\}$ be independent and identically distributed random variables, normally distributed with mean μ and variance σ^2 . Then, for $\varepsilon > 0$, (3.19)

$$0 \stackrel{'}{<} \liminf_{\rho \to 0} \rho E[T(\varepsilon)|T(\varepsilon) < \infty] \leq \limsup_{\rho \to 0} \rho E[T(\varepsilon)|T(\varepsilon) < \infty] < \infty$$

where $\rho = \varepsilon/\sigma$.

Proof. Define p_n for $n = 1, 2, 3, \ldots$, by $p_n = P(S_k > k(\mu + \varepsilon), k = 1, 2, 3, \ldots, n)$, and define p_0 by $p_0 = 1$. Razanadrokoto and Severo [6, p. 180] have shown that

$$P(N_{+}(\varepsilon) = 0) = \left(\sum_{k=0}^{\infty} p_{k}\right)^{-1}.$$

Combining this result with Theorem 3.4 leads to

(3.20)
$$E[T(\varepsilon)|T(\varepsilon) < \infty] = \left(\sum_{k=1}^{\infty} p_k\right)^{-1} EN_+(\varepsilon).$$

We derive (3.19) by obtaining upper and lower bounds on the term $\sum_{k=1}^{\infty} p_k$ and applying Corollary 3.1.

In Razanadrokoto and Severo [6, p. 181] it is shown that

(3.21)
$$\sum_{k=1}^{\infty} p_k = -1 + \exp\left[\sum_{k=1}^{\infty} k^{-1} a_k\right]$$

where a_k is as defined in (3.5). Let $\Phi(\cdot)$ denote the cumulative distribution function for the standard normal distribution, and let $\phi(\cdot)$ denote its density function. From the monotonicity of the function $f(x) = x\Phi(-\rho\sqrt{x})$ for x > 0, we obtain

(3.22)
$$\sum_{k=1}^{\infty} k^{-1} a_k = \sum_{k=1}^{\infty} k^{-1} \Phi(-\rho \sqrt{k})$$
$$< \Phi(-\rho) + \int_{1}^{\infty} x^{-1} \Phi(-\rho \sqrt{x}) dx.$$

It is easily seen that

(3.23)
$$\int_{1}^{\infty} x^{-1} \Phi(-\rho \sqrt{x}) dx = -2\Phi(-\rho) \ln \rho + 2 \int_{\rho}^{\infty} (\ln y) \phi(y) dy$$
$$< -2\Phi(-\rho) \ln \rho + 2 \int_{0}^{\infty} y \phi(y) dy$$
$$= -2\Phi(-\rho) \ln \rho + C$$

where C is a positive constant independent of ρ . Applying the result described in (3.23) to (3.21), it follows that for $\rho < 1$

(3.24)
$$\sum_{k=1}^{\infty} p_k < -1 + C\rho^{-2\Phi(-\rho)} < -1 + C\rho^{-1}$$

for some positive constant C independent of ρ .

The result in (3.23) can be combined with Corollary 3.1, and the result described in (3.20) to obtain the following inequality: For $\rho < 1$, there exists a positive constant C independent of ρ so that

$$E[T(\varepsilon)|T(\varepsilon) < \infty] > (1/2)(\rho^{-2} - 1)(-1 + C\rho^{-1})^{-1}.$$

From this inequality, it follows that

$$(3.25) 0 < \liminf_{\rho \to 0} \rho E[T(\varepsilon)|T(\varepsilon) < \infty].$$

We obtain the righthand inequality in (3.19) in a similar fashion. The monotonicity of the function $f(x) = x\Phi(-\rho\sqrt{x})$ for x > 0 leads to

(3.26)
$$\sum_{k=1}^{\infty} k^{-1} \Phi(-\rho \sqrt{k}) > \int_{1}^{\infty} x^{-1} \Phi(-\rho \sqrt{x}) dx.$$

As before, it is easily shown that

$$\int_{1}^{\infty} x^{-1} \Phi(-\rho \sqrt{x}) dx = 2^{-1} \rho \int_{1}^{\infty} (x^{-1/2} \ln x) \phi(\rho \sqrt{x}) dx$$
$$= (2\sqrt{\pi})^{-1} \left\{ \int_{\rho^{2}/2}^{\infty} (\ln 2y) y^{-1/2} \exp(-y) dy - \int_{\rho^{2}/2}^{\infty} 2(\ln \rho) y^{-1/2} \exp(-y) dy \right\}.$$

The inequality

$$\int_{\rho^2/2}^{\infty} (\ln 2y) y^{-1/2} \exp(-y) \, dy > \int_{0}^{\infty} (\ln 2y) y^{-1/2} \exp(-y) \, dy$$

holds for $\rho < 1$. Therefore,

(3.28)
$$\int_{1}^{\infty} x^{-1} \Phi(-\rho \sqrt{x}) dx > C - \pi^{-1/2} \ln \rho \int_{0}^{\infty} y^{-1/2} \exp(-y) dy + \pi^{-1/2} \ln \rho \int_{0}^{\rho^{2}/2} y^{-1/2} \exp(-y) dy = C + (-1 + h(\rho)) \ln \rho$$

where C is a constant independent of ρ and $h(\rho) = \pi^{-1/2} \int_0^{\rho^2/2} y^{-1/2} \exp(-y) dy$.

We observe that

(3.29)
$$h(\rho) < \pi^{-1/2} \int_0^{\rho^2/2} y^{-1/2} \, dy = \sqrt{(2/\pi)} \, \rho.$$

Combining Corollary 3.1 and the results described in (3.20), (3.21), (3.26) and (3.28) yields that for $\rho < 1$,

(3.30)
$$E[T(\varepsilon)|T(\varepsilon)|<\infty] < (1/2)\rho^{-2}(-1+C\rho^{-1+h(\rho)})^{-1} \\ = (1/2)\rho^{-1}(C\rho^{h(\rho)}-\rho)^{-1}$$

where C is a positive constant independent of ρ .

By (3.29), the inequality $\rho^{h(\rho)} > \rho^{\sqrt{(2/\pi)}\rho}$ holds for $\rho < 1$. It follows from (3.30) that

(3.31)
$$\limsup_{\rho \to 0} \rho E[T(\varepsilon)|T(\varepsilon) < \infty] < \infty.$$

Combining the results of (3.25) and (3.31) proves the theorem.

Acknowledgments. This research was supported in part by NSF-REU grant DMS 9300555.

REFERENCES

- 1. R.B. Ash, Real analysis and probability, Academic Press, New York, 1972.
- 2. W. Feller, An introduction to probability theory and its applications, Vol. I, 3rd ed., John Wiley and Sons, New York, 1968.
- 3. ——, An introduction to probability theory and its applications, Vol. 2, 2nd ed., John Wiley and Sons, New York, 1971.
- 4. G.N. Griffiths and F.T. Wright, Moments of the number of deviations of sums of independent identically distributed random variables, Sankhyā Ser. A. $\bf 37~(1975)$, 452-455.
- 5. T.L. Lai and K.K. Lan, On the last time and the number of boundary crossings related to the strong law of large numbers, Z. Wahrsch. Verw. Gebiete 34 (1976), 59–71.
- **6.** D. Razanadrakoto and N.C. Severo, The distribution of the 'finitely many times' in the strong law of large numbers, Statist. Probab. Lett. **4** (1986), 179–182.

- ${\bf 7.~J.~Slivka},\,On\,\,the\,\,law\,\,of\,\,the\,\,iterated\,\,logarithm,\,\,Proc.\,\,Nat.\,\,Acad.\,\,Sci.\,\,{\bf 63}\,\,(1969),\,\,289–291.$
- 8. ——, Some density functions of a counting variable in the simple random walk, Skand. Actuarietidskr. 53 (1970), 51–57.
- 9. J. Slivka and N.C. Severo, On the strong law of large numbers, Proc. Amer. Math. Soc. 24 (1970), 729–734.
 - 10. W. Stout, Almost sure convergence, Academic Press, New York, 1974.
- 11. H.H. Stratton, Moments of oscillations and related sums, Ann. Math. Statist. 43 (1972), 1012–1016.

University of Chicago, Chicago, IL 60637

 $\it Current\ address:\ Department\ of\ Mathematics,\ Michigan\ State\ University,\ East\ Lansing,\ MI\ 48824$

RUTGERS UNIVERSITY, NEW BRUNSWICK, NJ 08903

 $\it Current\ address:$ Department of Statistics, University of California – Berkeley, Berkeley, CA 94720-7360

Department of Mathematics, Lafayette College, Easton, PA 18042-1781