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ON RANDOM WALKS AND LEVELS OF THE FORM n®
SARAH DRUCKER, IMOLA FODOR AND EVAN FISHER

1. Introduction. Let {X;,i = 1,2,3,...} be a collection of
independent and identically distributed random variables with finite
expectation p and finite variance ¢2. Define S, = 2?21 X; for
n=12,3,.... It follows from results such as the Hartman-Wintner
law of the iterated logarithm (see [10, p. 293]) that if @ > 1/2, then
limy, 00 (Sp — np)/n® =0 a.s. (The case @ =1 is the standard Strong
Law of Large Numbers.) An equivalent statement is that for each

number € > 0 the inequality
|Spn — nu| > en®

is satisfied for only finitely many n.

Consider the sequence of events {4,,n = 1,2,3,...} where 4,, =
(|Sn — np| > en®). Let I(A) denote the indicator function of the event
A. We consider the random variable N(g) where N(¢) is defined by

(1.1) N(e) =Y _I(A,).

N(e) represents the number of indices for which A, occurs. For
notational convenience we suppress, in the notation, the dependence
of N(e) on a. For o > 1/2, this is a finite-valued random variable.
Conditions related to the existence of various moments of N(e) for a
variety of boundaries and settings have been investigated by Lai and
Lan [5], Slivka and Severo [9], Slivka [8], Stratton [11], and Griffiths
and Wright [4].

In Section 2 of this paper we consider the expected value of N (¢)
for the special case when X; is normally distributed. In Slivka and
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Severo [9, Theorem 2], explicit upper and lower bounds are derived in
this setting where o = 1. Using a simpler method we derive analogous
upper and lower bounds for E(N(¢)) for the more general case o > 1/2
(Theorem 2.3), which includes the aforementioned bounds as a special
case. Theorem 2.4 describes the asymptotic behavior of E(N(e)) as
e — 0. This generalizes a result indicated in Slivka and Severo [9] for
the case o = 1.

In part 3 we consider the number of times the random walk {S,,,n =
1,2,3,...} lies above a linear boundary. More precisely, we define the
random variable N, (¢) as

(1.2) No(e) = 3 1(B,)

where B, is the event defined by B,, = (S, > n(u+¢)) and I(-) is the
indicator function defined earlier. This variable has been investigated
in Razanadrakoto and Severo [6] where expressions generating the
exact distribution of Ny (g) are derived. Section 3.1 begins with the
derivation of close upper and lower bounds for the expected value of
N, (e) in the special case when X; is normally distributed (Corollary
3.1). We also note an analogous result under the same conditions on
the variance of N, (¢) (inequality (3.3)).

The primary results in Section 3 concern the first index, if one exists,
for which (S,, > n(u + €)) occurs. We define the variable T'(¢) by

(1.3)  T(e) = {inf{” >1:8,>n(p+e)} if such an n exists

00 otherwise.

Under the hypothesis that {X;,i = 1,2,3,...} are independent and
identically distributed random variables with finite expectation, we

derive a general recursive expression generating the exact distribution
of T'(¢) (Theorem 3.3).

The final results in Section 3 center around the conditional expecta-
tion of T'(¢) given that T'(¢) is finite. Theorem 3.4 describes a rela-
tionship between this conditional expectation and the expected value
of N, (g). We then investigate the asymptotic behavior of the condi-
tional expectation as € — 0 in the case where the common distribution
function of {X;,7 =1,2,3,...} is symmetric and continuous (Theorem
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3.5) and in the special case where the common distribution function of
{X;,i=1,2,3,...} is normal (Theorem 3.6).

2. The expected value of N(¢). The following lemmas are
employed at several points in the development.

Lemma 2.1. IfY is a nonnegative random variable, then

Y P(Y>n)<EY <1+)» P(Y >n).
n=1 n=1

Proof. See Ash [1, p. 275]. O

Lemma 2.2. If the random wvariable Z has a standard normal
distribution, then for p > —1,

2
Blzp = 22p (211
Nz 2

Proof. The result follows immediately using an elementary change of
variables. O

Theorem 2.3. Let {X;,i=1,2,3,...} be a sequence of independent
random variables, normally distributed with mean pu and variance o>.
Let o > 1/2 and N(e) be as defined in (1.1). Fore > 0,

(2.1)
2/ 2/ VI ((2041)/(2(20-1)
NG

< EN(e)

1

21/ e-DP((2041)/(2(20—1)))
Jr

< p2/@a-1)

where p =¢/o.
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Proof. 1t follows from the definition of N(g) that

EN(e) = ZP(|Sn —np| > en®)

n=1

P(1Z] > pn°~'/?)

o

3
Il
-

P(p72/(2a71) ‘Z|2/(2a71) > TL)

ol

Il
-

where Z has a standard normal distribution. The application of
Lemmas 2.1 and 2.2 to the latter sum yields inequality (2.1). O

Remarks. 1) We note that, as expected, the bounds on E(N(e)) are
based on € and ¢ through p = ¢/0.

2) For the case o = 1, Theorem 2.3 reduces to Theorem 2 in Slivka
and Severo [9].

Examples. The following examples demonstrate the relative close-
ness of the upper and lower bounds in Theorem 2.3 when p is small.

1) Consider the case 0 = 1 and o = 1. If ¢ = .5 Theorem 2.3
yields the inequality 3 < E(N(e)) < 4. For ¢ = .1, the inequality
99 < E(N(g)) < 100 is obtained from Theorem 2.3.

2) Consider the case 0 = 1 and a = 3/4. For ¢ = 1, Theorem 2.3
yields 2 < E(N(¢g)) < 3. For € = .5, it follows that 47 < E(N(¢g)) < 48.
For £ = .1, we obtain the estimate that 29,999 < E(N(¢)) < 30, 000.

Theorem 2.4 describes an asymptotic approximation for E(N(g)) as
p — 0 for the general case a > 1/2. This includes as a special case a
result noted in Slivka and Severo [9, p. 732] for « = 1. We apply a
method of proof suggested in their paper.

Theorem 2.4. Assume the same hypotheses as in Theorem 2.3.
Then

(2.2)
1/(20-)( (20 o
i [0 () - { oo 2L D200 1)
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where p =¢/o.

Proof. Let ®(-) denote the cumulative distribution function for the
standard normal distribution. Then, as in the proof of Theorem 2.3,

we obtain
oo

E(N(e)) =2)_ @(-pn™ /).

n=1

Define the function f by f(z) = ®(—pz®~'/?) and the function ¢ by
&(x) = [, ([t] - t+1/2)dt for > 0. We apply a standard form of the
Euler-MacLaurin summation formula to the latter sum and obtain

E(N(e)) :2/100 f@)de+ 7(1) + lim f(n)+2/100 " (@)€(z) da.

Since £(z) < 1/8 for z > 0 and lim,,_,« f(n) = 0, it follows that
(2.3)
1

\E(N(e)) —2 [ f@asn | fa)de - <1><—p>\ <1/ 1@)as

We apply the change of variables y = pz®1/2

parts to the integral [ f(z) dz with the result

(2'4)00 .
/0 f(ac)dm:/o ®(—pz*?) da

2 72/(20471)/w[l_(ﬁ(y)]y(?ﬁza)/(zaindy
0

and integration by

~2a-1"

— p—2/(2a—1){ lim [1 _ @(y)]yZ/(Za—l)
y—00
+/ y?/ G Vg(y) dy}
0

where ¢(-) denotes the density function of the standard normal distri-
bution. Using standard bounds on the tail probabilities of the standard
normal distribution (see Feller [2, p. 175]) or other methods, it is easily
shown that

lim [1 — ®(y)]y? Y = 0.

Yy—>00
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Applying Lemma 2.2 with p = 2/(2a. — 1) to the last integral in (2.4)
results in
(2.5)

/Oof(x) dz = p~2/(a=1)9(2=20)/(2a=1) 1 =1/2D((20,4-1) / (2(20:—1))).
0

Since ®(-) is bounded, the Lebesgue dominated convergence theorem
can be used to obtain

1 1
1

. o a.a—1/2 — . _ a.0—1/2 - -

(2.6) ;13%) ; O(—px ) dx /Ofl)lg(l)@( px ) dx 5

We now show that
oo

(2.7) lim |f" (z)| dz = 0.

p—0 Jq

Elementary calculations show that there exist constants C; > 0 and
Cs > 0 depending only upon « so that
(2.8)

2..2a—1 2..2a—1
|f”($)| < Olpxa—5/2 exp <_ %)_i_czplim?)a—'//? exp <_%> i

Consider [, z% %/2exp(—p2az?>1/2)dz. In the case o < 3/2, it
is clear that [z %/2exp(—p?2?®~1/2)dz < C for some positive
constant C' independent of p. Therefore, for a < 3/2, it follows that

oo 2..2a—1
: a—5/2 Pz _
(2.9) ;13%);)/1 x exp ( — > dz = 0.

Consider the case a > 3/2. The change of variables y = p?z?*~1/2
yields the existence of a constant C independent of p so that

/ wa75/2 exp(fp2x2a71/2) dx
0

— Cp(372a)/(2a71)/ y7(2a71)/2(2a71) exp(fy) dy
0

It follows from this that (2.9) holds for all o > 3/2.
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For @ = 3/2, the same change of variables results in the equality

o0 1 o0
(2.10) / o 5/2 exp(—px?*1/2) dx = = / y L exp(—y) dy.
1 2 p2/2
The latter can be written as
1 (¢S]
(2.11) / y exp(—y)dy +/ y exp(—y) dy.
p*/2 1

Clearly, lim,_,o(1/2)p [~ y~" exp(—y) dy = 0. We also observe that

1 1
(2.12) / y Lexp(—y)dy < / y ldy=In2—2Inp.
p?/2 p?/2

Since lim,_,o pInp = 0, (2.10)—(2.12) yield the validity of (2.9) for the
case a = 3/2 and hence for all o > 1/2.

We now consider the integral [, z3*~7/2 exp(—p?z?*~1/2) dz. For
1/2 < o < 5/6, it is clear that there exists a constant C' independent
of p so that [ 23~ 7/2 exp(—p?z2*~1/2) dz < C. Therefore,

(2.13) lim p3/ 237/ exp(—p2a®*~1/2) dz = 0.

p—0 1

The case o > 5/6 follows as before. With the change of variables
y = p?2?*~1/2, we obtain
(2.14)

/ m3a—7/2 exp(—p2m2°‘_1/2) dz
1
< / m3a77/2 exp(—p2m2a71/2) dr
0

_ Cp(576a)/(2a71)/ y(2e=3)/(220=1) gy gy
0

for some constant C' independent of p. It is easily seen that the last
integral converges. Therefore, (2.14) is valid for o > 5/6.

Consider the case @ = 5/6. We obtain

o _ e 3 oo _
(2.15) / 2377/ exp(—p*2®*1)2) dz = 2 / vy~ exp(—y) dy.
1 P
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Write the latter integral as in (2.11). Clearly,

(2.16) lim p3/ y~exp(—y)dy = 0.
1

p—0

From (2.14)—(2.16) and the fact that lim,_,0 p®>Inp = 0, it follows that
(2.13) holds for o = 5/6 and hence for all « > 1/2. Thus, (2.7) holds
for all o > 1/2.

Combining (2.5)—(2.7) proves (2.2). O

Examples. 1) In the case a = 1, Theorem 2.4 demonstrates that

lim |E(N(¢)) = (02 = 1/2)| = 0.

p—0
This is the same result described in Slivka and Severo [9, p. 732]. (Note
there is a misprint in that paper.)

2) In the case a = 3/4, it follows from Theorem 2.4 that

lim |E(N(g)) — (3p7* = 1/2)| = 0.

p—0

3. The variable IV, (¢). Recall the definition of N, (¢) as given in
(1.2). This variable was studied in Razanadrakoto and Severo [6] where,
among other things, they derived an expression for the probability
generating function of N, (g).

3.1. The expected value and variance of N, (€). We begin this section
with two results that complement those in Section 2 of the present paper
for the special case a = 1.

Corollary 3.1. Let {X;,i = 1,2,3,...} be a sequence of i.i.d.

random variables, normally distributed with mean p and variance o>.

Fore >0,
(3.1) (2= 1)/2 < BNy (e) < p%/2

where p =¢/o.
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Proof. From the definition of N4 () in (1.2) we note that

(3.2) ENy(e) =Y P(Sn>n(u+-e)).

n=1
The result (3.1) follows from Theorem 2.3 and the symmetry of the
random variables {X;,i=1,2,3,...}. O

With the hypotheses and notation of Theorem 3.1, the following result
on the variance of N, (g) holds:

(3.3) 3p7%/4—1/8 < Var[Ni ()] < 3p~*/4+1/8.

The proof, which we omit, makes use of a series representation for the
variance of Ny (¢) derived in Razanadrokoto and Severo [6, p. 181] and
follows along the lines of the proof of Theorem 2.4.

3.2. On the distribution and conditional expectation of the random
variable T'(e). Let {X;,i =1,2,3,...} be a collection of independent
and identically distributed random variables with finite expectation pu.
For Theorem 3.3 and Theorem 3.4 we make no further assumptions
concerning the distribution of the random variables.

Recall that the random variable T'(¢), defined by (1.3), describes
the first index, if one exists, for which the event (S, > n(u + €))
occurs. It follows from Razanadrakoto and Severo [6] that T'(¢) is a
defective random variable, i.e., P(T'(¢) < oo) < 1. As in their work,
we consider the equivalent event that (S;, > 0) for S, = > I | X with
Xi=X;—(u+e).

For arbitrary € > 0, define 7, and a,, forn =1,2,3,..., by

(3.4) T = P(T(¢) = n)
and
(3.5) an = P(Sy, > n(p+¢)).

Let 7(s) represent the generating function of {r,,}. That is, we define
7(s) by

(3.6) T(s) = ZTns".
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Applying a result in Feller [3, Theorem 1, p. 413], it is immediate that

1 _ s ,
0o sn
(3.7) =3 —P(Sp > n(p +¢))
n=1
oo an
= Z —S
n=1 n

In order to determine the distribution of T'(¢) from its generating
function, we use the following lemma which is used for an analogous
purpose in Razanadrokoto and Severo [6].

Lemma 3.2. Let {u;,i = 0,1,2,...} and {v;,i = 0,1,2,...} be
sequences of real numbers, and assume that U(s) = Z;io u;s’ and
Vis) =27 v;s? are such that U(s),V (s), and their nth derivatives
exist for 0 < s < n for somen > 0. If

U(s) =exp(V(s)) for0<s<mn,

then .
un:n_IZjvjun,j, n=12,....
j=1
Proof. See Razanadrakoto and Severo [6, p. 180]. o

Theorem 3.3 provides a recursive formula that generates the exact
distribution of the defective random variable T'(¢).

Theorem 3.3. Let {X;,i = 1,2,3,...} be independent and identi-
cally distributed random variables with finite expectation p. Let € > 0.
Then, with the notation defined in (3.4) and (3.5),

(3.8) Tp=-nt Zaan_j forn=1,2,...,

i=1
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where 1y is defined as 9 = —1.

Proof. With 79 as defined in the hypotheses, the relation described
in (3.7) can be rewritten as

(3.9) Ti(—fn)s" = exp [ - i %”s"] .

The result (3.8) is obtained by applying Lemma 3.2 with u, = —7,
and v, = —a,/n. i

Example. Let {X;,i = 1,2,3,...} be a sequence of independent
standard normal random variables. The following probabilities are ob-
tained (correct to the number of decimal places shown) from Theorem
3.3:

n | P(T(1) =n) | P(T(5) =n) | P(T(.01) = n)
1| .158655 .308538 .499601
2 1.0267391 0722773 124917
3 |.00830393 | .032322 0624605
4.00318112 | .0179333 0390383
5.00135864 | .0111152 027327
6 | .000620403 .00737263 .0204954
7| .000206445 | .00511974 | .0161035
8 | .000146376 .00367504 .0130842
9 | .0000740955 | .00270495 | .0109035
10 | .0000382454 | .0020304 100926796

We have noted earlier that the variable T'(g) is a defective random
variable. Therefore, it is of interest to consider the conditional expec-
tation of T'(¢) given that T'(¢) is finite.

Theorem 3.4. Let {X;,i = 1,2,3,...} be independent and identi-
cally distributed random variables with finite expectation p. Let € > 0.
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Then

(3.10) E[T(e)|T(e) < o0] =

Note. The probabilities appearing in (3.10) can be expressed as
P(N4(e) =0) = P(T(¢) = 00) and P(N4(g) > 0) = P(T(e) < 0).
Proof. Since

Tn

P(T(e) = n|T(e) < 00) = ma

it follows that

(3.11) E[T(e)|T(e) < o0] = <ZTn> Z’I’LTn.

n=1

Let 7(s) represent the generating function of {r,,n = 1,2,3,...} as
defined in (3.6). Then (3.11) can be rewritten as

(3.12) E[T()|T(e) < o0] = TT'((ll)).

A simple calculation using (3.7) leads to

(3.13) ) _y P(S, > n(u+e))s" .
1-7(s) ~—~ "

Recall that

(3.14) BN, () = 3. P(Su > nlu+2)).

n=1
Therefore, (3.13) and (3.14) imply that

(3.15) (1) = (1 — 7(1))EN,4 (e).
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We apply (3.15), (3.12), and the note following the statement of
Theorem 3.4 to obtain

E[T(e)|T(e) < 0] = ———

Example. For {X,i = 1,2,3,...}, standard normal random
variables, Corollary 3.1 provides close upper and lower bounds on
E (N4 (g)). Estimates for P(N4(g) = 0) can be obtained from the work
of Razanadrakoto and Severo [6]. Theorem 3.4 can then be applied to
obtain upper and lower bounds for E[T'(¢)|T(¢) < oo]. For example,
with € = .5, Theorem 3.4 establishes that 1.68 < E[T(.5)|T(.5) < oo] <
2.25.

We consider the behavior of E[T(e)|T(¢) < oo] as € — 0 where
the common distribution function of the random variables {X;,i =
1,2,3,...} is continuous and symmetric.

Theorem 3.5. Let {X;,i = 1,2,3,...} be independent and identi-
cally distributed random variables with common mean p and distribu-
tion function which is continuous and symmetric. Then, for € > 0,

gi_r}%] E[T(e)|T(e) < o0] = 0.

Proof. In order to emphasize the dependence of the probabilities a,
and 7, on ¢, denote a, as a,(¢) and 7, as 7,(¢). Then for each fixed
index n,n=1,2,3,...,

(3.16) lim a,(e) =1/2
e—0

and

(3.17) lim 7, (¢) =7,

e—0
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where {r5,n = 1,2,3,...} is the solution to the recursive relation
described in (3.8) with a; equal to 1/2.

Due to the symmetry and continuity of the common distribution
of the random variables {X;,i = 1,2,3,...}, 7 can be equivalently
characterized by 77 = P(S; < 0,8, < 0,...,5,_, <0,S, > 0)
where S], = > | X! with X/ = X; — p. As a result, the probability
generating function for {r*,n = 1,2,3,...}, denoted here by 7*(s),
satisfies relation (3.7) (replace 7 with 7*) with a; equal to 1/2. Tt
follows from this that

(3.18) T*(s)=1—-+v1-s.
Therefore,

oo
E nty =lim7¥(s) = co.
sT1

n=1

Theorem 3.5 follows from this and (3.12). o

For the case where {X;,i = 1,2,3,...} are normally distributed
random variables, we derive a result characterizing the asymptotic
behavior of E[T(¢)|T(¢) < o] as € approaches 0. Specifically, we show
in Theorem 3.6 that E[T'(¢)|T'(e) < oo] increases to co asymptotically
as p~! where p = ¢/o.

Theorem 3.6. Let {X;,i = 1,2,3,...} be independent and iden-
tically distributed random variables, normally distributed with mean p
and variance o2. Then, for e > 0,

(3.19)
0< Iiggf pE[T(e)|T(e) < o0] < lim sup pE[T(e)|T(e) < 0] < o0

p—
where p =¢/o.
Proof. Define p,, for n = 1,2,3,..., by p, = P(Sx > k(p +¢),k =

1,2,3,...,n), and define pg by py = 1. Razanadrokoto and Severo [6,
p. 180] have shown that

P(N.(c) = 0) = (gp)
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Combining this result with Theorem 3.4 leads to
[e'S) —1

(3.20) E[T(¢)|T(¢) < 00] = <Z pk> EN, ().
k=1

We derive (3.19) by obtaining upper and lower bounds on the term
> rey P and applying Corollary 3.1.

In Razanadrokoto and Severo [6, p. 181] it is shown that

(3.21) Zpk =—1+exp [Zk_lak]
k=1 k=1

where aj, is as defined in (3.5). Let ®(-) denote the cumulative
distribution function for the standard normal distribution, and let ¢(-)
denote its density function. From the monotonicity of the function
f(z) = 2®(—py/z) for z > 0, we obtain

oo

D kTl = i ke (—pVk)
(3.22) k=1 k=1

<o)+ | " e B(— ) da.

It is easily seen that

/1 @ (—py/E) dr = —28(—p)Inp + 2 / " (iny)é(y) dy

(3.23) < —28(—p)lnp+2 /Ooo yo(y) dy

=-2®(—p)lnp+C

where C' is a positive constant independent of p. Applying the result
described in (3.23) to (3.21), it follows that for p <1

(3.24) Zpk <—14+Cp22P <« 14 0p7t
k=1

for some positive constant C' independent of p.
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The result in (3.23) can be combined with Corollary 3.1, and the
result described in (3.20) to obtain the following inequality: For p < 1,
there exists a positive constant C' independent of p so that

B[T(e)|T(e) < 00] > (1/2)(p~* = 1)(=1+Cp~")~".
From this inequality, it follows that
(3.25) 0 < liminf pE[T(e)|T(e) < o0].
p—0

We obtain the righthand inequality in (3.19) in a similar fashion. The
monotonicity of the function f(z) = z®(—p+/z) for z > 0 leads to

(3.26) > ke (—pVE) > /0o z ' ®(—py/z) dz.
k=1 1

As before, it is easily shown that
(3.27)

[ ateovma =2 [T ma)oova) do
1 1
= v [ m2y P ent-n dy

/2
—/ 2(lnp)y‘1/2€xp(—y)dy}-
p2/2
The inequality

/2/ (In2y)y~'/% exp(—y) dy >/ (In2y)y~"/% exp(—y) dy
p?/2 0

holds for p < 1. Therefore,

/ a ' ®(—pya)de > C — 1 1/? lnp/ y /% exp(—y) dy
1 0

3.28 P*/2
(3:25) +a 12 lnp/ y~'/% exp(—y) dy
0

=C+ (=1+nh(p))Inp
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2
where C' is a constant independent of p and h(p) = 7~1/2 fOP /2 y=1/2
exp(—y) dy.
We observe that
2/2

P~/
(3.20) h(p) < m 12 / y V2 dy = \/@2/n)p.

Combining Corollary 3.1 and the results described in (3.20), (3.21),
(3.26) and (3.28) yields that for p < 1,
E[T(e)|T(e) < oo] < (1/2)p (=1 + Cp H+1)) =
= (1/2)p” 1 (CP"? - p)
where C is a positive constant independent of p.

By (3.29), the inequality p"(®) > pV(2/™¢ holds for p < 1. It follows
from (3.30) that

(3.30)

(3.31) limsgppE[T(5)|T(s) < o0] < 0.

Combining the results of (3.25) and (3.31) proves the theorem. o
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