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QUATERNIONIC BUNDLES ON ALGEBRAIC SPHERES

RICHARD G. SWAN

ABSTRACT. It is shown that for n > 4 there are nonfree
rank 1 algebraic quaternionic vector bundles on the n-sphere
which are topologically trivial. For m > 5 it is shown that
there are uncountably many such bundles.

1. Introduction. An old question asks whether there is a bijection
between algebraic and topological vector bundles on spheres. More
precisely, let F be one of R, C and H, and let V BF (S™) be the set of
isomorphism classes of topological F-vector bundles of rank k& on the
n-sphere S™. Let A, = Rlzo,...,z,]/(3,2? — 1) be the coordinate
ring of S™, and let Py (F ®gr A,) be the set of isomorphism classes of
finitely generated projective F @gr A,,-modules of rank k. The question
then is whether Py, (F @r A,,) — VBF (S™) is a bijection.

The following results are known about this question.

(1) [16]. The stable version of the conjecture is true, i.e., Ko(F Qr
Ap) = K2(S™)top is an isomorphism for all n and for F = R, C, or H.
1

2) [17]. The conjecture is true if A, is replaced by the localization

(/Engg where S = {1+ f2+---+ f2| fi € A,,s > 0}.
(3) [15]. For F = R or C, it is true for k¥ < 1 and all n.
(4) [1] (see also [14]). If F =R, it is true for n < 2.
(4) (Murthy, see [15]). If F = C, it is true for n < 3.
(5) [15]. If F = H it is true for n <1 (and also for £ = 0 and all n).

Case (6) was observed by the referee of [15] who remarked that
H ®r A; is a principal ideal domain [12, Theorem 5.3] (see also
Corollary 5.2).
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One of the main purposes of this paper is to show that the conjecture
is actually false for F = H if n > 4.

Theorem A. Ifn > 4, there is a stably free, nonfree HRr A,,-module
Q of rank 1 which is topologically trivial.

In Section 2 I will give a quick proof based on well-known results of
Ojanguren, Parimala, Sridharan, and Wood. A more computational
approach (see Sections 7, 8) gives more explicit examples and shows
that if n > 5, there are an infinite number of such modules. The
cases of S% and S? are still open, but I will show that the analogue of
Theorem A holds for a number of other quadric hypersurfaces, even in
dimensions 2 and 3.

A theorem of Suslin [13] shows that the example of Ojanguren and
Sridharan is peculiar to the case of rank 1 projective modules and
that projective modules of rank greater than 1 over a polynomial ring
H[zy,... ,z,] are free. This gives some hope that the conjecture may
yet be true in the quaternionic case for the case of modules of rank at
least 2.

Section 3 contains some further results for more general fields, not
necessarily real. Section 4 gives an algebraic version of case (2)
above for rings of Krull dimension at most 3. Section 5 contains a
generalization of [12, Theorem 5.3] which was used in case (6) above.

2. Real quadric hypersurfaces. I will prove here a more general
version of Theorem A which applies to real hypersurfaces X ¢ R"*+!
defined by an equation ¢(z) = 1 where ¢ is a nondegenerate quadratic
form.

Theorem 2.1. Let g be a nondegenerate quadratic form in n + 1
variables over R, and let A = Rzg,... ,z,]/(¢(z) —1). If n >4 or
if n > 2 and q is isotropic, there is a stably free, nonfree H ®gr A-
module @ of rank 1 which induces a topologically trivial bundle on
X ={z e R"" | q(z) = 1}.

In Section 5 I will show that if n = 1, all projective H ®g A-modules
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are free. Thus the only open cases are those of S2, $3, and the
imaginary hypersurfaces z2+y%+2%24+1 = 0 and w?+ 22 +y%+22+1 = 0.

Ojanguren and Sridharan [10, Proposition 1] have constructed a
nonfree stably free module over the polynomial ring D[z,y] in two
variables over a noncommutative division ring D. If a,b € D with
¢ = ab—ba € D*, the module is the kernel of the map D|z, y]*> — D[z, y]
sending (A, ) to A(z + a) + p(y + b). I will denote this module by
P(z + a,y + b). Further discussion can be found in [7, Section 3] and
[3, pp. 18-19] (see also Section 3).

For the proof of Theorem 2.1 we will need a stronger version of this
due to Parimala and Sridharan [11] which shows that there are in fact
an infinite number of isomorphism classes of such modules over H|z, y].

Theorem 2.2 [11]. The modules P(z + ti,y + j) over H[z,y] with
teR,t>0, are all distinct.

The proof of this in [11] involves some rather complicated calcula-
tions. I would like to thank Raja Sridharan for showing me the follow-
ing very simple proof.

Proof. If we invert the central element 2% + t2, the element = + ti
becomes a unit so P(x +ti,y + j) becomes free and therefore extended
from H[z|,2 2. If P(x + si,y + j) ~ P(zx + ti,y + j) with s? # t2
Quillen’s patching theorem [7, Chapter V, Theorem 1.6] shows that
P(z+ti,y+7) also becomes extended when (z%+t2) — (2% +s%) = 2 — 52
is inverted. Since this element is a unit, this would imply that
P(x +ti,y + j) is extended from H[z] and is therefore free since H[z|
is a principal ideal domain. This would contradict the theorem of
Ojanguren and Sridharan. O

It follows immediately that the same result holds for the modules
P(x+ti,y+j) defined, as above, by the unimodular row (z + i,y + j)
over a polynomial ring H[z,y, 21, ... , 2] in more variables. We just
factor out the ideal (21, ..., zm) to get the modules of Theorem 2.1.

Another proof of these results will be given in Section 7 where we
will also see that P(z +ti,y + j) ~ P(z — ti,y + j). This explains the
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restriction to t > 0 in Theorem 2.2.

We will also need to use [12, Proposition 6.1] which I will restate in
the following form. As usual, U(R) denotes the group of units of R.

Theorem 2.3 [12]. Let G be a finite group acting on an R-algebra
A, and let B = A®. Suppose that U(H ®@r A) = H*. Then there
are only a finite number of isomorphism classes of rank 1 projective
H ®gr B-modules which become free over H @y A.

This is proved in [12] by observing that the usual Galois descent
argument embeds the set of such isomorphism classes in H' (G, U(H®gr
A)) = H'(G,H*). The extension is not required to be Galois for
this. Now H!(G,H*) is easily seen to be finite using the well-known
classification of finite subgroups of H*.

Remark. More generally, if a finite group G acts on a Lie group
L with a finite number of connected components, then H'(G, L) is
finite. Borel pointed out to me that this can easily be deduced from
results of Hochschild and Mostow. In particular, I would like to thank
Borel for the reference [5] which provides the necessary justification
for the following simple proof: If G acts trivially on L, then H(G, L)
is just Hom (G, L) modulo conjugation. If K is a maximal compact
subgroup of L, Hom (G, K)/conj — Hom (G, L)/conj will be onto by
[5, Chapter 15, Theorem 3.1] so it is enough to consider the case of
K. By [9, Section 5.3] each f : G — K will have a neighborhood U in
Hom (G, K) so small that if g lies in U then ag(G)a ! C f(G) for some
a lying in a very small neighborhood W of 1. If U and W are small
enough, this implies that g is conjugate to f since ag(c)a™ = f(7)
will be so near f(o) that f(r) = f(c). So the conjugacy classes are
open in Hom (G, K) and therefore a finite number cover Hom (G, K') by
compactness. The general case follows by replacing L by the semi-direct
product L x G. We have a map 6 : H*(G,L) — Hom (G, L x G)/conj
sending a cocycle f to the section s(c) = (f(0),c). One easily checks
that the center Z(G) acts transitively on the fibers of 6 sending f(o)
to zf (o) for z € Z(G). Since Hom (G, L x G)/conj is finite, it follows
that H(G, L) is also finite.
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Lemma 2.4. Let q and A be as in Theorem 2.1. If n >4 or ifn > 2
and q 1is isotropic, then U(H ®@gr A) = H*.

For the case A = A,, this follows from a result of R. Wood [19] which
shows that all polynomial maps S™ — S™ are constant if n > 2° > m
for some s. We need only note that if u = fo + f1¢ + fo7 + f3k is a unit
of H®R A,, then u can be normalized so that z — (fo(z),..., f3(z))
defines a polynomial mapping S® — S3. It would be interesting
to know if the converse of Wood’s result is true. In other words,
if all polynomial maps S™ — S™ are constant, is there an s with
n > 2° > m? For example, is there a nonconstant polynomial map

S48 5477

Proof of Lemma 2.4 (Wood [19]). Let u = fo + fii + fof + f3k
be a nontrivial unit of H ®g A. Then r = ua = ) f? lies in A*
which is equal to R* by [15, Lemma 9.1]. So in the polynomial ring
R[zg,... ,z,] we have } f2 —r = (¢ — 1)G. We can assume that g
does not divide the leading forms of the f;, otherwise we can reduce
the degree of f; by dividing by ¢ — 1. Let maxdeg f; = d, and let g; be
the homogeneous part of f; of degree d. Then at least one of the g; is
nonzero. We have > g2 = qH where H is the leading form of G. Since
n > 2, q is irreducible and therefore Rz, ... ,2,]/(¢) is a domain. Let
K be its quotient field. In K we have 3 g7 = 0 so the level s(K) is at
most 3 [6, Chapter 11, Section 2]. Now if ¢ is isotropic, K is rational
and so real so s(K) = oo. If ¢ is nonisotropic, we can assume that
g =Y z2. By [6, Chapter 11, Theorem 2.8], we have s(K) = 2 where
2k <n <2kl g0 s(K)>4ifn>4. 1O

To prove Theorem 2.1, we let G = Z/2Z act on A by zy — —xo
and x; — z; for i # 0. Then B = A% = R|zy,...,z,]. Following the
argument of [12, Proposition 6.1], consider the modules P(z1+ti, xo+7)
defined by the unimodular rows (z; + ti,z2 + j) over H g B with
t € R*. Since these are all nonisomorphic, Theorem 2.3 shows that one
of them must remain nonfree when tensored with A, which gives us the
required module Q = A®p P(z1 + ti,z2 + j). Since P(xy + ti,z2 + j)
becomes free when we localize by inverting z? + t? so does ). Since
x? + t2 has no zeros on X, @ is topologically trivial by the following
lemma.
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Let X be a topological space which is either (1) compact or (2)
paracompct, finite dimensional, and with a finite number of connected
components. Let C(X) be the ring of continuous real or complex
functions on X. By [18] the category of finitely generated projective
C(X)-modules is equivalent to the category of (real or complex, resp.)
vector bundleson X. If f : A — C(X) is a ring homomorphism and P is
a finitely generated projective A-module, then C(X)® 4 P corresponds
to a vector bundle on X which we call the bundle induced by P.

Lemma 2.5. If there is an element s € A such that Py is free and
f(s) has no zeros on X, then P induces the trivial bundle on X.

Proof. Since f(s) is a unit of C(X), f factors through the localization
A — As. Since A; ®4 P = P; is free, so is C(X) ®4 P and the vector
bundle is therefore trivial. O

In Sections 7 and 8 I will show that, with the possible exception
of the hypersurface defined by z2 + 22 +---+ 23+ 1 = 0, Q =
A ®p P(x1 + ti,x2 + j) will be nonfree for any ¢ > 0 if n > 4 (and
if 21 and z2 are chosen properly when n = 4).

Remark. 1If one could extend Lemma 2.4 to the modules Q =
A ®p P(xy + ti,z2 + j) by showing that Aut (Q) = H* (or even that
Aut (Q) is a Lie group with a finite number of components) the above
argument would show that the map taking P(zy + ti,z2 + j) to Q is
finite to one. In particular, this would show that there are 2%° distinct
isomorphism classes of stably free nonfree Q.

3. Other quadric hypersurfaces. The results of this section are
based on a generalization of the theorem of Ojanguren and Sridharan
[10, Proposition 1]. We begin by recalling the original construction
[10; 7, Section 2.2; 3, pp. 18-19]. Let A be a ring, and let a,b € A
be such that ¢ = ab — ba lies in A*, the group of units of A. Let
z,y be central elements of A. Then (z + a,y + b) is a unimodular
row since (y +b)(z +a) — (zr+a)(y +b) = —c. Let p : A2 — A by
(A ) = Az + a)+ p(y +b). Then ¢ is onto, so its kernel P, here
denoted by P = P(z+a,y+b), is projective and A® P ~ A?. We want
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to show that P is not free under suitable hypotheses. If we assume that
A% ~ A" implies n = 2, then P is free if and only if P ~ A.

Lemma 3.1. Let D be a domain such that D? ~ D™ implies n = 2.
Let a,b € D with ¢ = ab — ba in D*. Let A = D[z, y1,... ,Yn] be the
polynomial ring over D. Let f(x,y1,...,yn) be a polynomial over the
center of D such that f(—a,y1,...,yn) iS a nonconstant polynomial.
Then P(z + a, f(z,y1,-.. ,Yn) +b) is not free.

Proof. Following a remark of Bass [3, p. 19] we observe that the
projection pro : A2 — A gives an isomorphism P ~ I where I is the
left ideal of all A € A with A(f +b) € A(z+ a). The kernel is zero since
if (A,0) lies in P then A(z +a) =0so A =0.

Define a section o of ¢ by o(\) = (=A™ (f +b),\c™ (z +a)). Then
P =im(1—o0¢p). An easy calculation shows that the images of (1,0) and
(0,1) under proo(l—oy) are —(z+a)c *(z+a) and 1—(f+b)c (z+a)
so I is the left ideal generated by these elements.

If P is free then I = Ag is principal. Write

(1) (z+a)c (z+a) = hg.

(2) 1= (f+0b)c Yz +a)=hg.

It is clear from (1) that g involves only x and is of degree < 2. We
can assume that g is monic since its leading term divides the unit c¢=1.

Case 1. degg = 0. Then g = 1. Therefore 1 € Ag so there is an
element (£,1) in P. It follows that {(z + a) + (f + b) = 0 showing that
f+beAlz+a). Now f(—a,y1,--- ,Yn) +b=f+b=0mod A(z +a)
which is clearly impossible since the left side is nonzero and does not
involve z.

Case 2. degg = 2. Then h is a unit since it divides ¢~!. Therefore,
g=hYz+a)c(z+a) € A(x+a). By (2) we get 1 € A(x +a), a
contradiction.

Case 3. degg = 1. Here g = x +d for some d € D. Since g € I, there
is some (£, +d) in P and so (z 4+ d)(f +b) = 0 mod A(z + a). Let
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fO = f(fav Yty - - 7yn)' We have f = f(iaa Y1, - .- 7yn) mod A(x—}-a) S0
(z4+d)(fo+b) =0 mod A(z+a) and so (z+d)(fo+b)— (fo+b)(z+a) =
0 mod A(z + a). Since fy and a clearly commute, the lefthand side is
(d — a)fo + db — ba. This contains no z and so is zero. Since D is a
domain and fy is nonconstant, we have d = a and ab = db = ba which
contradicts the choice of a and b. O

Taking f = y and n = 1 gives the original example of Ojanguren and
Sridharan [10]. By making use of an observation of Murthy, we can
extend this example to the case of “sufficiently split” quadrics.

Theorem 3.2. Let D be a noncommutative division ring. Let q be
a quadratic form over the center of D which is the sum of a hyperbolic
form and a form representing 1. Then there is a nonfree stably free
rank 1 projective module QQ over A = D[z, ... ,z,]/(g —1).

Proof. Write ¢ = uv + w? + ¢'(w,ys,... ,y,) where all terms of ¢’
contain some y;. Choose a,b € D with ¢ = ab — ba in D*, and let
Q = P(u+ a,w+b). It will suffice to show that Q/(ys,...,yn)Q is
nonfree, so we can assume that A = D[u,v,w]/(uv + w? — 1). We
now use Murthy’s observation that A embeds in the polynomial ring
' = D[z,y] by u = z, v = —y(2 + zy), w — 1 + xy. We only need
the existence of this map here but the fact that it is injective is easily
verified since the basis elements u®v® and u®v®w of A map into monic
polynomials with distinct leading terms. It will suffice to show that
D[z,y] ®x Q is not free. This module is P(z + a,1 + zy + b) over
Diz,y], and the result follows from Lemma 3.1. O

4. The Lissner-Moore argument. Let S = {1 + fZ + f7 +
-+ f2| fi € Ap,s > 0}. In [17, Theorem 11.1] it was shown, using
topological methods, that there is a one to one correspondence between
isomorphism classes of finitely generated projective H ® g A,,-modules
and isomorphism classes of quaternionic vector bundles on S™. T will
show algebraically that this is so for n < 3 using ideas of Lissner and
Moore [8]. See also [3, Section 5.6].

Theorem 4.1 (cf. [8]). Let A be an algebra over R, let S =



QUATERNIONIC BUNDLES 781

{1+ f+fZ+-+f2] fi e As >0}, and let A = H®gr A.

Let M be a Ag-module, and let £ € M. Then & is unimodular over Ag
if and only if it is unimodular over Ag.

Proof. If ¢ is unimodular over Ag, let f : M — Ag with f(§) = 1.
Let ® : A — A send ) to its real part. Then o f: M — Ag sends
& to 1 so & is unimodular over Ag. If £ is unimodular over Ag, let
g: M — Ag with g(§) = 1, and define, following [8], h : M — Ag by
h(z) = g(z) —ig(iz) — jg(jx) — kg(kx). Then h is easily seen to be a
Ag-homomorphism and h(§) =1 +ia + jb+ kc where a = —g(iz), etc.
Let s = 1+a%+b2+c?%, and let f(z) = h(x)(1—ia—jb— ke)s~ . Then
f is a Ag-homomorphism and f(£) =1 as required. O

Recall that a ring R is called real if r? +72+---+72 = 0 with r; € R,
implies r; = 0 for all i. The ring A,, clearly has this property since its
quotient field is a pure transcendental extension of R.

Corollary 4.2. Let A be a real affine domain over R, let S =
{l+f+f2+--+f2|ficAs>0} andlet A = Her A. If
Krulldim A < 3, then all finitely generated projective Ag-modules are
free.

Proof. We again follow [8]. The quotient field K of A is a real field so
H ®gr K is a division algebra. Let P be a finitely generated projective
Ag-module. Then P ® 4, K is a vector space over H @r K showing
that the rank of P over A is divisible by 4. If P # 0, tk P > 4 so P has
a unimodular element over Ag by Serre’s theorem [2, 4]. Therefore,
P has a unimodular element over Ag by Theorem 4.1, so P~ As ® Q
and @ is free by induction on the rank. o

5. Principal ideal rings. The following is a somewhat more general
version of [12, Theorem 5.3].

Theorem 5.1. Let A be a finitely generated commutative R-algebra.
If C®R A is a principal ideal domain, then H®gr A is a left and right
principal ideal ring. Moreover, all ideals of H @r A are projective.
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Note that A = H ®r A need not be a domain, e.g.,, if A =
R[z,y]/(z% + y® + 1) then u = 1 + iz + jy has v = 0 and Au has
rank 2 over A. In particular, Au is not free although it is projective.

Proof. Let K = Q(A) be the quotient field of A. Then H Qg K is
either a division algebra or M3 (K). Let I be a left ideal of A = H®g A.
We can find another left ideal J such that KI & KJ = KA. It will
suffice to show that I @ J is principal and projective so we can assume
that KI = KA. Therefore, a = Ann 4(A/I) = IN A # 0 and hence
A/T has finite length as an A-module, A being at most one-dimensional.
We use induction on the length I(A/I). If I < J < A and J = Az,
then KA = KJ = KAz so x is a unit in KA and Iz~! < Jz=! = A
so I ~ I' = Iz=' where I(A/I') < I(A/I). This shows that it is
enough to consider the case where [ is a maximal left ideal. In this
case @ = Ann 4(A/I) is prime since if ab € a then abA/I =0 but A/I
is simple so either bA/I =0 or bA/I = A/T and aA/I = 0. Since a # 0,
we see that a = m is a maximal ideal of A and hence A/m =R or C.
It follows that A/mA = H or M2(C) = H®g C. Since A/I is a simple
module over this, A/T = H or C2. Therefore, dimgA/I = 4 in either
case so that A/I is isomorphic to H as an H-module. We will identify
A/I with H. The action of an element a of A on A/I commutes with
that of H and so is given by right multiplication by an element ¢(a) of
H, aoqg = gp(a). Clearly ¢ : A — H is a homomorphism of R-algebras.
Its image is commutative and so lies in a maximal commutative subfield
of H. Therefore, we can choose a standard basis 1,4, j, k for H such
that ¢(A) lies in C = R + Ri. This implies that C C H = A/T is
stable under C ®g A for this choice of C in H. Let J =IN(C ®gr A).
Then (C ®gr A)/J = C since it is the image of C®r A in H = A/I.
Now AJ C I and A/AJ = (CA® jCA)/(J® jJ) = CA/J & jCA/J
has dimension four over R showing that AJ = I. By hypothesis, J is
principal and therefore so is I.

Let I = Az. Since KI = KA, the map A — Az by A — Az is an
isomorphism showing that I is free.

Corollary 5.2. Let A be a finitely generated R-algebra which is real.
If C ®r A is a principal ideal domain, then H Qr A is also a left
and right principal ideal domain and so all finitely generated projective

H ®gr A-modules are free.
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Proof. As in the proof of Corollary 4.2, H ®gr Q(A) is a division
algebra so H ®g A is a domain. ]

In particular, Theorem 5.1 shows that the rings Hz,y]/(z? £y? £1)
are all left and right principal ideal rings since C[z,y]/(z* £+ y* £1) ~
Clu,v]/(uv — 1) = Clu,u"!]. Except for H[z,y]/(z? + y* + 1), these
rings are even left and right principal ideal domains by Corollary 5.2.

6. A criterion for freeness. Let A = H Qr A where A is a
commutative R-algebra. Let =,y € A, ¢ € R* and consider the stably
free module P = P(z + ti,y + j) over A. We will always assume
that y2 + 1 is regular in A so that y + j is regular and, therefore,
as in Section 3, the projection pr; : P — A maps P isomorphically
onto the left ideal I generated by 1 + (x + ti)(—k/2t)(y + j) =
—(k/2t)(y + j)(z — ti) and (y + j)(=k/2)(y + j) = —(k/2t)(y* + 1).
Thus, I = A(y? + 1)+ A(y + j)(x — ti). The object of this section is to
give a simple criterion for I to be principal.

Note that A is free as a left CA-module with base 1,j. Any other

base (X,w) is given by
()==()
w j
where E € GL2(CA). Choose

E_([l] —(i/2t)31/(:c+ti)> <; (l)>

Then w = y+j and X = 1—(i/2t)y(x+ti)(y+3) = 1+y* — (i/2t)y(y+
j)(z — ti). Note that X lies in I.

Lemma 6.1. [ is a free CA-module with base X, w' where w' =
w(l+y?).

Proof. Since X and w are linearly independent over CA, it is clear that
X and w’ are because 142 is regular. Let L = CAX@®CAw' C I. Since
A = CAX @ CAw, A(1+y?) = CA(1+y?)x + CAw' lies in L. Modulo
A(1+y?) we have yx = (i/2t)(y + j)(z — ti) so CA(y + j)(z — ti) C L.
Since (y — j)(y + j)(z — ti) € A(1 + y?), we have j(y + j)(z — ti) € L,
but A= CA+ CAjso A(y + j)(z — ti) C L. O
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Lemma 6.2. Assume that 1442 is reqular. Let f € A. Then I = Af
if and only if f € I and ff = u(1+ y?) for some u € A*.

Proof. I is equal to Af if and only if f, jf is a base for I over CA.
This will be the case if and only if there is some X € GLy(CA) with

(61 <JJ;> :X@’)'

Let f = a + bj with a,b € CA. Then jf =aj — b so

()= (5% 2) G
(5 2) (5)=x(6 w2)= ()

Since 1 and j are linearly independent over CA, this is equivalent to

(6.2) <_“5 (Z_;):X((l] y20+1>E.

Suppose that I = Af. Then det X =u € CA*, det E = 1 and
det <_“(—) 2) —aa+bb=ff

so ff =u(y®>+1). Since ff and y? + 1 lie in A and y% + 1 is regular,

it follows that w lies in A and so does v 1.

Conversely, if f € I and ff = u(y® + 1), define X by (6.1) above.
We have X € Mj3(CA) since (X,w’) is a CA-base for I. As above,
(6.2) holds so ff = (y* + 1)det X. Therefore, det X = u € A* so
X e GLQ(CA) [}

Corollary 6.3. Assume that 1 + y? is reqular. Let f € A.
Then I = Af if and only if ff = u(y®> + 1) for some u € A* and
(y +7)(x — ti) = 0 mod Af.
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Proof. If I = Af, these conditions clearly hold. For the converse
we need only show that f € I. Let (y + j)(z — ti) = gf. Then
(y+5)(x—ti)f =gff = (¥* + Dug = (y + j)(y — j)ug so (z —ti)f =
(y — j)ug. Conjugating gives f(x + ti) = ug(y + j) showing that
(f,—ug) € P. Therefore, f = pri(f, —ug) € I. u]

An application of this criterion will be given in Section 8. We conclude
this section with the following lemma which will be used in Section 7.

Lemma 6.4. Assume that 1+y? is reqular. Then A/I ~ CA/(y*>+1)
as a CA-module under an isomorphism sending 1 € A/ to y(z + ti)
and j to x — ti.

Proof. By Lemma 6.1 we have A/T = (CAXx+CAw)/(CAX+CAw') =
CAw/CAw' = CA/(y*> +1). Let E be the matrix chosen at the
beginning of this section. Then

() ()
(4 906 ) ()

Multiplying this out, we get 1 = X + (i/2t)y(z + it)w and j = w —yX —
(i/2t)y*(z + it)w so after identifying CAw/CAw’ with CA/(y? + 1),
1 maps to (i/2t)y(z + it) and j to 1 — (i/2t)y*(z + it) = (i/2t)(x —
ti) mod y? + 1. We multiply this isomorphism by the unit —2#i to get
the required one. ]

It follows immediately that I # A(y? + 1) unless y* + 1 is a unit in
CA since otherwise A/I = A/A(y? + 1) would be free of rank 2 over
CA/(y? +1). This is also obvious from Lemma 6.2.

7. A large set of examples. The proof of Section 2 leaves us
uncertain as to which of the modules P(z; + ti,z2 + j) will be the
required example. I will show here that for n > 5, any one will do and,
moreover, they are all nonisomorphic for ¢ > 0.

Theorem 7.1. Let A be a real algebra which is free as a module



786 R.G. SWAN

over a poynomial subring Rz, y], on a basis which includes 1. Let A =
H®gr A, and suppose that for an infinite set of real numbers s we have
U(A/A(y — s)) = H*. Then the stably free A-modules P(x + ti,y + j)
with t # 0 are all nonfree and P(x+ri,y+j) ~ P(x+ti,y +j) if and
only if r = +t.

This gives a new proof of Theorem 2.2 since R[z,y, 21, ... , 2] clearly
satisfies the hypotheses of Theorem 7.1

Corollary 7.2. Let ¢ =Y a;x? be a nondegenerate quadratic form
in n+ 1 variables over R, and let A = Rlxg,... ,z,]/q(z) —1). Write
¢ =q—apxd=>,.,az? Ifn>5, orifn >3 and ¢ is isotropic,
then the stably free H@gr A-modules P(x1+ti,zo+7j) witht € R, t >0
are all nonfree and nonisomorphic.

We let © = z; and y = z¢. The freeness hypothesis is clear and the
condition on units for all real s except +1/,/ag follows from Lemma
2.4. Of course, if g is isotropic we can make ¢’ isotropic by a suitable
choice of xg.

Corollary 7.3. If n > 5, there are 280 elements of P,(H ®r A,)
which map to the trivial element of VB (S™).

The proof of Theorem 7.1 makes use of the following two lemmas.
The notation is as in Section 6. In particular, we write A = H Qg A,
and we have P(z +ti,y +j) ~ I = A(y? + 1) + A(y + j)(z — ti).

Lemma 7.4. Let A be a real algebra which is free as a module
over a polynomial subring Rly], on a basis which includes 1. Let
A =H®R A, and suppose that for an infinite set of real numbers s we
have U(A/A(y —s)) =H*. If \,u e A=H®gr A and \p = (y*> + 1)™
for some m, then A\, u € H[y].

Proof. Let s € R be one of the specified real numbers. Let A map to
As in A/A(y — s). Then A\sus = (s% +1)™ is a unit so A, lies in H*.
Therefore, A = a + (y — s)f for some f € A. Let w; be a basis for A
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over R[y] with wg = 1. Then {w;} is also a basis for A over H[y], and
we can write A = o+ (y — s) > fi(y)w; with fi(y) € H[y]. If s’ # s
is another real number with U(A/A(y — §’)) = H*, then )y lies in
H* so that a + (s' — s) Y fi(s')w; € H where w] is the image of w; in
A/A(y —s'). Since A/A(y —s') = R[y]/(y — §') ®r[y) 4, the w] form a
basis for A/A(y—s') over R and also for A/A(y—s') over H. Therefore,
we see that f;(s’) = 0 for ¢ # 0. Since this holds for infinitely many
values of ¢, it follows that f;(y) =0 for i # 0 and A = a+ (y — s) fo(y)
lies in HJ[y]. O

Lemma 7.5. Let A be a real algebra which is free as a module
over a polynomial subring R[z,y] on a basis which includes 1. Let
A=H®rAand I = A(y*> + 1)+ A(y + j)(z — ti) with t # 0. Then
INHy] = (y* + 1)H[y|.

Proof. For any ring homomorphism R[z,y] — R, R will be a direct
summand, and therefore a subring, of R®g; ) A. Clearly, (y*+1)H[y]
is contained in 7 N H[y]. Let f(y) belong to I N H[y]. After dividing
f by y? + 1 and multiplying by a constant, we can assume that f =1
or y + a with « € H. But f = 1 is impossible since then I = A
contradicting Lemma 6.4 because CA/(y? + 1) D Clz,y]/(y* + 1) # 0.
Iff=y+a=y+pB+7~j, with 8,7 € C, the image of f under the
isomorphism of Lemma 6.4 is 0 = (y+ )y (z +ti) +y(x —ti). All terms
lie in the subring C[z,y]/(y*> +1). Now (y + 8)y = Sy — 1 mod y* + 1
so (By — 1)(z + ti) + y(z — ¢ti) = 0. Examining the coeflicient of zy
shows that 3 = 0. We now get y(z — ti) = (x + ti). The coefficient of
x shows that v = 1, and we are left with an obvious contradiction if
t#0. O

Proof of Theorem 7.1. Suppose that P(z+ti,y+j) and P(z+7i,y+j)
are isomorphic. Then so are I = A(y? + 1) + A(y + j)(z — ti)
and J = A(y?2 + 1)+ A(y + j)(z — ri). Let f : J ~ I. Since
L2y = Mgy = Jy2yq, we see that f has the form f(€) = £ where
o € Ay2iq. Since f(y? +1) = (y* + 1)a lies in I and so in A, we have
a=A(y?*+1)7! for some A € I C A. Similarly, o= = p(y* + 1)~ for
some p € J C A. Multiplying these expressions we get Ay = (y? + 1)2.
By Lemmas 7.4 and 7.5, we see that X lies in (y? + 1)H[y] so that
a € H[y]. Similarly, o ! € H[y] so a € H*.
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A similar argument applies if P(z + ti,y + j) is free. In this case we
have f: A~ I and f(£) = éa wherea € [ CAand ot = pu(y? +1)7!
for some u € A. We have ap = (y*> + 1) showing that « lies in
(y? + 1)H[y] while p € H[y]. Write o = A(y? + 1) with A\ € H[y].
Then A\ = 1so A € H*. Since a = A\(y? + 1) we see that I = A(y*+1)
contradicting the last remark in Section 6.

To finish the proof we must show that I = Ja with o € H* is
impossible unless r = +t. If I = Ja, then (y + j)(z — ri)a maps to
0in A/I ~ CA/(y* +1). Write @ = a + bj with a,b € C. Then
(y+i)(z—ri)a=y(z—ri)a+y(x—ri)bj+ (x+ri)aj— (z+ri)b maps
to [y(z —ri)a — (z+ri)bly(z +ti) + [y(z — ri)b+ (z +ri)a)(z — ti) = 0
or, since y> = —1 in CA/(y? + 1), [(z — ri)a + (z + 7i)by](z + ti) =
[y(z—7i)b+(x+ri)a)(z—ti). All terms lie in the subring C[z, y]/(y2+1).
Comparing coefficients of y gives (z+7i)b(z+ti) = (z —7i)b(x —ti) and
therefore we also get (z — ri)a(z + ti) = (z + ri)a(z — ¢i). Comparing
coefficients of 2% gives a = @ and b = b, and the equations reduce to
2iz(r +t)b = 0 and 2iz(t — r)a = 0 showing that o = 0 unless r = +t¢.

Finally observe that Ij = A(y? + 1)j + A(y + j)(z — ti)j = A(y® +
1) + A(y + j)(z + ti) showing that P(z + ti,y + j) =~ P(x — ti,y + j).
o

8. Another proof of Theorem A. The criterion of Corollary 6.3
can be used to give still another proof of Theorem A which shows that
all of the modules P(xz +ti,y+ j) for t # 0 are nonfree even in the case
of S* which is not covered by the method of Section 7. I do not know
if all the modules P(z + ti,y + j) with ¢ > 0 are distinct in this case.
The method applies to all smooth real quadric hypersurfaces having a
real point.

Theorem 8.1. Let A = Rlzo,...,x,]/(q(z) — 1) where ¢ =3 a;z?
is a nondegenerate quadratic form such that q(1,0,...,0) = 1. Let
A = HQRr A, and let t € R*. If n > 4, then the A-module
P(xq + ti,zo + j) is stably free, nonfree, and topologically trivial.

Proof. Since w = 1+ is invertible in the ring of continuous functions
on the hypersurface, the topological triviality follows from the fact that
P, is free by Lemma 2.5.



QUATERNIONIC BUNDLES 789

Murthy has given an algebraic description of the stereographic pro-
jection S™ — (1,0,...,0) — R™. The same procedure applies to our
rings A. Note that ¢ = 23+ a;z?. Write u = 1 —z and y; = z; /u for
i=1,...,n. Then 1+ a;y? =2/uso (4,)u = R[y1,--- ,yn]s where
s = 1+ Y a;y?. Note that u = 2/s so x; = 2y;/s for i = 1,... ,n.
Therefore, it will suffice to prove the following lemma.

Lemma 8.2. Ifn > 4, P(2y;s~! + ti,2y2s~! + j) is not free over
Hly1,. .. ,yn]s where s =1+ a;y2.

Proof. By Corollary 6.3, we must show that there is no f €
Hlyi,...,yn)s with ff = B(4y3s72+1) and (2yo5 1 +7)(2y1s ™1 —ti) =
Omod Af. Here 8 is a unit of R[ys,... ,yn]s s0 B8 = as™ where
a € R*. Clearly o > 0 since ff and 4y3s~2+ 1 are positive. Replacing
f by fa~'/2, we can assume that ff = s™(4y3s~2 + 1). Clearing
denominators and replacing f by fs* for some k gives us the equations

(8.1) Ff=s"(y"+5") wherey =2y,
and

(8.2) of = s™(y + sj)(x — sti) where z = 2y,
in the ring I' = H[y1, ... , yn]. ]

Lemma 8.3. T'/sT is a domain if n > 4.

Proof. T/sT = H ®r Rly1,...,yn]/(s). It is sufficient to show
that the quotient field K of R[y1,...,yn]/(s) does not split H. As
is well known, this is equivalent to showing that the level of K is at
least 4, the level s(K) being the least m such that —1 is the sum of
m squares in K [6, p. 304(3)]. Now K is the function field of the
quadric 1 + a1y? + -++ + a,y2 = 0. Let z be an indeterminate. Then
s(K) = s(K(z)) [6, p- 304(5)]. Let 29 = 2z, z; = zy;. Then K(z) is the
function field of the affine quadric cone 22 + a12? + -+ + a,22 = 0. If
some a., is negative, this field is rational over R and so has level co. If
all a,, are positive, the level of this field is 2¥ where 2F < n < 2k+1 by
[6, Chapter 11, Theorem 2.8]. Therefore, s(K) > 4 if n > 4.
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Now suppose that N > 0 in (8.1). Then s divides f or f by Lemma
8.3. Since 3 = s, s|f in any case. Replacing f by s~ f and ¢ by s now
reduces N. Therefore, we can assume that N = 0. This implies that s
does not divide f otherwise (8.1) would imply that y* = 0 mod s.

If M > 0, this and Lemma 8.3 show that s divides ¢ so we can replace
¢ by s 1¢ reducing M. Therefore we can also assume that M = 0.
Letting ¢ = —k¢p, where k = ¢j is the quaternion unit, we now see that
the equations

(8-3) fF=W+s
(8.4) gf = (s + jy)(st + ix)

have a solution in I'. Replacing (8.4) by the difference (8.4) — ¢(8.3)
gives

(8-5) hf = (s + jy)(iz + jty)

where h = g — tf.

Write s = 1 + S where S = Y_ a;y2 is homogeneous of degree 2. By
(8.3), f has degree at most 2 so we can write f = fo+ f1 + fo where f;
is homogeneous of degree i. Now ff =1+ (y?> +2S)+ S? so fofo = 1,
fafa = S%. Replace f by fo_lf so that fo = 1. Since f3 # 0, deg f = 2,
and so degh =1 by (8.5). Let h = hg + hy. Then hofo = 0 by (8.5)
so hp = 0 and h = hy is homogeneous of degree 1. Therefore, (8.5)
gives h + hf; + hfs = (1 + jy + S)(iz + jty) so h = iz + jty and
hfi = jy(iz + jty). Also hfy = S(iz + jty) showing that fo = S.

Now (iz + jty)fi = jy(iz + jty) so f1 = ay for some o € H and
(iz + jty)a = j(iz + jty). Comparing coefficients of y shows that
a = j, and comparing coeflicients of x gives the contradiction ij = js.
[}
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