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ZETA REGULARIZED PRODUCTS AND
FUNCTIONAL DETERMINANTS ON SPHERES

J.R. QUINE AND J. CHOI

1. Introduction. For n > 2, let S™ be the n-dimensional sphere
with the standard metric, and let Agn» be the Laplacian operator on
the space of smooth functions. The eigenvalues of this operator are
known to be (I + n — 1) with multiplicity 5*, where

n +1 +1-2 21+n -
o = ()- () - B e

This paper is concerned with using a factorization theorem for zeta
regularized products to compute functional determinants of operators
associated with Agn. These determinants are defined by the process
of zeta regularization. The most important are det'Ag» and the de-
terminant of the conformal Laplacian, det(Agn + n(n — 2)/4). The
prime indicates the omission of the zero eigenvalue in the zeta reg-
ularized product. In general, the conformal Laplacian is defined to
be A + (n — 2)K/4(n — 1), where A is the Laplacian and K is the
scalar curvature. For the sphere, K = n(n — 1). Computation of the
above determinants is equivalent to computing derivatives at s = 0
of the zeta function Y ;°, B/*[l(l + n — 1)]~* for the Laplacian and
Yso Bl +n/2)(1 + n/2 —1)]~* for the conformal Laplacian.

For simplicity, since we are concerned mainly with illustrating the
factorization theorem, we restrict our discussion of the conformal
Laplacian to the case when n is even. We consider the more general
zeta function, Z,(s,a) = > 1, B'[(l +a)(l + n— 1 — a)]~* for integers
a, 0 < a < n-—1, with ¢ = 0 corresponding to the Laplacian
and a = n/2 to the conformal Laplacian. If a(n — 1 —a) # 0,
then det(Agn + a(n — 1 —a)) = a(n — 1 — a) exp(—Z,,(0,a)), and if
a(n —1—a) =0, then det'Agn = exp(—2/,(0,a)).
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We show below (Theorem 1) that for integers a, det(Agn+a(n—1—a))
if a(n —1—a) # 0 and (n — 1)det'Agn are both of the form

(2) exp (rn(a) + érﬁ(a)(’(—k + 1))

where ¢ is the Riemann zeta function, and the numbers r,(a) and
74*(a) are rational numbers for which we give explicit expressions in
terms of coefficients of the Taylor expansion of 3 about | = —a
and I = —(n —1)/2. Using (2) and the functional equation for the
Riemann zeta function, it is easy to compute numerical values for the
constants involved. Our computations show that r,(a) = 0 for n odd
and 7' (a) = 0 if n and k have opposite parity.

Computations of determinants of Laplacians and conformal Lapla-
cians have been done previously, by using a variety of techniques.
Vardi [8] presented a method for computing det'Ag-~. Computation
of det’(Ags + 2) has been done by Branson and @rsted [3], and this
result agrees with ours. Techniques used there are due to Weisberger
[12]. Our technique has the advantage of offering a unified approach.

The values of these determinants are of interest since in many cases
they give extremal values of the determinant for a class of metrics. See
3, 2, 6].

The technique that we introduce here for dealing with this computa-
tion, which is different from other approaches, is a lemma on zeta reg-
ularized products (Lemma 1), which may be useful in simplifying and
understanding other computations of this type. This gives us, in addi-
tion, a way to factor our functional determinant det(Agrn +a(n—1—a))
into multiple gamma functions, generalizing an equation of Voros
[11], and giving an alternate approach to computing it for integral
a, 0 <a<n-—1 (Section 5).

We remark that choosing a to be an integer makes things considerably
simpler because of the fact that 8F = 0forl = —1,... ,—(n—1), and the
computation reduces to computation of derivatives of the Riemann zeta
function. The same techniques could be used for noninteger values of a
but would involve a more complicated expression involving derivatives
of the Hurwitz zeta function.

2. A lemma on zeta regularized products. If \; is a sequence
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of nonzero complex numbers, consider the zeta function

Z(s)=> A\’
k=1

If Z(s) converges for Res > so and has meromorphic continuation to
a function meromorphic in Res > sy, s1 < 0 with at most simple
poles, then we say the sequence is zeta regularizable. We define
A, ° = exp(—slog Ax), and the definition of Z depends on the choice of
arg \g.

For a zeta regularizable sequence, we define the zeta regularized
product

H 2\, = exp(—Z'(0)).
We also define the product [ ], (Ax — A), where for A # A, we adopt the
convention that arg(A\r — A) & arg A for || large.

For )\; the sequence of nonzero eigenvalues of the Laplacian on
a manifold, ], Ax is called the determinant of the Laplacian and
[1.(Ax + X) the functional determinant, det'(A + X). This concept
was introduced in [5].

Information on the formal properties of zeta regularized products
can be found in [7] and [11]. The use of zeta regularized products
can be traced back as far as Barnes [1]. Our approach is to try to
factor a zeta regularized product into simpler ones. One sees that
the equality of [],(A\2 — A?) and [[,(\x — A)TL.(Ax + ) is untrue
without the introduction of an exponential factor. This factor can be
computed from the relationship between the zeta regularized product
and the Weierstrass product found in the references mentioned. We
give a confirmation independent of this in the proof below.

Lemma 1. Let \; be a zeta regularizable sequence, and let h be an
integer such that Z;’;l |\;| 7"~ < co. For Res sufficiently large, let

(3) Z(s) =) _A;°
j=1
and for X\ # X;, let

(4) F(s) = Z((Ai AT =N = ()T
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Then we have

(5) F'(0) WZ]R Z(s)| 1+ L +- 4 ! o
- = es Z(s —F - —.
j 3 2j—1)

In terms of zeta reqularized products, the result can be stated as

[1.0G -2 =e"OTL =] +»

where F'(0) is given by (5).

Proof. Define Gj(s) by subtracting terms of the binomial expansion
of the summand of (4),

Gi(s) = (A% = A) " = = X) " = (e +A)~°

(6) L/ S 25—2j5 S 24
_ - —25—2j _ - —8—27 2j
(5w a (e
7=0
Elementary estimates show that
G(s) =) Gil(s)
k=1

converges for Res > 0. Since G},(0) = 0, term by term differentiation
gives

(7) G'(0) = 0.

Now summing (6) over the index k gives

(8) F(s) = [hzm [ <j5> Z(2s 4 2j) — 2 <2j> Z(s+ 2j)] +G(s).

Differentiating (8) at s = 0 and using (7) gives the result. o
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3. Main theorem.

Theorem 1. Forn = 2,3,... and a an integer such that 0 < a <
n—1, and Res > n, let

9) Z(s,a):Zﬂl"[(l—l-a)(l-i-n—l—a)]_s

=1

n_ [N+l n+l-2
=)= ()

Fork=1,2,...,n, define functions t}(a) by the expansion

where

(10) Bl = Zt” )

The derivative at zero of (9) is given by

(11)  —Z'(0,a) = ru(a Zn: L+ (=)™t (a)¢'(1 — k) — A,
=1
where
e A |
12) (o) =+ 0 S oot (M)
j=1

and where A =log(n—1) ifa(n—1—a) =0 and A =log(a(n—1—a))
otherwise.

Proof. Let

Z,Bl (+a)(l+n—-1—a))"°

—(l4+a)—(+n—1-a)~*}
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Substituting A = (n —1)/2 — a, h = n, gives us the situation described
in Lemma 1. Hence, if for Re s > n, we set

(14) Z(s,A)ziBﬁ(H—n;l—i—)\)S,
=1

we have

(15) F'(O)[nZD]ResZ(SO) 14ty 1t A
_j:ﬁ:?f ’ 3 2j-1) j~

We now show that
= n—1
1 Z =t ——
(16) Res Z(s,0) tk( 5 >

for 1 <k <n-—1, k an integer. Recall that the Hurwitz zeta function
is defined for Res > 1 by

For every z, ((s,z) can be continued to be analytic in s except for a
pole at s = 1 with residue 1. Using (11), we may write

260-5 30 (") ) T

=1 j=1
" (n—1 . n—1
j=1

Now (16) easily follows.
Now by (13) we have

(17) Z'(0,a) = F'(0) + Z'(0,\) + Z'(0, =),
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and we need to compute the last two terms on the right side of (17).
First note that 8 =0forl = —1,-2,...,—(n—1) and 5 = 1. Hence,
if @ # 0, we have

2(0,-A) =) Brl+a)*
1=1
=Y A e
=1
= Zt};(a)((s —k+1)—a"".
k=1
Thus,

n

(18) Z'(0,—\) = Ztﬁ(a)('(—k +1) +loga, a#0.

k=1
If a = 0 we have
(19) Z’(o e 1) = zn:t"(o)(’(—k+1).
’ 2 k
k=1
Similarly,
Z'0,0) =Y ti(n—1-a){'(-k+1)
(20) 1

+log(n —1—a), a#n-—1,

and fora=n—1,

= n—1 - n
(@) ”@’2>=Zm@wku
k=1
From 8" = (—1)"*'8",,,.+1, we deduce

(22) f(n—1-a) = (~1)"*4(a).

Now combining (15)—(22), we get (11). O
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4. Computations for small n. The following is a table of det’ Agn,
for n =2,...,6, and conformal Laplacians det’'(Agn + n(n — 2)/4) for
n = 4,6,8. The first expression in each set of equations is obtained
from Theorem 1. The second expression is obtained by replacing the
values of (' at negative integers by its equivalent expression in terms
of values of ¢ and ¢’ at positive integers obtained by differentiating the
functional equation

Numerical evaluation of ¢'(k), k& > 1, is discussed in [9]. The compu-
tations below were done by using Mathematica.

det'Ag2 = exp (% - 4('(1))

exp (% + %(7 + log(2m)) — 2i22)>

3.19531 ...

det'Ags = %exp(—?('(—?) —2¢'(0))

1 3
= 5 exp <10g(271') + %)
= 3.33885. ..
' 1 15  2¢'(—3 13¢'(—1
detAS4_§eXp<1_6_ 4(3 ) C?E )>
1 1267 16 13¢(2 (4
=3P <m + 45 (7 +log(2m)) - 67; )4 2;2)
=1.73694 ...
detlAss = %exp <_Clé_4) _ 23</é_2) _ 2CI(0)>
_ 1 23¢(3)  ¢(5)
=P <log(27r) + Cymcal W)

=1.76292...
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detlAsﬁ =

exp <455 CI(_S) _ 2</(_3)

1

5 432 30

1 <303733 751
= g Xp

L9 () 4 log(2
153600 ~ 1800 ') T 108(27))

u0(2) |, 304 C’(G)G)

149¢'(—1)
30 )

6072 274 8T

120~
144 3 3

=1.29002...
det(Ags +2) = exp (— 3) CI(_1)>

53 1
= exp (- m + E(’Y + 10g(27r))
¢'2) ¢4
_E§+2ﬂ>
= 1.04562...
det(Ags + 6) = exp (13150 - C,(?;)E)) + 41(301)>
1459 1
= exp <—453600 — %(’7 + log(27))
¢'(2)  ¢'(6)
6072 876

= .995257...
( 5497 ¢'(=7)
= exp —

Ags + 12 -
det(Ase +12) 50803200 1260

¢'(=5)  ¢(=3) (¢(-1)
360 T 360 210
301481 23
- - log(2
eXp( 76202800 * 567007 T 108(2™)

LB 0, o)
42072 4807* 9676 = 32#8
= 1.00069... .

5. Multiple gamma functions. From the above analysis,
det(Agn + a(n — 1 — a)) can be related to multiple gamma functions.
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We recall that the multiple gamma functions of Barnes, see [1, 8, 10],
are defined in terms of zeta regularized products associated with the
zeta function

(23) ZnB(a,z) = Zal"(l +z)7°

where a]' = ("714). Define

n—1

Pu(x) = exp(=2Z;, 5(0, ).

Now there are polynomials ¢,, of degree n such that exp(¢, ()P, (z) !

is Barnes function I'y,(z) [8].

We prefer to work with the functions P, (z). Since af , +a) ' = af,

we have the functional equation
(24) P,(z+1)P, 1(z) = P,(2).
Also, it is easy to compute by the methods in Section 3 that
_1 n—1
(25) Py(1) =exp ( —— > ('(=5)s)
(n—1)! =

where s7 are the Stirling numbers defined by [[;_,(z +j — 1) =
> g1 STl

We note now that g7 = 2af — aZ_l, so that the function Z in
Theorem 1 can be written in terms of Z, p and Z,_1 . We get

ro(a) [Pn(@)]?[Pn(n = 1 — a)]?

(26)  det(Asn Faln =1 =) = = 1= a)

where 7,,(a) is given by (12).

The equation (26) gives a factorization of the lefthand side into
multiple gamma functions and an exponential factor. Computation
of this expression for integral a can then be done using (24) and (25).
For n = 2, this is equivalent to the factorization (6.41) of [11], and so
(26) is a generalization of this formula.
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