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CLOSED GEODESICS ON
IDEAL POLYHEDRA OF DIMENSION 2

C. CHARITOS

1. Introduction. In this paper we are concerned with ideal
polyhedra of dimension 2. These spaces consist of ideal hyperbolic
triangles which are glued together by isometries along their sides. It
is important to define and begin the study of ideal polyhedra in the
context of negatively curved polyhedra introduced by Gromov in [7].
Ideal polyhedra of dimension 2 appear naturally as the 2-skeleton of 3-
manifolds obtained by gluing together ideal tetrahedra. Topologically,
simplicial complexes with vertices removed are examples of spaces
which are homeomorphic to ideal polyhedra.

There is a consistent way to define a length pseudo-distance dx on
an ideal polyhedron K. Theorem 1 gives necessary conditions for this
length pseudo-distance to be a geodesic metric. This result is analogous
to a theorem of Bridson for geometric complexes (see [1, Theorem 1.1]
or [9, Theorem 3.6]).

By introducing the concept of the developing surface along a curve ~y
in K we prove the existence of a closed geodesic in the free homotopy
class of a closed curve which is not homotopic to a point or to a cusp in
K. We prove this by elementary methods; we don’t use any shortening
process [4, Chapter 10, 5] but we reduce the proof to the case of
surfaces.

In Propositions 2 and 3 we prove simple properties of the universal
covering K of K. In particular, in Proposition 3 we prove that every
local geodesic of K is a geodesic; this is not true in general for two-
dimensional simply connected polyhedra of negative curvature.

Finally, Propositions 2 and 3 permit us to establish the uniqueness
of a closed geodesic in its free homotopy class. This is Theorem 2 and
is the main application of the method outlined above.

2. Ideal polyhedra of dimension 2. We begin with the precise
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definition of ideal polyhedra of dimension 2. Note that all ideal
polyhedra that we consider in the following are of dimension 2.

Definition. Let E be a disjoint union of ideal hyperbolic triangles,
and let ~ be an equivalence relation on UE such that: For every T,
T'in E, Dprgp = {x € T : 3y € T',xz ~ y} is a (possibly empty)
union of sides of T', and the restriction of ~ to 7" x T” is the graph of
a homeomorphism from Dz, to Dr r+ which is an isometry on every
side of DT’,T-

An ideal polyhedron is the quotient space UE/ ~.

An ideal polyhedron K Is said to be locally finite if every triangle of
K meets only finitely many triangles of K.

Let K be an ideal polyhedron of dimension 2. A map from [a, b] to K
is called a broken geodesic if there is a subdivision a = t) < t; < --- <
tnt1 = b such that f([t;,t;11]) is contained in some ideal triangle and
the restriction of f to [t;,¢;41] is a geodesic inside this ideal hyperbolic
triangle for ¢ = 1,2,... ,n. Then define the length I(f) of the broken
geodesic map f to be

Zl(f

the length inside an ideal triangle being measured with respect to the
hyperbolic metric | |. K is connected if every two points z,y in K
can be joined by a broken geodesic.

[tiatz‘ﬂ}) = Z |f(t:) — f(tiv1)l
=0

Define d(z,y) for every two points z,y in K to be the lower bound
on the lengths of broken geodesics from x to y. This is clearly a
symmetric map, satisfying the triangle inequality, called the length
pseudo-distance.

We next recall a few definitions to fix notation and terminology:
Let (X, o) be a metric space.

A geodesic segment is an isometric map f : I — X where I is some
closed interval of R.

A geodesic arc is a map f : I — X such that for every ¢t in I there
exists an € > 0 such that the restriction of f to [t —e,t+¢]NIis a
geodesic segment.
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A geodesic, respectively local geodesic, is a map f : R — X such that
for every closed subinterval I of R, f/I : I — R is a geodesic segment,
respectively geodesic arc.

A closed geodesic is a map f : S' — X such that for every ¢ in S*
there exists an € > 0 such that the restriction of f to [t —e,t +¢] N S?
is a geodesic segment.

If every two points on (X, p) can be joined by a geodesic segment,
then X is called a geodesic metric space and o a geodesic metric.

Note that the length pseudo-distance on an ideal polyhedron may not
be a metric; see Example 1 below. Note also that even if the length
pseudo-distance is a metric, it may not be geodesic metric; see Example
2 below.

To formulate our examples we will need the notion of gluing weight
which we next define.

Let 13,75 be two hyperbolic ideal triangles. We denote by Ck,
k =1, 2, the unique circle inscribed in T%. Note that the existence and
uniqueness of the inscribed circle in an ideal triangle follows easily from
the fact that the group of isometries of hyperbolic plane H? operators
transitively on the triples of points of the boundary of H2. Let oy, 02
be two oriented sides of 13,75, respectively, and let Ay be the point
of tangency of Cj with the side o, k = 1,2. Let I : 07 — o9 be
an isometry. We use ¢ to glue T} with T, along the faces o7 and
o2. Let A} = i(A1) € o2. Then we define mia = +]A] — A, if
the orientation of the side o5 coincides with that of the oriented arc
Al Ay and myy = —| A} — As| if the orientation of oy coincides with that
Az Al

Evidently mi2 = May-

Definition. We call the real number mjs the gluing weight of oy
on o9 and the positive number |m13| the gluing weight of the triangles
Ty, Ts.

Example 1. Let L be an ideal polyhedron, and let z,y be two points
on two distinct edges 01,02 of L. Suppose that dp(z,y) > 1, where d,
is the length pseudo-distance on L.

Consider now a sequence of hyperbolic ideal triangles T,,, n =
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1,2,..., and denote by $i,,S2, two sides of T,,. For each n € N
we glue T), to L by identifying isometrically the side sg,, of T}, with the
edge o of L, k = 1,2. Moreover, for each n € N, we choose the gluing
weight of s, on o, k = 1,2, such that

|zt —y|=1/n onT,.
Then dr(z,y) =0, but = # y.

Example 2. Let L be an ideal polyhedron, and suppose that the
length pseudo-distance d;, on L is a metric, for example L is finite.
Now let 01,09 be two edges of L, and let x,y be two points of L with
x €01,y € oy and dr(z,y) > 2.

For every n € N there is a hyperbolic ideal quadrilateral @, such
that: If sy, s2, are opposite sides of @,,, the distance of sy,, from ss,,
is 1 + 1/n. Cousider the points z',y’ on sin, S2,, respectively, which
realize this distance n =1,2,... .

We now glue every @Q,, n € N on L by identifying isometrically si,,
respectively ss,, with oy, respectively o9, such that z’, respectively
y', is identified with z, respectively y. Let K be the ideal polyhedron
obtained after gluing all @,, n € N on L. Then di is a metric but

there is no geodesic segment joining x and y in K.

Given a curve v on an ideal polyhedron K, we can construct, under a
certain condition on v, a surface by gluing the ideal triangles intersected
by v. We call this surface the developing surface along . Before giving
the precise definition of the surface, we describe the condition we need
v to satisfy.

Definition. Let f : [0,1] — K be a, possibly closed, curve in K. We
say that f goes back and forth in K (see Figure 1) if there are t1,t5 in
[0,1] such that:

(1) f(t1), f(t2) belong to the same edge of K,
(2) f((t1,t2)) lies in the interior of a single ideal triangle of K.

Lemma 1. Let g: [0,1] = K be a curve. We can freely homotop g
in K to a curve fy : [0,1] = K which does not go back and forth in K.
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f(t,)
fict,)

FIGURE 1.

Proof. By a small perturbation of g, we can find a C°-curve
f :10,1] — K which is homotopic to g and which intersects the edges
of K transversely in a finite number of points.

Suppose that the curve f : [0,1] — K goes back and forth in K, and
let t1,t2 be points of [0,1] such that f(¢1), f(¢t2) belong to the same
side of an ideal triangle T of K and f((t1,%2)) lies in the interior of T'.
Then we have two cases.

Case 1. For an € > 0 small enough, the points f(t; — €), f(t2 — ¢€)
belong to the same ideal triangle of K.

Case 2. The points f(t; —¢€), f(t2 — €) belong to different triangles.

In Figure 2 we demonstrate, for each case, how we can do the
homotopy from the curve f to a curve fy which does not go back and
forth in K. u]

Now let f :]0,1] — K be a curve which does not go back and forth
in K. Let v = f([0,1]) be its image. Assume that f is transverse to
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Case 1 Case 11

FIGURE 2.

the 1-skeleton of K. There is a finite number of points t¢1,ts,... ,t, of
[0,1] such that the intervals ¢;,t,41, ¢ = 1,... ,n — 1, are disjoint and
the points f(¢;) are the only points which belong to the 1-skeleton of
K.

In the following, we will associate to the curve -y a surface S consisting
of ideal triangles:

Let T;, « = 1,...,n — 1 be the distinct triangles of K such that
f([tistiv1]) C T;. We glue together these triangles along their sides
as follows: We identify isometrically the side of T; which contains the
point f(¢;) with the side of T;;1 which contains the point f(¢;) such
that these two points are identified after the gluing. Therefore, we form
a surface S which is isometric to a hyperbolic ideal polygon if v is not
closed. If 7 is a closed curve, then S is homeomorphic to a ring with a
finite number of points removed from each component of its boundary;
we call such a surface, S, a double crown (see Figure 3).
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FIGURE 3.

Moreover, there is a natural projection
p:S—>K

which is a local isometry in the following sense: For every x € S there
is a neighborhood U, of z and a subset V,, of K with y = p(z), both
homeomorphic to a disk such that

p:U; =V,
is an isometry.

Note that the arcs f([ti,t;+1]) C T4, i =1,... ,n — 1, form a simple
curve v after the gluing of T; with p(y) = ~.

Definition. The surface S is called the developing surface associated
to the curve «y of K.

We will prove now the following theorem:
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Theorem 1. Let K be an ideal polyhedron. Suppose that K is either
locally finite or the gluing weight of the ideal triangles of K form a
finite set. Then the length pseudodistance d of K is a geodesic metric.

Proof. Let z,y points in K with d(z,y) = 0. We will prove that
xz = y. If one of the points z,y belongs in the interior of an ideal
triangle 7' of K, say the point x, then there is an € > 0 such that
B(z,e) = {2’ € K : d(z,2') < €} is isometric to a closed disk of
the hyperbolic half-space H?. So y € B(z,¢), and since d induced on
B(z,¢) is the usual hyperbolic metric, we get z = y.

If  and y belong to the 1-skeleton of K, then by hypothesis there is
an ¢ > 0 such that B(z,e)NT with the induced metric being isometric
to H? for every ideal triangle T of K. Therefore, we also get that z = y;
hence d is a metric.

Let K be locally finite. Then K is locally compact. A theorem of
Cohn-Vossen asserts that every locally compact complete length space
is geodesic. However, from the proof of this theorem (see [6]) it follows
that the completeness assumption is only necessary for showing that
the closed balls are compact. In our context this is immediate, since K
is locally finite. Therefore, (K, d) is geodesic.

Suppose now that the gluing weights of the ideal triangles of K
form a finite set. Let x and y be two points in the same connected
component of K. Pick a sequence (f,), n € N, of broken geodesics
between them whose lengths converge to d(z,y). Then we may replace
fn by a shorter geodesic arc g, between z and y for each n € N. In
fact, for every n € N, let S,, be the developing surface associated to f,
and p,, : S, = K the projection into K. Let f] be the broken geodesic
in S, with p,(f,) = fn- In S, we replace f/, by the unique geodesic
segment g/, with the same endpoints and let g, = p,(g},). There exists
an ng such that for n > ng the length I(gy) of g, satisfies

d(z,y) —e <l(gn) < d(z,y) +¢

where ¢ is arbitrarily enough. Therefore, for n > ng, each geodesic arc
gn, belong to a finite number §,, of ideal triangles of K, since the gluing
weights form a finite set. For the same reasons all §,, are less than a
natural number §; hence, the set {§,,n = 1,2,...} is finite. Therefore,
the lengths I(g,,) for n > ng can take a finite number of values. Hence,
there is a geodesic segment in K between x and y. ]
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3. The main application. For the rest of this paper we make
the assumption that K is a connected ideal polyhedron of dimension 2
which is either locally finite, or the gluing weights of the ideal triangles
of K form a finite set.

We begin with three propositions needed in the proof of the main
Theorem 2 and concerning properties of K and of its universal covering
K.

Proposition 1. The polyhedron K has curvature less than or equal
to —1. (For the definition of the spaces of curvature less than or equal
to —1, we refer the reader to [9, Definition 2.9].)

Proof. By a cell C of K we mean either an ideal triangle or an edge
of K. For z € C, the link of = in C, denoted by Link (z,C), is the
set of local geodesics f : [0,00) — K with f(0) =z, f(¢t) € C for ¢
small enough. The distance between two geodesics is the angle they
form at z. The link of z in K, denoted by Link (z, K), is the union of
the link (z,T) for all triangles T of K, where for every common side
F of triangles T, T’ of K the Link (x,T), Link (z,T) are glued along
Link (z, F). Therefore, if x is on the 1-skeleton of K, then Link (z, K)
is isometric to the union of half circles of length m, glued along their
pairs of endpoints. In particular, if  is on the 1-skeleton of K, then
every simple closed curve in Link (z, K') has length equal to 2w. The
same is clearly true if x belongs in the interior of an ideal triangle T" of
K. Therefore, we can adapt the demonstration of a theorem of Gromov
(see [7, 4.2] or [9, Corollary 3.18]) which says that if every simple closed
curve in Link (z, P), z in P, where P is an M_; multipolyhedron, has
length greater than or equal to 27, then P has curvature less than or
equal to —1 and conversely. O

Let K be the universal covering of K. The space K is simply
connected, geodesic and complete. Moreover, K has curvature less than
or equal to —1 since K is locally isometric to K. Using the theorem of
Cartan-Hadamard-Aleksadrov-Gromov, we deduce that K is a convex
space which satisfies the CAT(—1) inequality globally. Denote by 0K
the boundary of K. (For all conclusions and notions just mentioned as
well as the theorem of Cartan and Gromov, we refer the reader to [7,
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FIGURE 4.

9, 4].

We now need a proposition which is well known if K is a hyperbolic
manifold [8, Lecture IJ.

Proposition 2. For every two points x,y in K UBIE', there exists at
most a unique geodesic joining these points.

Proof. Existence of such a geodesic holds true for all proper negatively
curved metric spaces. See, for example, [2, Chapter 2, Prop. 2.1]. For
the uniqueness we distinguish 3 cases:

(1) The points #,y € K. Then the claim is immediate since K is
convex.

(2) The point # € K and the point y € K. Let g; : [0, +00) — K
be two geodesic rays, parametrized by arc length, with ¢;(0) = =z,
Consider the positive function r(s) = d(g1(s), g2(s)), s € [0,+00),
where d denotes the metric on K. A theorem of Gromov [9, Theorem
2.19] asserts that this function r is convex. Moreover, 7(0) = 0 and r
is bounded because the geodesics g; and g2 have the same end on K.
Therefore, r(s) = 0 for each s in [0, +00), hence g; coincides with go.

(3) The points z,y € K. Let g; : (—oo, +00) — K be two geodesics
parametrized by arc length, with g;(—o0) = z, g;(+00) =y, i = 1,2.
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Let A = ¢1(0), B = g2(0). We consider a sequence of points
A, = g1(sn) with s, = +0o. Denote by =, the geodesic segments
joining B with A,,. Let A!, = g1(s},), Bl, = Yn(s!,) where the points s/,
are defined by the relation

d(B,B.) = d(A, A%) = 1/2min(d(A, A,), d(B, Ay)).

Using the CAT(—1) inequality for the geodesic triangles ABA,,, we get
that

(¥) d(Al,BL) — 0 asn— 4o

By the theorem of Ascoli, we can pick a subsequence 7v,, of v,
converging to a geodesic ray v : [0,4+00) — K with v(0) = B,
v(+00) = y. By the previous case (2) we deduce that y(s) = ga(s)
for each s in [0, 4+00). Therefore, we have

() d(g1(sh),92(s7)) < d(91(57), W (s7)) + d(yn(s7), ¥ (s7))

By (%), d(g1(s),);¥n(s},)) — 0 as n — +o0, and since =, converges to
~ uniformly on compact sets, it follows from (x*) that

d(g1(s)),92(s))) = 0 asn— +oo.

Note now that the positive function r(s) = d(g1(s),g2(s)), s €
(—o00,400), is convex so it is equal to zero. This proves that g;(s) =
g2(s) for each s in (—o0, +00). o

Remark. In Proposition 2 we have used only that K is convex and
satisfies the CAT(—1) inequality.

We need another proposition which is valid because K consists of
ideal triangles.

Proposition 3. If v : [0,400) = K is a local geodesic which joins
the point v(0) = p with a point in the boundary of K, then vy is a
geodesic ray of K. Therefore, every local geodesic of K is a geodesic.

Proof. Let tg = sup{t € [0,+00) : v/[0,¢] is a geodesic segment}. If
to = 400, there is nothing to prove. If ty < +00, it is clear that /[0, to]
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is a geodesic segment. Then there exists a sequence ¢y converging from
the right to ¢y such that /[0, tx] is not a geodesic segment.

Now let 7, : [0,1,] = K be the geodesic segment with

¥n(0) = p, Yn(ln) = v(tn) where I, = d(v(0),7(tn))-

We extend -y, everywhere on [0, +00) by defining v,(t) = ~(¢,) for
every t > [,.

We apply Ascoli’s theorem to obtain a subsequence v, of v, which
converges uniformly on the compact sets to a map 7o : [0, +00) = K,
such that:

(1) 70/[0,%0] = /10, to]
(i1) vo(t) = v(to) for every t > to.

To establish property (i) it is sufficient to note that ~/[0,%] is a
geodesic segment for every n in N.

To prove property (ii) note that, for every t,t > ty, there exists a
natural number ng(¢) such that:

If n > no(t) then y,(t) = n(ln).
Therefore, for t > tg,
70(t) = lim vy, (8) = lim v, (L) = lmy(En,) = 7(to)-

These two properties imply that for every € > 0 there exists a &
sufficiently large such that v,_([0,[,.]) belongs to an e-neighborhood
of v([0,t,.]).- In fact, for each € > 0 there exists a p such that
Yn,/10,1n,] is e-near to vo/[0,1,,] because of the uniform convergence
of the sequence ,, to 7y, on the compact sets. Finally we have seen
(Property (ii) above) that ([0, to]) = v0([0,n,]) for each k in N. So if
we put £ = max(pu, A) we get our claim.

Note that the local geodesic v does not go back and forth in K.
Therefore, we can associate to the curve v/[0, ¢, ] a developing surface
denoted by S. We remark also that v, /[0,1,,.] is a geodesic segment
of K so it does not go back and forth in K. As 7,_([0,1,,]) belongs to
an e-neighborhood of ¥([0, ¢, ]) for & sufficiently small, we deduce that

the developing surface associated to v, /[0,1,,] is the same surface S.
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If p: S — K is the projection into K, we denote by ([0, tn,.1),
respectively, ¥y, ([0,1n,]), the curve on S with p(y/[0,t,.]) = /[0, tn.],
respectively, p(Vn./[0,1n.]) = Yn./[0,ln.]. But S is a part of H? so
~/[0,t,,] coincides with 7, _/[0,1,,] and therefore the same is true for
7/[0,tn,] and vy, /10, 1n, |-

Therefore, sup{t € [0, +00): is a geodesic segment} is strictly greater
than ¢y, and this gives a contradiction. So ty = +oco. m]

Definition. A closed curve v in K is homotopic to a cusp, if it is not
homotopic to a point and inf {length(a)) where « varies over all curves
which are freely homotopic to v} = 0.

We are now in a position to prove the theorem:

Theorem 2. Let K be a complete ideal polyhedron of dimension 2.
Suppose that either K is locally finite or the gluing weights of the ideal
triangles of K form a finite set. Let o be a closed curve in K which
is not homotopic to a point or to a cusp in K. Then there is a unique
geodesic g in the free homotopy class of a. Moreover, the length of oy
realizes the minimum of the lengths in the free homotopy class of a.

Proof. For the existence. Lemma 1 asserts that the curve a is freely
homotopic to a curve  which does not go back and forth in K. Let
S be the developing surface associated to «, and let p : S — K be
the natural projection. Since < is a closed curve, S is a double crown.
We denote by 4’ the simple closed curve on S with p(y') = v. The
curve 7’ is not homotopic to a cusp in S, otherwise the curve v would
be homotopic to a cusp in K. Therefore, there exists a unique closed
geodesic af in S which is freely homotopic to v'. Let ap = p(a). Since
p is a local isometry, ay is a closed geodesic in K.

For the uniqueness. Let a; be another closed geodesic freely ho-
motopic to ag in K, with free homotopy F : S' x I — K. Let
F: R x I — K be the lifting of F to the universal covering K, and let
ay = F(R x0), & = F(Rx1). The curves ay, &, are local geodesics of
K, and by Proposition 3 they are geodesics of K. Since S is compact,
there exists an upper bound c of the lengths of the arcs F(z xI), z € S*.
Therefore, the arcs F(z x I), Z € R are also uniformly bounded by c,
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FIGURE 5.

hence &g, a1 join the same points on the boundary of K. Therefore,
the geodesics &g, @; coincide in K and consequently ag, a; coincide in
K.

It remains to prove now that oy realizes the minimum of lengths in
the free homotopy class of a. Let 8 be another curve, freely homotopic
to «, with

length (8) < length ().

Then [ is not a geodesic, otherwise 8 must coincide with «y. Since g
is not a geodesic then there exists a geodesic [y, freely homotopic to
B, with

length (8y) < length (8)(< length (ap)).
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But 8y must coincide with ay and we get a contradiction. The proof
of the theorem is now complete. ]

Remark. It is possible (see Figure 5), that the unique geodesic ag
which exists in the free homotopy class of a simple closed curve « in
an ideal (more generally geometric) polyhedron K, is not necessarily
simple. Therefore, the problem arises of studying the “complexity” of

the geodesic which exists in the homotopy class of a simple closed curve
in K (see also [5, 3]).
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