ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 26, Number 2, Spring 1996

RINGS OF ENDOMORPHISMS OF
SEMIGROUP-GRADED MODULES

GENE ABRAMS AND CLAUDIA MENINI

ABSTRACT. We analyze various types of endomorphism
rings of graded modules over rings graded by finite semi-
groups, and show connections between such rings and cer-
tain skew rings. In the specific case of group-graded rings
our results will yield the isomorphism theorems of Albu and
Nastasescu.

0. Introduction. In this article we continue the investigation of
rings graded by semigroups which was begun in [1] and [3]. Specifically,
we investigate various rings of endomorphisms associated with certain
types of graded modules. We briefly sketch our course of study in the
next few paragraphs.

For a ring R graded by the semigroup S, and graded left R-module
rN, we define the graded module U(NN) to be a direct sum of graded
modules of the form N(f) (where f € S* = S — {z}). Our interest in
such modules stems from their importance within the category R — gr
of S-graded left R-modules; for instance, as shown in [3, Corollary 3.2],
modules of the form U(R) are often progenerators for R — gr. We will
analyze the three rings

End g, (U(N)), ENDg(U(N)) and END ; (U(N)).

These are, respectively, the ring of graded endomorphisms of U(N),
the direct sum of the groups of endomorphisms of U(N) of degree f
(where f ranges in S*), and the direct sum of the groups of endo-
morphisms of U(IV) of degree f~! (where f again ranges in S*). The
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376 G. ABRAMS AND C. MENINI

main thrust of this article is to show that, for a large class of semi-
groups and rings graded by such semigroups, the rings END r(U(N))
and END ,'(U(N)) may be realized as skew semigroup rings over
End g4 (U(N)). These results appear as Theorems 3.3 and 3.6. As
one consequence, we obtain generalizations of the results of Albu and
Nastasescu for groups, especially [4, Theorem 3.6(1)].

The extension of the group-graded results of Albu and Nastasescu
to the semigroup situation is not a perfect one. In the course of our
investigation we will encounter semigroups and/or modules for which
the “expected” generalization of the corresponding group-graded result
does not hold. As we shall see, a variety of phenomena which are
not apparent in the group-graded case come to light in this more
general setting. For instance, in the finite group-graded case we
have END g(U(N)) = End g(U(N)) = END ;}(U(N)), and each is a
normalizing extension of the ring End g_g4,.(U(N)) (see, e.g., [4]). For
finite semigroup-graded rings, these three endomorphism rings may be
different, and they need not in general have the analogous normalizing
extension property. Finally, in the group-graded case each of these three
endomorphism rings is isomorphic to a full matrix ring over End g(N);
for semigroup-graded rings these rings yield certain (possibly distinct)
types of matrix subrings.

Throughout this article S will denote a semigroup. If S contains a
zero, we will always denote it by z, and in this case we denote S—{z} by
S*. For simplicity of exposition, we will always assume that S is finite;
however, the reader will observe that a number of these results remain
true more generally. The opposite semigroup of S will be denoted by
S°. Unless otherwise indicated, all functions and morphisms will be
composed from left to right, so that f o g (or simply fg) will mean
“first f, then g.” The letter A will denote an associative unital ring.
We denote by E(A) the collection of ring endomorphisms of A (we do
not assume that such a function preserves the identity of A), while
Aut (A) denotes the ring automorphisms of A. The category of all
(unitary) left A-modules will be denoted by A —mod. Unless otherwise
indicated, the word “module” will always mean “left module.”

The semigroup S is called Li. (for “local identities”) in case S*
contains a set of orthogonal idempotents E such that for each g € S*
there exist e,e’ € F with ege’ = g. In this case we sometimes denote
e by e, and € by ej. We call S right (resp. left) *-cancellative in case
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for any three elements f,g,h € S*, if fh = gh (resp. hf = hg) € S*
then f = g; S is called *-cancellative if it is both left and right -
cancellative. We call S a category in case S is li., and for any three
elements f,g,h € S*, if fg € S* and gh € S*, then fgh € S*.

If A is a unital subring of the unital ring B, then we say that B is a
(finite) normalizing extension of A in case there exists a (finite) set I
and a subset {b;}ics of B such that > ._; Ab; = B and Ab; = b; A for
each ¢ € I.

icl

We make two comments about the presentation of results in this
article. First, the proofs of a number of the results are fairly straight-
forward, and hence will be omitted. Second, at the germane places we
will try to explicitly point out the significant differences between the
approach taken for group-graded rings and our more general approach.

1. Preliminaries. We begin by reminding the reader of the
definitions of the basic objects under consideration in this article.

Definitions 1.1. Let S be a semigroup. We say that the ring R is
graded by S (or that R is S-graded) if there is a family {R; | s € S}
of additive subgroups of R such that R = ®:;csRs and for each pair
s,t € S we have Rs - R; C Rs;. We say that R is *-graded by S in case
R is graded by S, and R, = {0}.

If R is a ring graded by S, we say that the left R-module M is graded
by S (or that M is S-graded) if there is a family {M, | s € S} of
additive subgroups of M such that M = ®4csM; and for each pair
s,t € S we have Ry - M; C M. We say that M is %-graded by S in
case M is graded by S, and M, = {0}.

If M and M’ are S-graded left R-modules, the R-homomorphism
f:M — M'is called a graded homomorphism in case (Ms)f C M. for
each s € S.

When R is a ring graded by the semigroup S, we denote by (R, S)—gr
(or simply by R — gr) the category consisting of the S-graded left R-
modules and S-graded homomorphisms. We denote by R — gr. the full
subcategory of R — gr consisting of the x-graded modules.

We denote by F' the “ungrading” functor from R — gr to R — mod.
A submodule L of a graded left R-module M is a graded submodule in
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case L is a graded left R-module, and the canonical injection L — M
is a graded morphism; i.e., Ly = My N L for each f € S.

Of course, any group is a semigroup; the above definition is easily seen
to agree with the usual definition of group-graded rings and modules
in this more specific setting. For additional examples of rings graded
by semigroups, see [2].

Definitions 1.2. Let R be a ring graded by the finite semigroup S,
let M and M’ be graded R-modules, and let f € S. An R-linear map
A: M — M’ is said to be a morphism of degree f (resp. f~!) in case
(Mg)A C M, respectively, (Mp)A C > {Mg|gf = h}, for all g,h € S.
(The empty sum is interpreted as zero when appropriate.)

We denote the set of morphisms from M to M’ of degree f by
HOM g(M, M')¢, and we denote the set of morphisms from M to M’ of
degree f~* by HOM '(M, M");. These are easily shown to be additive
subgroups of the group of all R-linear maps Hom g(M, M’). We denote
3 jes- HOM p(M, M)y by HOM (M, M’), and set END p(M) =
HOM (M, M); we denote > ;.. HOM 3 (M, M') ; by HOM ;' (M, M),
and set END ' (M) = HOM ;' (M, M).

We note that if S is an Li. semigroup with local identities £ and M,
M' € R — gr,, then for e € E it is easy to show that a morphism of
degree e or a morphism of degree e~ ! from M to M’ is in fact a graded
homomorphism. We now describe a method which associates to any
graded module L the *-graded module G(L).

Definitions 1.3. Let R be a ring *-graded by the semigroup S, and
let L be a graded R-module. Then L, is a graded submodule of L. The
quotient G(L) = L/L, is easily shown to be a *-graded left R-module,
where for each t € S, we set

G(L)¢=(Ly+ L,)/L,.
We let 7, : L — G(L) be the canonical projection; it is easy to show

that 7y is a morphism in R — gr. For any morphism « : L — L' in
R — gr there is a unique morphism, which we denote by G(«), such
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that aw oy = mp o G(). It is clear that G(«) is in fact a morphism
in R — gr.. The assignments L — G(L) and o — G(«) give rise to a
functor G: R — gr — R — grs.

If L is a graded R-module, then the subgroup ), g. L; of L need
not be an R-module, as it need not be closed under the R-action (see,
e.g., Example 2.2 below). In case > ies- Lt € R — mod we have
Youeg-Le 2 G(L) in R—gry, and L = (3 ,.g- Lt) ® L, in R — gr.
We now describe for semigroups a construction analogous to the skew
group ring construction for groups. A fuller account of these definitions
can be found in [2].

Definitions 1.4. Let A be an associative unital ring with identity
1, and let S be a semigroup.

(1) Suppose o : S* — E(A) has the property that (gh)o = (g)oo(h)o
for any pair g,h in S* for which gh € S*. Then we say that o is an

action of S* as endomorphisms on A. For a € A and h € §*, we denote
(a)(h)o by aP)e.

We denote by S* %, A the abelian group ®,cg-1()7 - A, where each
A, = A. For s € S* and a € 157 4 we denote the element of S* , A
which is a in the s-component and zero elsewhere by s[a], or simply
sa. We define multiplication in S* %, A by setting ga - hb = (gh)a")7b
whenever gh € S§*, setting ga - hb = 0 in case gh = z, and extending
linearly to all of S* x, A. Then S* %, A is an associative ring, which
we call the skew semigroup ring of S* with coefficients in A.

(2) Suppose 7y : S* — E(A) has the property that (gh)y = (h)yo(g)y
for any pair g,h in S* for which gh € S*. Then we say that 7 is a
reversing action of S* as endomorphisms on A. For a € A and h € S*
we denote (a)(h)y by ).

We denote by A *,.S* the abelian group ®eg+As - 1(5)7 where each
A; = A. By defining multiplication in a manner similar to that given
above, A%, S* becomes an associative ring, which we call the (reversing)
skew semigroup ring of S* with coefficients in A.

Analogous to the situation for groups, the rings $**, A and Ax,S* are
the prototypical examples of rings graded by the semigroup S, where
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for each f € S* we define the f-graded component by
(5" %5 A)p = {f[1Y)7a] | a € 4}
and

(Axy S*); = {[alD]f | a € A}.

When S is a group and o (resp. ) is a map from S into Aut (4), it
is easy to show that the rings S* %, A and A x, S* described above
coincide with the usual definitions of skew group rings.

For any semigroup S and any ring A, we define ¢ : S* — E(A)
by setting (g)¢ = 1ga) for each g in §*. We form the ring S* %, A,
respectively A x, S*, and denote it simply by S*A (resp. AS*). This is
the usual (contracted) semigroup ring of S with coefficients in A. In the
particular setting where A is a field and S is a group, partially ordered
set, or directed graph, the corresponding ring S* A is the standard group
algebra, incidence algebra, or path algebra, respectively.

Let S be a semigroup, and let A be a unital ring. If o is any map
from S* to E(A), we may also view ¢ as a map from (S°?)* to E(A).
Then it is easy to show that o : S* — E(A) is an action of S* as
endomorphisms on A if and only if o : (S°?)* — E(A) is a reversing
action of (S°P)* as endomorphisms on A. In particular, we may form
A x4 (S°P)* whenever we can form S* x, A.

To conclude this section we note that semigroups with local identi-
ties abound. For example, the semigroups arising from directed graphs,
partially ordered sets, and the morphisms of a category are l.i. semi-
groups; in fact, each of these is an li. category. (For emphasis, we
will often denote a category semigroup by the letter C', rather than the
usual S.) As an example of an l.i. semigroup which is not a category,
we offer

Example 1.5. Let T = {1,0,2,8,3, 2}, with {1,2,3} as idempo-
tents, @« = 1la2, 8 = 243 and af = z. Then T is an Li. semigroup;
however, as a2 # z, 28 # z, but a2 = z, T is not a category. This
semigroup 7' may in fact be realized as the quotient W/{af3), where W
is the semigroup arising from the directed graph ‘1 — "2 — "3.
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2. Shift modules. In this section we define and investigate
properties of certain types of graded modules, and homomorphisms
between graded modules. As will become apparent, we encounter
many somewhat surprising differences between our results and the
corresponding group-graded ones.

In certain settings we will need to impose restrictions on semigroups
in order to produce germane homomorphisms between graded modules.
The two most important such restrictions will be to require that S is
right #-cancellative (used to define the functions p and j), and that
S is a category (used to define the function 7). We will attempt to
point out, often and quite explicitly, where and why such restrictions
are necessary.

Definitions 2.1. Let R be a ring *-graded by the semigroup S,
and let f € S. For any N € R — gr. (specifically, N, = 0) we define
the graded left R-module N[f] as follows. We set N[f] = N as left
R-modules. We then set

N[flg = E Ny,
hesS
hf=g

for each g € S; we interpret the empty sum as 0. It is easy to show that
this gives an S-grading on N[f]. We now define the x-graded module
N(f) by setting

N(f) = NIfI/N[fl. = GWNIf])

where G is the functor described in Definitions 1.3. Specifically, for
each g € §,
dohes Nn+2 1es NI

hf=g lf==z

Yies M
lf==

N(f)g =
We call N(f) the f-shift of N.

We describe some properties of N[f] and N(f) which will be useful
later. Let R be a ring *-graded by the semigroup S, let N € R — gr,,
and let f € S*. Suppose that, for every pair k,h € S*, we have
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the property: kh # z and hf # z imply khf # z. Then it is easy
to show that the subgroup ), ¢. N[f]; of N[f] is closed under the
R-action; hence, by an earlier observation, » .. N[f]; is a graded R-
module, isomorphic to N(f). This directly yields that if S is a finite
L.i. semigroup having local identities E, then for each e € E we have
N(e) =3 ,._;Nle]s and N = @.cpN(e) in R — gr. Finally, if S is a
category, then » 7, c. N[f]: € R — mod for every f € S*. However, we
verify in the next example that, in general, ), . N[f]; need not be
an R-module.

Example 2.2. Let T = {1,,2,8,3, 2z} denote the noncategory l.i.
semigroup described in Example 1.5, and let k& be any field. Recall that
a2 = q, 28 = B, and aff = z. The semigroup ring R = kT is graded
by T in the obvious way.

First, we note that the graded module R[] is not *-graded, as (for
instance) 0 # ka = R, C R[f].. Furthermore, Ry C R[S]s (as
28 = B), and a2 = a. Thus, we have koo = ka-k2 = ka-Ry C Ry R[S,
so that R, - R[8]s # {0}. However, R, - R[B]g C R[Blap = R[B]. £
>_ger- B[Blg- We conclude that >  p. R[B], is not an R-submodule
of R[A].

Definition 2.3. Let R be a ring graded by the semigroup S. For
each graded module N € R — gr we define

U(N) = D N(g)-

geSs*

In particular, U(N) is the direct sum of S-graded R-modules, hence is
S-graded. Clearly, U(N) € R—gr, whenever N € R—gr,. Specifically,
for each k € S*,

UN)k = @ N(g) = @ M

geS* geS* Nlgl:

The results of the following proposition are not unexpected; the proof
is straightforward and tedious, hence omitted.
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Proposition 2.4. Let R be a ring x-graded by the semigroup S.

(1) Let N € R—gr«. Then for every pair f,g € S we have N(g)[f]. =
Nlgf]./Nlgl., and the canonical projection N/Nlg], — N/Nlgf].
yields an isomorphism 1y s(N) : N(g)(f) — N(gf) in R — gr..

(2) Let (N;)ier be a family of S-graded left R-modules. Then for
each f € S we have (PicrN;)[f]l. = ®icrN;i[f]., and the canonical
map @ic1Ni/ ®ier Ni[fl: = ®ier(Ni/Ni[f]:) yields an isomorphism
(®icrNi)(f) = @ierNi(f) in R— gre.

In the next few paragraphs we define certain graded homomorphisms
which arise naturally in the investigation of modules of the form U(N).
These graded morphisms, which we denote by j and p, will play
a fundamental role in our main results. In order to avoid possible
confusion with the functions ¢ and 7 which will be defined later in this
section, we emphasize that the definitions of 7 and p are intimately
related to the direct sum structure of the graded module U(N). In
particular, there is no analog of the functions j and p for arbitrary
graded modules. (In contrast, the maps ¢ and 7 will be defined for all
graded modules.)

Given f,g € S*, we have by Proposition 2.4(1) that ny ;(N) :
N(g)(f) = N(gf) is an isomorphism. We let 7, ¢(N) : N(g)(f) —
U(N) denote the composition of 7y ¢(N) with the canonical injection
from N(gf) into U(N). Now suppose that S is a right *-cancellative
semigroup; in particular, the collection {gf}4es+ is distinct. So in this
situation the sum };  s. N(gf) is direct, and hence is a summand
in R—gr of U(N). Therefore, using the maps {7y s(N) | g € S*}
we get a split monomorphism @ges+N(g)(f) = U(N). On the other
hand, by Proposition 2.4(2) we have U(N)(f) = (Pges-N(g))(f) =
®ges+N(g)(f). We denote the split monomorphism which is the
composition U(N)(f) = ®ges-N(g)(f) = U(N) of the two morphisms
described above by

i(f,UN)) : UN)(f) = U(N).

Specifically, the image of j(f,U(N)) is the summand &{N(h) | h =
gf € S* for some g € S*} of U(N) in R — gr. We let

p(f,U(N)) : UN) = U(N)(f)
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denote the canonical splitting map of j(f,U(N)) in R — gr. So, by
definition, we have that j(f,U(N)) o p(f,U(N)) is the identity on
U(N)(f), and that p(f,U(N)) o j(f,U(N)) is the morphism from
U(N) to U(N) which acts as the identity on the image of j(f, U(IN))
(described above), and is zero elsewhere.

We now develop the definitions of the maps 7 and i. Unlike the
maps p and j, these maps will be defined for general graded modules;
however, we will be most interested in these morphisms as they relate
to graded modules of the form U(N).

In the group-graded situation, if RN € R — gr, then the graded
modules g N and grN(f) are equal as modules; that is, F(N) =
F(N(f)) where F denotes the “ungrading” functor. In particular,
even though N and N(f) need not be isomorphic in R — gr, there
always exist R-linear isomorphisms between them. In the more general
setting of semigroup-graded rings and modules, however, the graded
modules NV and N(f) need not even be isomorphic as R-modules. As a
consequence, there need not be any connection between two graded
modules of the form N(f) and N(g). This, in turn, will, among
other things, cause a dichotomy between category semigroups and more
general semigroups, which will first surface in Proposition 2.5, and
which will arise again on a number of occasions throughout this article.
However, in certain important situations there are at least reasonable
connections between such graded modules, which we discuss in the next
proposition.

It will be helpful later to analyze the relationship between the abelian
groups

> Nifl

ges*

>

h
hf#z
and

Z N[ef]l = Z Nl.
l

les*
leg=l

In any Li. semigroup S, if hf # z, then hey = h. Thus, the first sum is
always contained in the second. Conversely, if le; = [, then for general
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semigroups it is possible to have If = z (e.g., | = a, f = [ in the
semigroup 7' of Example 1.5), so that the terms in the second sum
need not appear in the first. However, in case S is a category, the two
sums are equal, as hf # z if and only if hey # z.

Proposition 2.5. Let R be a ring graded by the finite l.1. semigroup
S, let f € S*, and let N € R— gr. Then Nles], C N[f]., and
F(N(f)) is an epimorphic image of F((N(ef)). If S is a category,
then Nlegl. = N[f]., and F(N(f)) = F((N(ey))-

Proof. For h € S having hey = z we get hf = hesf = zf = z,
from which the first inclusion follows. Now using the definition of shift
modules, we have

2 ges Nlflg + Nifl-
NI[fl

N(f) =

and

>ies- Nlegli + Nlegl:
Ney) = =€ .

! Nlegl:
For [ € §* and m € Nles]; we have m € > he;—t Nn = Ni, which gives
m € N[f]iy. We now consider the function p : N(ey) — N(f), which is
the linear extension of the function defined by setting, for each [ € S*
and m € Nley];,

p:m+ Nlegl. = m+ NIfl. € Niflis + NIfl. € N(f).

This is well-defined by the above remarks, and is easily shown to
be an R-homomorphism. Thus, F(N(f)) is an epimorphic image of
F((N(ef)) in R — mod.

If S is a category, then for each h € S we have hf = z if and
only if hey = z. This immediately yields that Nles]. = N[f].. But
the discussion prior to this proposition yields that the expressions
> ges+ Nflg and 3. Nleg]; are equal in this case, from which we
conclude that F(N(f)) = F((N(ey)). mi
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When S is a category, the previous result says that for each f € §*
we have an R-isomorphism from N(f) to N(ey), as they are equal as
R-modules. The next example shows that, in more general settings, it
can be the case that the only R-homomorphism from N(f) to N(ey)
is the zero homomorphism. This distinction is the major reason why
we will be able to get stronger results for categories than for general
semigroups.

Example 2.6. We again analyze the non-category l.i. semigroup
T ={1,a,2,8,3,z}, and consider the x-graded ring R = kT* for a
field k. We note that the subsets k1, ka and kS are in fact left ideals
of R, while k2 and k3 are not. In addition, the subsets k1 + k5 + k3
and k1 + ka + kB + k3 are also left ideals of R, which we denote by I
and J, respectively.

It is tedious but straightforward to verify that R[8], = J and
R[Blp = k2, so that R(8)s = R/J. Furthermore, as R(5); = 0 for
all t # 8, we conclude that F(R(8)) = R/J.

By the definition of T' we have 2 = eg. It is easy to verify that R[2], =
I. Also, as R[2], = ka and R[2]2 = k2, we have that R(2), = J/I and
R(2); = (k2+1)/I. Since R(2); = 0 for the remaining three elements
of T*, we conclude that F(R(2)) = J/I + (k2+I)/I = R/I.

We now claim that there is no nonzero R-homomorphism from
F(R(B)) to F(R(eg)); that is, Hom g(R/J,R/I) = 0. But an easy
check yields that {r € R | Jr C I} C J, from which the claim follows
by a standard argument.

For future reference we note the following. By an argument similar
to the one alluded to in the previous paragraph, one can also show
that Hom g(R/J, R) = k@ as k-vector spaces via right multiplication.
With this in mind, it follows that HOM EI(R(,B), R); = kB, which in
particular yields HOM ;' (R(8), R)s = {0}.

We are now in position to give the definition of the maps 7 and i. Let
R be a ring #-graded by the (arbitrary) semigroup S, let L € R — gr.,
and let f € S*. We denote by «(f,L) : L — L(f) the “composition”

©(f,L) : L = L{f] = L(f)
where the equality is as R-modules, and the map L[f] — L(f) is the
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canonical factor map m[s in R — gr. Then 7(f, L) is a morphism of
degree f from L to L(f). Specifically, if x € L; then (z)nx(f,L) =
z + L[f]: € (Le + L[f]:)/LIf]: € (L[fles + L[f]2)/LIf]: = L(f)es-

Now let R be a ring x-graded by the category semigroup C, let
L € R — gr,, and let f € C*. By Proposition 2.5, we have F(L(f)) =
F(L(eyf)), and by the remarks after Definition 2.1 we have L(ey) is a
direct summand of L in R — gr.. We denote by i(f, L) : L(f) — L the
“composition”

i(f, L) : L(f) = L(eg) = L

where the equality is as R-modules, and the map L(ey) — L is the
summand injection in R — gr.. Then i(f, L) is a morphism of degree
f7! from L(f) to L. Specifically, if g € C* and = € L(f)4, by
definition we have z = n+ L[f], wheren € }_, ;_ Ln. By Proposition
2.5 and the discussion prior to it, in the category case we may then
write  (uniquely) as ¢ = n + Lleg]. € >, ,_, L(ef)n, where we view
n € Y pe,—p Ln- Then we have (2)i(f,L) =n € L.

We reiterate that the definition of i(f, L) is dependent on the fact that
F(L(f)) = F(L(ey)), which need not be true for rings and modules
graded by non-category semigroups. (The map 7(f,L), on the other
hand, always exists.) In fact, as F/(L(f)) is in general a proper quotient
of F(L(ey)), there is no canonical map from L(f) — L which can be
used to play the role of i(f, L) in more general settings.

Now let R be a ring #-graded by the category C, let L, L’ € R — gr.,
and let f € C*. Then it is easy to show that the map i(f,L) o
m(f,L) is the identity on L(f), and that the map =(f,L) o i(f, L)
is the identity on ®{L; | tf € C*} (and is zero on the remaining
components of L). Furthermore, for every A € HOM (L, L")y we have
m(f,L) o4(f,L) o A = A, and for each A € HOM ;' (L, L'); we have
Aor(f,L')oi(f, L") = A.

Expanding on the statements made subsequent to Proposition 2.4,
we emphasize that the maps i(f,L) and = (f,L) have been defined
for each f € S* and each graded module L, whereas the maps j
and p above are defined only for graded modules of the form U(N).
Much of the discussion in the remainder of this article will focus on
the maps i(f, L) and «(f, L) in the specific setting where L = U(N).
This will allow us to investigate the interplay between maps of the
form j(f,U(N)),p(f,U(N)),i(f,U(N)), and w(f,U(N)). As a first
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example, it is not hard to show that for each f € S* and N € R — gr,
we have 7(f,U(N)) o j(f,U(N)) o p(f,U(N)) = =(f,U(N)).

We now give the fundamental connections between graded homomor-
phisms, and morphisms of degree f for f € S*. Let R be a ring *-graded
by the semigroup S, let L, L’ € R — gr,, and let f € S*. We define the
function ®(f, L, L) : Hom g_g.(L(f), L") - HOM g(L, L") (which we
denote simply by @ when the notation permits) by setting, for each
a € Hom g4 (L(f), L),

(@)@ = (a)®(f,L,L') = =(f,L) o a.

It is straightforward to prove that ® = ®(f, L, L’) is an isomorphism
of abelian groups. Moreover, if S is a category, then ®~! is given by
the assignment A — i(f,L) o A.

Similarly, we define the function ©(f,L,L') : HOM ;' (L,L); —
Hom g4 (L,L'(f)) (which we denote simply by © when notation
permits) by setting, for each A € HOM 1}1 (L, L")y,

(A)O = (A)O(f,L, L") =Aon(f,L).

As expected, © possesses many properties analogous to those of the
map ®; however, even though O is defined in the context of any
semigroup, many of these properties are valid only when the underlying
semigroup is a category. Specifically, let R be a ring x-graded by
the category C, let L,L' € R — gr,, and let f € C*. Then © =
O(f,L,L') is an isomorphism of abelian groups, and ©~! is given by
the assignment o — a o i(f,L’). Moreover, using the appropriate
definitions, it is tedious but routine to show that for any ring R which is
x-graded by the semigroup S, and for any L, L’ € R—gr,, the function
© = O(f,L,L") is injective. However, O(f,L,L') need not be an
isomorphism for non-categories since, in general, it is not surjective.
For example, let T' denote the non-category Li. semigroup of Example
2.6, and let R = kT*. Then by setting L = R(8) and L' = R we
have seen that HOM ;' (L,L')s = {0}, while Hom g_,.(L, L'(8)) =
Hom g4 (R(B), R(B)) is obviously nonzero.

With the functions 7,4, j and p now in hand, we are finally in a posi-

tion to describe the fundamental R-endomorphisms of graded modules
of the form U(N). These morphisms will provide the framework for
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the main results of this article (see Theorems 3.3 and 3.6), in which
we realize rings of the form END g(U(N)) and END ' (U(N)) as skew
semigroup rings over S. The dichotomy between categories and more
general semigroups will be quite apparent here.

Let R be #-graded by the (arbitrary) right *-cancellative semigroup
S, and let N € R — gr,. For each f € §*, we set

fn =7(f,UN)) o j(f,U(N)) : UN) = U(N).

When the associated module N is clear from the context, we denote fN
simply by f. Similarly, let R be x-graded by the right *-cancellative
category C, and let N € R — gr,. For each f € C*, we set

fv =p(f,UN)) 0 i(f,U(N)) : U(N) = U(N).

When the associated module N is clear from the context, we denote
[N simply by f.
By using properties of the appropriate functions which have been

developed throughout this section, it is easy to verify the following two
lemmas.

Lemma 2.7. Let R be x-graded by the right x-cancellative semigroup
S, and let N € R — gr,.

(1) For each f € S*, for each h € S* having hf # z, and for each
element © + N[h]. of N(h) we have (z + N[h].)fxy = = + N[hf]. €
N(hf). Moreover, fy is identically zero on ®¢f=-N(t). In particular,
this description yields that fN is a morphism of degree f.

(2) Given f,g € S* we have fo§ = E whenever fg € S*, and
f o g =0 otherwise.

Lemma 2.8. Let R be x-graded by the right *-cancellative category
C, and let N € R — gr,.

(1) For each f € C*, for each h € C* with the property that there
exists k € C* with h = kf, and for each element x + N[h], of N(h) we
have (z + N[h].)fx = x + N[k]. € N(k). Moreover, fx is identically
zero on ®{N(t) | t #If for anyl € C*}. In particular, this description
yields that fy is a morphism of degree f=1.
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(2) For each f,g € C*, gof = m whenever fg € C*, and jof =0
otherwise.

We now explicitly describe the compositions f ) f and f o f . We remind
the reader that we need to assume that the underlying semigroup is a
category in order to define i(f,U(N)), and that we need to assume
that the underlying semigroup is right *-cancellative in order to define
§(f,U(N)). Since these functions are utilized in the definitions of f
and f, we will need to restrict our attention to right x-cancellative
categories when analyzing f and f simultaneously.

Proposition 2.9. Let R be x-graded by the right x-cancellative
category C, and let N € R — gr,.

(1) For each f € C* we have f o f = =(f,U(N)) o i(f,U(N));
this is the graded endomorphism of U(N) which is the identity on the
summand ®{N(h) | hf € C*}, and is zero on the remaining summands
of U(N).

(2) For each f € C* we have fo f = p(f,U(N)) o j(f, U(N));
this is the graded endomorphism of U(N) which is the identity on the

summand ®{N(t) | t = If for some | € C*}, and is zero on the
remaining summands of U(N).

Proof. We prove (1); the proof of (2) is similar. By definition, we
have

m(f,U(N)) o j(f,UN)) o p(f, U(N)) 0 i(f,U(N))
=7(f,UN)) o i(f,U(N)).

The remaining statements follow by the definitions of 7 and . i

Corollary 2.10. Let R be x-graded by the right *-cancellative
category C, let f € C*, and let N,N' € R — gr..

(1) For each A € HOM g(U(N),N"); we have fofoA = A. In
particular, fo fo f = f

(2) For each A € HOM ;' (N',U(N)); we have Ao fof =A. In
particular, fo f o f = f
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Proof. For (1) we use the remarks made prior to the definition of ®
together with Proposition 2.9 to get fofoA=m(f,U(N))oi(f,U(N))oA
= A. The proof of (2) is similar. O

We now give a generalization of Corollary 2.10 to right x-cancellative
semigroups. This general version will be useful in proving Theorem 3.3.

Proposition 2.11. Let R be x-graded by the right x-cancellative
semigroup S. Let N,N' € R—gr,, f € S* and A € HOM r(U(N), N')s.
If ® denotes ®(f,U(N),N"), then A = f o p(f,U(N))o (A)®~".

Proof. By using the equation given prior to the definition of ® we
have

Fop(f,UN))o (M@t =n(f,U(N))oj(f,UN ))
op(f,U(N)) o ()@~
=n(f,UN))o (A2~

= A (by the definition of ®). O

We note that the above proposition is indeed a generalization of
Corollary 2.10(1), since if S is a category, then by a previous observation
we have f o p(f,U(N)) o (A)@~" = fop(f,UN)) oi(f,U(N)) o A =
f ofoA.

We conclude this section by noting that the various functions de-
fined throughout this section are easily shown to be isomorphisms
in the case where S is a group. That is, if R is a ring graded by
the finite group G, f € G, and L € R — gr, then the functions

«(f,L),i(f,L),p(f,L),j(f, L),fL and fr are isomorphisms between
the respective abelian groups.

3. Rings of the form END (U(N)) and END ~}(U(N)) as skew
semigroup rings. In this section we show how the results of the
previous section may be used to concretely describe naturally occurring
rings of endomorphisms as skew semigroup rings. We recall some
notation: if R is graded by the semigroup S and L € R — gr, then
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END g(L) = HOM g(L,L) = Y ;cg- HOM g(L, L) ;. If L is *-graded
(i.e., L, = 0), then it is easily verified that END g(L) is a ring under
composition. If, in addition, S is left x-cancellative, then the sum
Zfes* Hom g (L, L)s is direct, and this decomposition gives an S-
grading of END g(L).

In general, END g(L) need not be unital, even under our standing
assumption that S is finite. However, if S is a finite 1.i. semigroup with
identities F, then by the remarks prior to Example 2.2 it is easy to
show that the identity on L (which we denote by 1) can be regarded
as the sum of the morphisms {n. | e € E}, where 1, denotes the
endomorphism of L which is the identity on the R-module },¢. Lle]t
and is zero elsewhere. As each 7, is a morphism of degree e we conclude
that 1, € END R(L)

Let R be a ring x-graded by the right x-cancellative semigroup
S, and let f € S*. Then for each o € Endg_,-(U(N)) we have
aof e HOMg(U(N),U(N))s. By the results of Section 2 we
have an isomorphism of abelian groups ® = ®(f,U(N),U(N)) :
Hom g4 (U(N)(f),U(N)) = HOM g(U(N),U(N))s given by v +—
7(f,U(N)) o 4. Thus, we may consider the element (a o f)®~! of
Hom p—r (U(N)(f), U(N)).

Definition 3.1. Let R be x-graded by the right %-cancellative
semigroup S, and let N € R — gr,. For each f € S* we define the
function

(f)o' : End R—gr(U(N)) — End R—gr(U(N))

by setting (o) (f)o =p(f, U(N))o(aof)®~" for each a € End g, (U(N)).
As is standard practice, we denote (a)(f)o by a(f)7.

It is easy to see that, for any ring R which is x-graded by the finite
right *-cancellative semigroup S, and any N € R — gr,, we always have
157 = p(f,U(N))oj(f, U(N)) (where 1 denotes the identity morphism
in End gy (U(N))). Furthermore, we note that if S is a finite right
x-cancellative category, then by the definition of f and properties of ®
we have alf)? = p(f,U(N)) o [i(f,U(N)) o (a0 f)] = foao f for any
a € End g4 (U(N)) and any f € S*. In particular, when S is a finite
right -cancellative category, we have 1(/)7 = f f .
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As U(N) is a finite direct sum of modules, we can give a componen-
twise description of the map a(f)?. For each 8 € End g_,,.(U(N)) =
Hom g g (Pres+N(1), Bies-N(1)), we write 8 = (Bx,k) where, for each
pair h,k € S*, Brr € Hompg_g-(N(h), N(k)). Then an easy check
shows that for o € End g_,.(U(N)), a7, 1 = 0 unless there exist
s,t € §* with h = sf, k = tf. Moreover, oz(f)"sﬁtf : N(sf) = N(tf)
is given by a(f)f’smf :n+ N[sf]l, = (n+ N[s],)ass o m 5, where
meep 2 N(t) = N/N[t]. — N/N[tf]. = N(tf) is the map = + N[t]. —
z+ N[tf]..

Proposition 3.2. Let R be x-graded by the right x-cancellative semi-
group S, let N € R—gry, let f,g € S*, and let o, B € End g4, (U(N)).
Then

(1) (aop)N7 = oo o o, Consequently, each f(o) is a ring
endomorphism of End g4 (U(N)).

(2) alf9)? = (alN?)9)7 yhenever fg # 2.
(3) foa7 =aof.
Proof. For ease of notation, we again let ® denote ®(f,U(N),U(N)).

(1) By definition and a previous observation we have

w(f,U(N))o (a0 )@ " op(f,U(N))o (Bo f)@~
= ((ao /)@ )@ op(f,U(N))o (5 fre=!
ao fop(f,U(N))o(Bof)®~
aon(f,U(N))oj(f, ())OP(f,U(N))O(Bof){)‘I
aon(f,UN))o(Bof)e
:aoﬂof'
=n(f,UN))o(aoBof)d!

Since 7(f, U(N)) is surjective we conclude that (ao f)®~Lop(f, U(N))o
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(Bo f)qu =(aofo f)‘lfl, from which we get

a7 o g7 = (p(f,U(N)) o
o (p(f,U(N))
=p(f,U(N))o (a0 Bo f)d~

= (a0 ).

(2) This follows from a tedious, straightforward check, using the
matrix interpretation of a()? given above.

(3)

foaP? = fop(f,U(N))o(aof)o~!
=a(f,UN)) o j(f,UN))op(f,UN))o (ao f)o~!
=7(f,UN))o (a0 f)@"
=((aofYe N®=ao0f. O

As a result of statements (1) and (2) of Proposition 3.2, we conclude
that
0:8% — E(End g_g4(U(N)))

is an action of S* as endomorphisms on End g_4-(U(N)). In particular,
we may form the skew semigroup ring S* %, End g (U(N)). It is
straightforward to show that if S is 1.i. then o satisfies the hypotheses of
[2, Proposition 2.5], so that when S is Li. the ring S*%,End g4, (U(N))
is in fact unital.

We now have the tools to state and prove the first main result of this
article.

Theorem 3.3. Let R be x-graded by the right x-cancellative semi-
group S, let N € R — gry, and let o be the function described in Defi-
nition 3.1. Then there is a surjection of rings

K1 5" %y End g_gr(U(N)) — END g(U(N)).

If, in addition, S is left x-cancellative then k is an isomorphism, and &
preserves the graded components of these graded rings. Moreover, if S
1s l.i., then these rings are unital, and k is a unital ring homomorphism.
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Proof. We let 1 denote the identity element of End g4 (U(N)). By
Proposition 3.2(3) we have f 017 = 10 f = f for each f € S*.
Thus we have a well-defined function x : S* %, End p_4-(U(N)) —
END g(U(N)), given as the linear extension of

ki f[197) — fol1Wog = fa.

To show that k is a ring homomorphism we note that for each pair
f,g9 € S* with fg # z and each pair o, 8 € End g_4,.(U(N)),

- (fg[l(fg)oa(g)ag])n
= Fgal93

= fga97p (by Lemma 2.7(2))
= f(ad)B (by Proposition 3.2(3))

(f1Y7a] - g[1978])k

= (f1D7a))k o (9197 B]) .

Now let A € END g(U(N))y. If ® denotes ®(f,U(N),U(N)), then by
Proposition 2.11 we have A = fop(f, U(N))o (A)®~1, so that if we
define a = p(f,U(N))o (A)® ! we get A = foa = (f[1H)?a])k. Thus

K is surjective.

We now assume that S is left -cancellative, so that END g(U(N))
is an S-graded ring. Using this, along with an easily verified result
about homomorphisms between semigroup-graded abelian groups, the
injectivity of x will follow by demonstrating that x is injective on each
graded component of S* *, End g4 (U(N)). To this end, assume
0 = (f17)k = fa = @(f,U(N)) o j(f,(N)) © a. Then, as
w(f,U(N)) is surjective, we get that j(f,U(N)) o o = 0, and hence
1N = p(f,U(N)) o j(f,U(N))oa = 0, so that f[1(/)?q] is zero in
S* %, End g4 (U(N)).

That k preserves graded components is clear. ]

Example 3.4. We show that the left x-cancellativity condition
given in the previous theorem is necessary to ensure that the surjection
K is also an injection. Specifically, let W denote the li. semigroup
with elements W = {1,2,3,h, f,g,j,2}, where 1,2,3 are orthogonal
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idempotents, 1h2 = h, 2f3 = f, 293 = g, 153 = j, hf = hg = j, and
all remaining products are z. Then W is right %-cancellative, but not
left *-cancellative. Let R denote the semigroup ring kW™, where k is
a field. It is straightforward to show that

= S
and
Rr(f) = PhE Bl k2 + RIf].

R[f]: (£

We consider the map v : R(h) — R(f) defined to be the linear
extension of the map which takes v : al + R[h], — ah + R][f], for
each a € k. This map is well-defined as R[h], C R[f]. and is clearly
an R-homomorphism. Furthermore, as (R(h)n)y € R(f)nf = R(f)ng,
v may be viewed both as a morphism of degree f and as a morphism
of degree g.

Similar to the computation alluded to above, it is also straightforward

to show that L1+ Rl
RLS) = Ry = ST

We now define the map « : R(hf) — R(f) to be the linear extension
of the map « : al + R[hf], — ah + R[f]; it is not hard to show that
a is a well-defined, graded R-homomorphism.

Finally, if x denotes the ring homomorphism described in the above
theorem in this particular setting, then a straightforward computation
yields (f[1117a))k = v = (9[119?a])x, so that & is not injective.

Corollary 3.5. Let G be a finite group, let R be a ring graded by G,
and let N be any G-graded R-module. Then G *, End g_g(U(N)) =
END ;(U(N)).

Proof. In the setting of groups we have that f and f are isomorphisms.
In turn, this property easily yields that each (f)o is an automorphism
of End g_g(U(N)). Therefore, the skew semigroup ring constructed
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here is identical to the construction for groups. The result follows now
from Theorem 3.3. O

Thus, Theorem 3.3 is a nontrivial generalization of the corresponding
group result given in [4, Theorem 3.6(1)].

We now continue the type of discussion presented above by focusing
our attention on another collection of endomorphisms of U(N). We
again recall some notation: if R is graded by the semigroup S and L €
R — gr, then END ;'(L) = HOM (L, L) = Y ;cg. HOM 3 (L, L);.
If L is *-graded (i.e., L, = 0), then it is easily verified that END ;'(L)
is a ring under composition. Analogous to the observation made for
rings of the form END (L), if S is left *-cancellative then the sum
> fes» HOM = (L, L") is direct, and this decomposition gives an S°P-
grading of END ;' (L). Similarly, END ;'(L) is unital whenever S is
Li..

We will now describe the ring END ;' (U(N)) as a skew semigroup
ring by a construction quite similar to that carried out above. If
C is a category, then the function ¢ : C* — E(End g_g4.(U(N)))
given in Definition 3.1 is described by a(f)? = fozf. We view o
as 0 : (C°P)* — E(End g_4-(U(N))), where o satisfies the property
(f9)o = (g)o o (f)o whenever fg # z in C°P. Thus, we may form the
skew semigroup ring End g4, (U(N)) #5 (C°P)*. An easy computation
shows that the appropriate analog of [2, Proposition 2.5] applies, and
yields that this ring is indeed unital. We are now ready to prove the
second main result of this article.

Theorem 3.6. Let R be a ring *-graded by the right x-cancellative
category C, let N € R — gr., and let o be the function described in
Definition 3.1. Then there is a surjection of unital rings

¢ : End g_gr(U(N)) *, (C°P)* — END ' (U(N)).

If, in addition, C' is left x-cancellative, then v is an isomorphism, and
1 preserves the graded components of these graded rings.

Proof. We let 1 denote the identity element of End g_g4-(U(N)). By

Corollary 2.10, we have 1()7f = fff = f. Thus, we have a well-
defined function ¢ : End g_4-(U(N)) %, (C°?)* — END ' (U(N)),
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given as the linear extension of

¥ ([ D) f) = alP70 f=affo f=af

for each f € C* and a € End g, (U(IN)). We remind the reader that
in the skew semigroup ring End r_g4-(U(N)) *, (C°P)* the semigroup
operation is taking place in C°P, so that the expression f - ¢ in fact
denotes the product gf in C.

The remaining details of the proof follow in a manner analogous to
the proof of Theorem 3.3 and are therefore omitted. a

We will show in Example 3.12 below that Theorem 3.6 cannot be
extended from categories to general l.i. semigroups; thus, there is
a perhaps surprising lack of symmetry between rings of the form
END g(U(N)) and END 3" (U(N)), as regards their realization as skew
semigroup rings. As an additional observation in this vein, suppose
that S is any right and left *-cancellative semigroup. Then we may
define ¢ : END ' (U(N)) — End g 4. (U(N)) *, (S?)* by setting
(A)s = [Af]f and extending linearly (the left *-cancellativity of S is
required here). That [Af]f € End R—gr(U(N)) %, (S°P)* follows from
the fact that Af = Afl(f)"; that ¢ is a ring homomorphism is easy
to check. Moreover, we can use the injectivity of ©(f, U(N),U(N))
to get that ¢ is injective. Thus, for S right and left *-cancellative
we have another result which can be viewed as a “dual” to Theorem
3.3; namely, that there is an injection of rings ¢ : END ;' (U(N)) —
End g_gr(U(N)) %5 (S°?)*. In case S is also a category then < is
actually an isomorphism; in fact, it is easy to check that ¢ = ¢!
in this situation.

We conclude this article by analyzing rings of the form END g(U(R))
and END 7' (U(R)). As consequences we will see (among other things)
that:

(1) the rings END g(U(R)) and END ! (U(R)) need not be isomor-
phic;

(2) the ring END ;' (U(R)) is a normalizing extension of End g
(U(R)) (but this normalizing property is not necessarily valid for rings
of the form END g(U(R)), nor for rings of the form END ,!(U(N)) for
an arbitrary graded module N); and
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(3) we cannot extend Theorem 3.6 from categories to arbitrary l.i.
semigroups.

Let S be an Li. semigroup having a set of local identities E. If R is
a ring x-graded by S, we call R locally unital in case for each e € E
there exists a. € R, such that for each pair e, e’ € F, each g € S* with
g = ege/, and each r € R, we have a.r = r = rao. If R is locally
unital and E is finite, then R is necessarily unital, with 1z =} .5 ae.
The following lemma provides some useful computational information
about the graded module U(R) in case R is locally unital.

Lemma 3.7. Let R be a locally unital ring graded by the l.i.
semigroup S. Then for each pair f,g € S*, we have the following
isomorphisms of abelian groups.

(1)

right multiplication by elements
a€®y{R,|e, =e;ande, =e4}
having R[f]. - a C R[g].

0 if no such y exists

1%

Hom g(R(f), R(g))

right multiplication by the elements of

HOMg(R(f),R(9))n =  @y{Ry | yg = fh}
0 if no such y exists

right multiplication by elements

a € ®y{Ry | f =ygh}
having R[f]. - a C R[g],
0 if no such y exists

right multiplication by the elements of

Hom g4 (R(f), R(9)) = { ©y{Ry | f =yg}
0 if no such y exists.
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Proof. The proofs of these results are straightforward, albeit tedious.
As representative examples we prove (1) and (2). Let f € S*; then
R(f) is a cyclic R-module generated by 1+ R[f]. = 1., + R[f]..

For (1), let A : R(f) — R(g) be an R-homomorphism. Then for each
r € R we have (rl, + R[f].)A = rlc, - (1, + R[f]:)\. Also, as R(g) is
cyclic there exists a € R with (1., + R[f].)\ = al., + R|[g].. Thus we
get (rle, + R[f]:)A = rlc,alc, + R[g]. for each r € R. Replacing a by
1c,al., if necessary, we conclude that for each A € Hom g(R(f), R(g))
there exists a € ®,{R, | e, = ey and e}, = e, } such that for each r € R,
(r + R[f]:)A = ra + R[g],. Furthermore, as A is a homomorphism we
must have R[f],-a C R[g]..

It is now straightforward to check that if a € ®,{R, | e, = ey
and e, = eg} (so that a = 1.,al. ) and a has the property that
R[f]. -a C R[g]., then the map A, : R(f) — R(g) defined by

Aa i 7le; + R[f]: — ra + R[gl.

is a well-defined R-homomorphism. This correspondence between a and
Aq is easily shown to induce the isomorphism indicated in statement
(1).

For (2), let A € HOM g(R(f), R(g))r. Then, proceeding as in the
proof of (1) and using the definition of morphisms of degree h, we have
an element a € R with al., + R[g]. € R(g)sn. This is easily seen to
imply the containment ale, € >7, _;, R:. We note that, as in (1),
we also have R[f], - a C R|g].. However, this condition need not be
explicitly given here, as it is implied by the condition al., € }_, g=fh R;.
(To see this, it is enough to note that if [f = z and yg = fh, then
lyg = z.)

The proofs of (3) and (4) are similar to the proofs of (1) and (2),
respectively; specifically, the reason that the condition R[f].-a C R[g].
need not be explicitly mentioned in the statement of (4) is similar to
the reason given above in the proof of (2). u]

A result analogous to Lemma 3.7 for arbitrary graded modules
of the form U(N) is not available. For instance, if 0 # a €
Hom g_4(N(f), N(g)), then the most we can say about the config-
uration of the morphisms is that e/, = ej. In the case where N = R,
however, we see from 3.7(4) that the elements of Hom g_g4.(R(f), R(g))
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are “well-known,” and behave according to an S-grading. It is for this
reason that the results presented here only for the specific case U(R)

cannot be extended to arbitrary S-graded R-modules.

Example 3.8. Let S be the semigroup arising from the partially
ordered set Y = {a, b} where a < b; we denote the elements of S* by
{1,,2}. Let R denote the (S-graded, locally unital) ring kS* where
k is a field; R is in fact just the usual incidence ring of the partially
ordered set Y, and can be viewed as the 2 x 2 upper triangular matrices
over k.

As U(R) = Pjes+R(f), End r(U(R)) is isomorphic to the ring of
matrices whose rows and columns are indexed by the elements of S*,
with entries in the (f,g) coordinate taken from Hom r(R(f), R(g))-
But by using Lemma 3.7(1) and the fact that this particular S is *-
cancellative, and by listing the elements of S* in the order {1,«,2}, a
straightforward check gives

kl k1 ko k kK
End gUR) = | k1 K1 ka | 2|k &k k|,
0 0 k2 00 k

where in the second isomorphism we have simply suppressed the un-
derlying semigroup elements in £S*. An analogous argument similarly
yields

E k k
ENDr(UR)= |0 k k|,

0 0 k

E 0 0
END*UR)= [k k k|,

0 0 k

and

E 0 0

Endp o (UR)= |0 k k

0 0 k

In particular, we see immediately that the three rings End gr(U(R)),
END z(U(R)), and END ,'(U(R)) are pairwise non-isomorphic. In
contrast, we note that this behavior does not arise in the group-graded
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setting. Specifically, if G is a finite group which grades the ring R, and
L is any G-graded R-module, then END (L) = @ c¢cHOM (L, L)s =
®s-1egHOM (L, L) ;-1» = END 3,'(L), and each is equal to End g(L).

We now turn to questions regarding normalizing extensions. If S
is a finite Li. semigroup and R is a locally unital S-graded ring,
then the smash product R#S* is defined to be the collection of S*-

square matrices of the form ) ¢ pcg+ rresn,n, where ry € Ry and egp p,
fh#z
denotes the standard matrix unit which is 1 in the (fh, h) coordinate

and 0 elsewhere, under the usual matrix operations. (For additional
information about R#S* see [2].) In this case R#S* is unital, with
Lr#s = D jcg- Gee1,1- We show in [2, Section 4] that there is both a
natural action and a natural reversing action of S* as endomorphisms
on R#S*.

There is an intimate connection between the ring End g, (U(R))
and the smash product ring R#S*. First, as a consequence of Lemma
3.7(4) and the definition of the smash product it is straightforward
to verify that if R is a locally unital ring graded by the finite Li.
semigroup S, then R#S* = End g4, (U(R)). Furthermore, under this
isomorphism the action ¢ of S* as endomorphisms on End z_ 4, (U(R))
is precisely the action p of S* as endomorphisms on R#S5* described
in [2, Section 4]. In particular, by invoking Theorems 3.3 and 3.6,
respectively, these observations yield

Proposition 3.9. Let R be a locally unital ring graded by the x-
cancellative 1.i. semigroup S. Then

(1) END r(U(R)) = S* *, (R#S").
(2) END ;' (U(R)) = (R#S*) %, (S°P)* in case S is a category.

The connections established in Proposition 3.9 allow us to rephrase
some of the results of [2] in this “graded endomorphisms” setting.

Corollary 3.10. Let R be x-graded by the finite Tight *-cancellative
category C'. Then

(1) END ;' (U(R)) is a finite normalizing extension of
End g4 (U(R)).
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(2) ENDRg(U(R)) need not be a mnormalizing extension of
End g4 (U(R)).

Proof. Statement (1) follows from [2, Proposition 4.8(2)], while
statement (2) follows from [2, Example 4.1 and the final remarks of
Section 1]. O

Perhaps surprisingly, we now show that the normalizing extension
behavior described in Corollary 3.10(1) does not extend to all graded
modules of the form U(N).

Example 3.11. Let S denote the semigroup arising from the
partially ordered set X = {u,v,w,z} having nontrivial relations u <
v<x u<w<z Let k be a field, and let R denote the semigroup
algebra R = kS*. Then R is just I(X, k), the incidence ring of X with
coefficients in k. For notational convenience we denote the elements
of §* by {172a3747 fﬂg7h7i7j}7 where Su,u: ]-; S’U,’U: 27 Sw,w: 3,
Sm,z: 47 Su,v: f: Sv,z: g, Su,w: h7 Sw,z: 7 and Su,z: .7

Let N denote the left ideal N = kf + kh of R. Then N is clearly
S-graded. It is tedious but routine to show that N(1) = N(4) =
N(f) = N(h) = N(j) = 0, N(2) = N(2); = kf, N(3) = N(3)n = kb,
N(g) = N(g); = kf, and N(i) = N(i); = kh. The map which
takes af — ah (resp. ah — af) for each a € k induces a left
R-homomorphism from N(g) to N(¢) (resp. N(i) — N(g)); by the
above descriptions, this is easily seen to be a graded homomorphism.
Thus, using the matrix description of End g4, (U(N)) (and listing the
germane elements of S in the order 2,3, g,), we have

End g (U(N)) =

oo o=
o O O
x> [ OO
T O O

Again, using the above descriptions, the identity map from N(g) to
N(2) (resp. N(i) to N(3)) is easily seen to be a morphism of degree g *
(resp. i~!). Similarly, the map which takes af — ah (resp. ah — af)
induces a morphism from N(g) to N(3) (resp. N(¢) to N(2)) of degree
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i~ (resp. g~1). With these observations, we conclude that

END ;' (U(N)) =

xT O
;IO
> O o
T OO

Using an argument similar to that given subsequent to [2, Example
1.11], it can now be shown that this second matrix ring is not a
normalizing extension of the first; we outline the important details.
We let T and A denote the rings END ' (U(N)) and End g4 (U(N)),
respectively. Now suppose ¢t = (t; ;) € T has the property that tA = At.
Then, in particular, (e3.4+e44)t € tA. Thus there exists a = (z; ;) € A
with (e34 + €4,4)t = ta. Now using the form of elements of T and
A, this equation yields in particular that t41 = ¢31211. Similarly,
(e3,3+ea3)t € tA, so there exists a’ = (y; ;) € A with (e33+eq3)t = ta'.
Arguing as above, we get that 31 = t4,1y1,1. We have ey 3t € tA; so
there exists a” = (w; ;) with e4 3t = ta”. On equating matrix entries,
this yields t3,1w1,1 =0 and t471w1,1 = t371.

The equations t471 = t371I171 and t371 = t471y171 yleld that t471 # 0 if
and only if t3 7 # 0. But the equations t31w;,1 = 0 and ¢4 w11 = t3,1
yield that t3 1 = 0. Thus we have shown that any element ¢t = (¢; ;) of T’
having the property that tA = At must have t31 = t4; = 0. But then
a straightforward computation yields that > {At | ¢t € T with At =
tA} # T, which implies that T is not a normalizing extension of A.

Using the description of END ;!(U(R)) given in Lemma 3.7, it is
not hard to show that for @ € End g, (U(R)) and f € S* that
f o f ow f =« f . It is this fact which is responsible for the normalizing
extension behavior of END ;'(U(R)) over End g_,(U(R)) as given in
Corollary 3.10(1). (This fact was not required here, however, as we have
justified Corollary 3.10 by invoking results from [2].) The reason why
the normalizing extension property could not be extended to rings of
the form END ' (U(N)) for arbitrary N is because the above equation
need not hold in this more general setting. Specifically, referring to
Example 3.11, we let o denote the graded morphism from N(g) to
N(i). Then the map i is a nonzero morphism of degree i~' from
N(g) to N(i). However, 070 ai= 0 # ai.
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We conclude this article by showing that Theorem 3.6 cannot be
extended from categories to general semigroups.

Example 3.12. We again consider the left and right *-cancellative,
L.i., non-category semigroup T = {1, ,2, 3,3, 2z} of Example 1.5. Let
k be a field, and let R be the semigroup algebra kT™. Using the
description of END ,'(U(R)) given in Lemma 3.7 we have that

kL 0 0 0 0
kEl k1 ka 0 0O
END ' (UR)=| 0 0 k2 0 0
0 0 0 k2 kB
0 0 0 0 &3

Here we have listed the elements of T* in the order 1,«,2,8,3. (We
remark that the entry in the fourth row, third column is zero due to
the fact that HOM ' (R(3), R(2)) = 0; indeed, we showed in Example
2.6 that Hom g(R(B), R(2)) = 0. It is this property which in some
sense produces the non-extendability of Theorem 3.6 to this more
general setting.) In particular, we see that END ;' (U(R)) is an eight-
dimensional k-algebra.

On the other hand, it is tedious but straightforward to show that
the skew semigroup ring End g_g4(U(R)) *, (T°P)* is in fact nine-
dimensional. Thus the rings END El(U(R)) and End g_4-(U(R)) *,
(T°P)* are not isomorphic for the x-cancellative l.i. semigroup T'.
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