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COUNTING POINTS ON CM ELLIPTIC CURVES

H.M. STARK
To Wolfgang Schmidt on the occasion of his 60th birthday

1. Introduction. Let E be an elliptic curve in Weierstrass normal
form,

(1) E:y? =42® — gz — g3

where g2 and g3 are in a number field K. If %3 is a first degree prime of
K of norm p, and g2 and g3 are integral at J3, we can reduce the curve
(mod PB) to a curve over the field F,, of p elements

E:y2:4x37§2x7§3

and we can then ask how many points are there on E? It suffices to
know the Frobenius automorphism of £ which sends the point (z,y) on
E to the point (2P,yP) in order to answer this question. In the case of
curves with complex multiplication by an order in a complex quadratic
field k = Q(v/D) of discriminant D, we will show how this can be done.

Since k is always a subfield of K (v/D), it will be convenient for much
of the paper to assume that k is a subfield of K. To avoid excess
terminology, it will also be convenient to restrict ourselves to the case
where E has complex multiplication by the full ring of integers of k.
Let H be the Hilbert class field of k and H* the real subfield of H. The
degree [H : k] is h(k), the class-number of k. A curve with complex
multiplication by the full ring of integers of £ may be rescaled so as to
be defined over H. With correct rescalings, there are h(k) such curves,
all conjugate under automorphisms of the Galois group G(H/k).

In this paper we consider the case that (D,6) = 1 as this includes the
interesting class-number one fields that were the original motivation for
this paper. It is convenient to set
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and let

Y2 = 72(0), 73 = 73(0)
be the values of the classical modular functions v2(z) and ~v3(z) at
z = 6. For (D,6) = 1, these values reside in H and, indeed, both

and y3v/D are in H*. One of the h(k) classes of curves (the one with
j-invariant equal to j(#)) may be rescaled to the curve

’73\/5
216 ’

2) El:y2:4x3—D¥—;x+D

defined over HT.

Let P be a first degree prime of H of norm p, and let p = Ng,,(*B).
The hypothesis that 0 is a first degree prime of H implies that p
is a principal first degree prime of k. To completely determine the
Frobenius automorphism of E; reduced modulo any 9 above p is
tantamount via Galois theory to finding the Frobenius automorphism
for any of the h(k) classes of curves. This fact, together with the
fact that there is only one class of curves when h(k) = 1, motivates
our further restriction in this paper to dealing with a rescaling of Ej.
Conversely, let p = (7) be a principal first degree prime ideal of norm
p in k. The ideal () splits completely in the Hilbert class field of k.
Let B be any of the first degree prime ideals in H above (7). It then
makes sense to reduce the curve (2) (mod‘P). It has long been known
that complex multiplication by one of +m when reduced (mod ‘) takes
(z,y) to (zP,yP). Since this fact is a by-product of our analysis, we will
re-prove it in the course of this paper. Thus, one of £ serves as the
Frobenius automorphism of the reduced curve.

The whole problem of determining the number of points on E;
reduces to deciding which of £7 is the Frobenius automorphism. We
will answer this question by applying the general reciprocity law of
complex multiplication due to Shimura [8, 9] (see also Lang [3] and
Stark [12]) which allows us to explicitly calculate what the number field
Frobenius automorphism does to division points of ;. The version of
the reciprocity law which we will use applies equally well in the case
of nonmaximal orders, but we will avoid the extra terminology in this
paper. The reciprocity law applies to modular functions in the field of
functions of level N. These are modular functions that are not only
invariant under the principal congruence subgroup I'(V) of the modular
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group, but whose Fourier coefficients in their expansion at every cusp
also lie in the cyclotomic field of Nth roots of unity. In Section 2 we will
verify that the relevant functions are in the field of functions of level IV,
and in Section 3 we will apply the reciprocity law to appropriate values
of these functions. “Appropriate values” turn out to be values at any
division point other than two-division points, although there are some
advantages in not considering any particular division point exclusively.

Our main result is the following

Theorem 1. Suppose that D is the discriminant of a complex
quadratic field k and that (D,6) = 1. Suppose that

u+v\/5
2

T =

and that () is a principal first degree prime ideal in k of norm p where
(p,6D) = 1. Let B be a prime ideal of H above (). Let also a be any
nonzero number of HT whose numerator and denominator are relatively
prime to PB. Then the curve

D
Eq:y? =4a® — aQD;y—;m + a?’D’yZ\l/G—,

with coefficients in H' reduces (mod B) to a curve E, defined over
F, with

<%) (l%ul) u ifD=1 (mod 8)
(%) (%) u if D=5 (mod 8)

points.

In Theorem 1, (a/9) is the Legendre symbol in H* and (2u/|D|)
is the Jacobi symbol in Q. The stated number of points includes one
point at infinity. Besides first degree primes of HT which split into
two first degree primes of H, there can be first degree primes in H
which remain inert in H. If B is an unramified first degree prime of
H* which is inert in the extension H/H™, then Ny+ ,q(F) = pis a
prime of Q which doesn’t split in k. In this case, it is well known that
there are precisely p+ 1 points on E, (mod J3). The + ambiguity that
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causes so much trouble for Theorem 1 does not arise for these primes,
and it is for this reason that we will not treat this case in this paper.

We close this section with some examples. We present the six relevant
class-number one curves and the last class-number two curve. From
Weber [13], we have the following tabulated values (with the misprint

in the value for 3 when D = —67 corrected):

D | @2 | 0)VD/26
-7 —5/4 7/8

—11 -8/3 7-11/27

—19 -8 19

—43 —80 7-3-43

—67 —440 7-31-67

—163 | —16-5-23-29 | 7-11-19-127- 163

Our theorem then gives the following results for primes p other than
2 or 3 which split in k,

D = —7. The curve
y* =4da® —5-Ta’z/4 — 7*a®/8

has p+1 — (a/p)(u/7)u points when reduced (modp).
D = —11. The curve

y® = 4% - 8- 11a’z/3 — 7-11%a*/27

has p+ 1+ (—a/p)(u/11)u points when reduced (mod p).
D = —19. The curve

y? = 42° — 8- 19a%z — 19%a*

has p + 1+ (—a/p)(u/19)u points when reduced (mod p).
D = —43. The curve

y? =4z — 80 - 43a%x — 21 - 43%a®
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has p + 1+ (—a/p)(u/43)u points when reduced (mod p).
D = —67. The curve

y? = 4z — 440 - 670’z — 217 - 67%a®

has p+ 1+ (—a/p)(u/67)u points when reduced (mod p).
D = —163. The curve

y? = 43 — 53360 - 163a%x — 185801 - 163%a>

has p+ 1+ (—a/p)(u/163)u points when reduced (mod p).

Our last example of this section is with the last class-number two
discriminant, D = —427. For m = (u + vy/—427)/2 generating a first
degree principal prime ideal of norm p in k and a any integer in Q(v/61),
the curve

y* = da® — 440 - 427(236674 + 30303v/61)a’z
— 161 - 427(37121542375 + 4752926464+/61)a®

has p + 1 + (—a/P)(u/427)u points when reduced (mod ) for either
of the two primes P of Q(v/61) above p. The curve is defined over the
field of p elements by replacing /61 by either of the two square roots
of 61 (mod p). For example, when p = 431, v/61 is replaced by +270,
the choice determining 8 above p. When a is rational, both choices
give the same number of points.

It is possible to explicitly calculate selected division points for any
fixed curve, thereby proving the result of Theorem 1 for that curve
by using Deuring’s well-known result that the correct choice of 7
determines a Grossencharacter in k. For example, Rajwade [4, 5,
6] has managed to verify the equivalent of our examples above for
D= —-7,D = —11 and D = —19 by explicitly calculating v/D division
points on the corresponding curves. In fact, from D = —19 onwards,
3-division points would suffice and be much easier to deal with. We
will discuss how it could be that Deuring didn’t have our Theorem in
general in Section 5. We will also see in Sections 3 and 5 that, for any
fixed D, verifying that Theorem 1 gives the correct number of points
on a curve E; reduced (mod‘P) for a single prime 7 =1+ 26 (mod 4)
suffices to prove the result of Theorem 1 for that particular curve. For
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example, counting the number of points for the primes 7 = 6 + /—11
for D=—11 (u=12,p=47) and 7 =2+ /D for D = -7, D = —19,
D = -43, D = —67, D = —163, D = —427 (u = 4 in each case and
p=11,p = 23, p = 47, p = 71, p = 167, p = 431, respectively)
completely suffices to prove the results of our examples above without
having to apply the general reciprocity law. Rumely [7] was the first to
indicate that the general reciprocity law could produce a theorem such
as Theorem 1 but did not carry out the required calculation. The six
class-number one examples above were announced over a decade ago
and Rajwade [5] already refers to them.

2. The needed functions of level N. Let Q be the lattice
corresponding to the curve F in (1). We suppose that 2 is generated by
the two periods w; and ws oriented so that wy/ws is in the upper half
plane. The curve E is parameterized by the Weierstrass gp-function,

r=pw ) =w+ Y [(wtw) ?—w?,
weN

! . . . .
(where Y means the sum over all nonzero periods) and its derivative,

y=0'(wQ)=-23 (wtw) >

we

We also have

/
g2 = 92(€2) = 60 Z w™?,

weN

and

!
g3 = g3(2) =140 Z w™E.
weN

If w is of the form w = (rw; + swy)/N, where r and s are both integers
at least one of which is not divisible by N, then g>(Q), g5(2), p(w; Q)
and ©'(w; Q) are all (homogeneous) modular forms of level N. The
reciprocity law which we will use applies to modular functions with
cyclotomic Fourier coefficients. This will require rescaling the lattice
Q. The rescaling constant we will use is

271

n—(—)n(z)2, where 2z = w;/wo.
w2
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Let
X(z) = Xrs(2) = k2 p(w; Q)

(2m0)~2p((rz + ) /N;wy ' Q) /n(2)*

and
Y(2) =Y o(2) = 720" (w; Q)

= (2m0) 3! (1= + 8)/N; 3 19) /n(2)°.
When we multiply (1) through by =5, we get
Y2 =4X3 - k792 (Q)X — £ 03(w).

Let E4(z) and Eg(z) be the standard Eisenstein series of weights 4 and
6, respectively, on the full modular group, normalized to be 1 at ioco.
Since wiga () = 60 - 2¢(4)E4(2) = (47*/3)E4(2), we see that

k1g2(Q) = 15;:;8))8 = %72@).

Likewise, since w$g3(2) = 140 - 2¢(6)Eg(z) = (87%/27)Eg(z), we see
that Eo(2) .
b ()= %) _
w98 =~ 36,2 ~ 2168 )

In summary, (X (z),Y (z)) is an N-division point on the rescaled curve,

1 1
3 Y2 =4X% - — X+ — )
(3) 1272(2) + 21673(Z)

We take k = Q(v/D) where D is a discriminant of a complex
quadratic field, (D,6) = 1. In particular, for § = (=3 + v/D)/2, both
~v2(0) and v3(f) are algebraic integers in H, the Hilbert class field of
k. For this reason, when z = 6, the rescaling above will be suitable for
the curves we will look at, but other rescalings would be required for
other classes of curves.

Throughout this and the next section, r and s will be presumed to
be integers, at least one of which isn’t divisible by N. The critical
modular functions in this paper are the functions X, s(z) and Y, s(z).
Everything will ultimately depend upon Y; ;(z). To be in the field of
functions of level M, say, these functions must both be invariant under
I'(M) and have their Fourier coefficients at every cusp in Q({ps) where
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Cym = exp(2mi/M). The transformations under the full modular group
are easy to establish.

For any elliptic function f(w,), such as p and ', which varies
analytically with the lattice 2, we set

ra(2) = 1(kea (2)4(2)

= f((rwy + swq)/N; Q).

It is important to note that f,, depends only on the values of r and
s(mod N). For A in the modular group, we have

a(a(2)) = (o (22)a ()
= fr,s)A (Z;) -

In particular, if A is in I'(V), then

1 1 1
N(T’,S)A = N(r,s) + N(r, s)(A-1)
1
= N(r,s) (mod 1)

and so

pa(4(2)) =5 ()

Thus, we see that p((rw; + swz)/N; Q) and @' ((rwy + sw2)/N; Q) are
homogeneous modular forms of level N (with no conditions yet on the
Fourier coefficients) and weights 2 and 3, respectively.

Next we quickly examine the algebraic nature of the Fourier coeffi-
cients. For this, we do not need a simplified expression,but only an
expansion where the arithmetic nature of the coefficients is plain. Re-
call the usual formula

meotwz = Z(n +2)71
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and also as a g-series when z is in the upper half plane,
g/ + g~ 1/?

weotmz =mi———————
qt/2 — g—1/2

o0
= —mi — 2mi Z q".
n=1

The derivative series is

—Z(n—i—z)* —(2mi) i = —n?cesc’ w2

and the next derivative series is
oo

2 Z(n +2)7% = —(2mi)3 Z n%q"

n=1
= 2n3 csc® mz cot 7z

We now get the g-expansion,

o E () ()]

_ Z Z n2627rzn[ Nm+r)z+s]/N

(Nm+r)>0
_ Z ZnZ 2min[—(Nm+r)z—s]/N
(Nm+r)<0
273 9 [ TS s
+ ; m CSC (F) cot (N)
(Nm+r)=0

As far as algebraic properties of the coefficients go,

273 o (TS s 2 cos(ws/N)
———csc’ | —=)eot | = | =g —5——=
—(2m1)3 N N (20)3 sin®(ws/N)

OGNt G
(Gn = Gn)?

NG+ 1)
(v —1)?°
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Therefore, with gy = eZWiZ/N,

T (e 5 (e 3)]
Z Zn2<-ns (mN+r)

mN+r>0

S St

mNTr<0 n=1
Z CN S 1)
s —1)3
mN—i—r 0

So long as r and s are not both divisible by NV, there is no blow up
on either side. We have shown that (27i/ws) ™3¢’ ((rwy + swa)/N; Q)
has a power series in gy = exp(2miz/N) where z = w;/ws and where
the coefficients (the “Fourier coeflicients”) are all in Q(¢x). Indeed,
every coefficient is a rational function of (3, with rational coeflicients.
This is important because it enables us to easily see what an algebraic
conjugation of the Fourier coefficients does.

Although messier because of the extra w=2 terms which doubles the
work, the expansion of the function (27i/ws) 2p((rw; + swz)/N; Q) is
found similarly. The expansion is well known and can be found, for
example, in Lang [3]. Again, the result is a power series in gy with the
Fourier coefficients all in Q((v) and, indeed, each coefficient is again a
rational function of (3, with rational coefficients.

We are interested in the modular functions X, s(z) and Y; s(z) which
have extra quotients by 7(z)* and n(z)%, respectively. These modular
forms transform in the following manner under a matrix

a b
=2 3)
in the full modular group I':

(Ao z)* = (s(A)(cz +d)*n(2)*,
(A 2)® = Ga(A)(cz +d)n(2)°,
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where Aoz = (az+b)/(cz+d), (s(A) = (12(A)? is a sixth root of unity,
C4(A) = ¢12(A)? is a fourth root of unity and ¢;2(A) is the twelfth root
of unity appearing in the transformation formula of n(2)2. It is well
known that (;12(A) is a twelfth root of unity, and there are even classical
formulae for it. For example, according to Weber [13], when d is odd,

—c)—(d*~1)ac
(4) Cia(A) = (—1)@=D/2[d0—e) (@ ~1ac]
and, when c is odd,
cla —(c?— _
(5) G12(4) = (—1)(1—0)/2d2( +d)—(c®~1)bd—3]

(Warning: Weber’s ordering of a, b, ¢ and d differs from ours!) Weber
gives the twenty-fourth root of unity in the transformation formula for
n(z) with the extra restriction that d is odd and positive in the first
case and that ¢ is odd and positive in the second. But for (j2(A),
this positivity restriction is unnecessary since the righthand side is
multiplied by —1 when A is replaced by —A as it ought to be for a
modular form of weight one.

From the first of these formulae, we see that (s(A) = 1 for A in I'(6)
and (4(A) = 1 for A in I'(4). Thus, n(2)* is of weight 2, level 6 and
is invariant under the full modular group up to a multiplier which is a
sixth root of unity. Likewise, 7(z)¢ is of weight 3, level 4 and is invariant
under the full modular group up to a multiplier which is a fourth
root of unity. Therefore, X, ;(z) is in the field of modular functions
of level lem (N, 6) and Y; 4(2) is in the field of modular functions of
level lcm (N, 4). Thus, at the very worst, X, s(z) and Y, s(z) are both
modular functions in the field of functions of level 12V.

3. The reciprocity law. Suppose that k& = Q(+/D) is a complex
quadratic field and that a = [a, 8] where [a, 8] is an integral basis for
an ideal a of k. We order a and 3 so that § = /8 is in the upper
half plane. (In our application in this paper, 6 will be (=3 + v/D)/2.)
Suppose that p is a first degree principal prime ideal in k of norm p. If
f(2) is in the field of modular functions of level M, then f(6) is in the
ray class field K(M) of k (mod M). When the Fourier coefficients of
f(z) at every cusp are integral at p and f(z) is analytic in the interior
of the upper half plane, f(f) is then integral at p and the reciprocity
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law gives the action of the algebraic Frobenius automorphism applied
to f(6). This action is computed in two parts. One part changes the
function f(z) and the other part changes the point 6.

In the version of the reciprocity law in Stark [12], both of these
changes are found from an auxiliary matrix of integers B which is
defined by

(#)-(3).

where [p, 7] is an integral basis for pa, ordered so that p/7 is in the
upper half plane. The matrix B has determinant p. The function
change takes f to f o (pB~1!). In [12], a recipe is given for calculating
fo(pB™1). If

f(z) = Z anqhy;
with coefficients in Q((ar), set

f7r(z) =) airdi,
n

where o, is the automorphism of Q({ar) taking (ur to ¢%;.

Write, as is always possible,

pBlE<(1) 2>A (mod M)

where A is in the modular group. Then
fo(pB™')(2) = f"(Ao2).
The reciprocity law is expressed in terms of the fundamental congruence
(7) FOF =fo(B™")(Bo#d) (mod*p).
Here, (mod*p) is Hasse’s notation meaning that the difference has

a factor of p in the numerator. For the applications in this paper,
everything will be integral outside of 6N and so the congruences could
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equally well be thought of as regular congruences in the S-integers of
k where S consists of all primes in k dividing 6V.

In this paper we need only a special case of the reciprocity law. We
continue to assume that the discriminant of k satisfies (D,6) = 1 and
take § = (—3++/D)/2. In particular, [f, 1] is an integral basis for k. We
will apply the reciprocity law to the ideal a = (1) = [¢,1]. From this
point on, the letter m will be the generator of a first degree principal
prime ideal p in k of norm p. We assume that p { 12N. We may define
the matrix B of determinant p in the reciprocity law in this special case
by

(3)-(t)

Again for a function f(z) of the type above where M = 12N, f(6) is
integral at p and the fundamental congruence states that
F(0) = fo(pB~1)(Bo6) (mod *m)
= fo (pB~)(6) (mod *r),

since in our situation we see from (8) that B o = #. We introduce a
matrix A in the modular group by

(9) pB~' = (é 2) A (mod 12N).

The whole task is then to calculate f o (pB~1).
Let
X =X, 4(0), Y =Y, ,(0).

Since v2(6) and 73(0) are in the Hilbert class field, when we set z = 6
in (3) and raise both sides to the pth power and reduce (mod ‘), we
get

(Y7)? = A(X?)° = S (B)(X) + 51595(6)  (mod *).

The point (X,Y) is an N-division point on this curve and as such has
coordinates in the ray class field (mod 12N) of k. From the expansions

in Section 2, we see that (é 2) acts on X and Y by

10
X(rs) © <0 p> = X(r,5p)
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and
10
Yirs)© <0 p> = Yirsp)-

In homogeneous form, we see that for A in I' and ¢ = 0 or 1,

(e (2)a (2)) o (heoma ()5

and therefore with A given by (9),

(X(r5) ©PB™)(2) = C6(A) " X (1 py 4 (2),
(Yv(r,s) oprl)(z) = (4(A)71Y7(r,sp)A(Z)a

where (5(A) and (4(A) are the sixth and fourth roots of unity appearing
in the transformation formulae of 7(z)* and 7(z)® above. Since

10
0 p

(r,sp)A = (r,s) ( > A= (r,s)pB™! (mod 12N),
we find that

(X(r,s) ©PB™1)(0) = Co(A) ™' X, 5)p-1(6),
and

(Yir,sy ©pB™1)(8) = Ca(A) ™'Y (r 5)p5-1(6)-

Multiplying (8) through by 7 shows that pB~1 satisfies

(10) pBl<f>_7r<f>.

Hence if Q = [wy, wo] is a lattice with wy /we = 8 and w = (rw;+swz)/N,

then ) .
- -1 (W) _ & w1} _
N(T, s)pB <w2> = N(r, s)mw (w2> Tw.

Therefore, the reciprocity congruence gives

XP = (s(A) 0 X (mod *7),
YP =G(A) 'roY (mod *7),
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where m o X and m o Y are the x and y coordinates of complex
multiplication of (X,Y) by m. It is a remarkable fact that, in our
situation, ((A) is always 1. Although easily verified directly, we do
not need to do so here because we are dealing with the case that v2(0)
and v3(f) are already known to be in the Hilbert class field. Since
72(2) = Ba(2)/n(2)%, 75(2) = Eo(2)/n(=)1? and Ba(z) and Bq(z) are
modular forms of level 1 with rational Fourier coefficients. The recipe
for the reciprocity congruence gives

Y2(8)? = (12(A) " *y2(0) (mod 7)),
v3(0)F = C12(A) " %v3(0) (mod ).

Since v2(6) and v3(f) are nonzero when (D, 6) = 1 and v3(6) and ~3(6)
are in H and so preserved by the Frobenius congruence, this gives
C12(A)* = (12(A)% = 1 and hence (5(A) = (12(A4)? = 1. (Actually, the
current proofs using the explicit reciprocity law which show that v2(9)
and ~3(6) are in the Hilbert class field are carried out by showing that
C12(A)* = (12(A)® = 1.) In turn, this shows that (4(A4) = £1. Indeed,
either from raising the equation for the curve to the pth power leaving
only an ambiguity of £Y, or from noting that (4(A)? = (12(4)% = 1,
we get this. Therefore, we have either

(XP,YP)=7mo(X,Y) (mod *)
when (4(A) =1 or
(XP,YP)= —7mo(X,Y) (mod *r)

when (4(A) = —1.

This already carries enough information to give a proof that complex
multiplication by 7 reduces (mod ) to either plus or minus Frobenius.
In fact, it is well known that multiplication by 7 gives an z-coordinate
that is a rational function of X alone. Upon reduction (mod ), this
rational function agrees with X? for infinitely many values of X over F,,
the algebraic closure of F,, (namely the reductions of the z-coordinates
of N-division points which generate higher and higher degree ray class
fields over H = K (1) in which the primes above (7) have arbitrarily
high degree). Therefore, reduced (mod 7), this rational function is X?.
From this, we now get that multiplication by 7 of the y-coordinate
reduces to £YP.
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We also have enough information to see that there is a Grossencharacter
involved here. Indeed, let e(m) = £1 be defined by

YP=e(m)mroY (mod ),
ie., e(m) = (4(A) L. Then clearly
g(—m) = —e(m).

Thus e(m)m gives a well-defined generator of (7) independent of the
choice of 7. Further, this generator is independent of which N division
point is used since A is independent of r and s. Suppose that 4|N.
Then Y is in K(IN). We also see that ¢(m)m oY is independent of
which (7) is chosen from its ray class (mod N). (Perhaps the most
elementary reason is that if 1; = 75 (mod N), then Y (m10) = Y (m26).)
In particular, e(7) depends only upon the choice of 7 (mod N). This
allows us to define € on any congruence class (mod N)) which is relatively
prime to N.

Let Cy,C5 and C3 be ray classes (mod V) contained in the principal
ideal class with C;Cy = (45, and let 01,092,053 be the corresponding
Frobenius automorphisms in G(K(N)/k). Further, let m,m2, 73 gen-
erate first degree primes in C7,C3,C3. Then we see that

Yoo; =¢(mj)mjoY.

Hence
5(71'3)71'3 oY = Y00'10'2 = [E(ﬂ'l)ﬂ'l OY] 0 09

=¢e(m)e(my)mima o Y.

If 73 is chosen from the two possibilities so that 75 = myme (mod N),
then we see that

6(7‘(’17‘(‘2) = 8(71'1)8(71’2).

This proves that € is a multiplicative numerical character (mod N) when
4|N and, indeed, we may as well take N = 4.

Since we are dealing with the case that D is odd, (oy/4)* is a
group with either 4 or 12 elements according to whether 2 splits in
kE (D = 1 (mod8)) or is inert in £ (D = 5 (mod 8)). In either
case, including the trivial character, there are four numerical characters
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(mod 4) taking the values 1. On the four element subgroup of classes
=1 (mod 2) of (0x/4)*, these four characters are

1| —-1|14+20|-1+26
X1 |1 1 1 1
X2 | 1 1 -1 -1
Xs | 1] -1 1 -1
X4 | 1| -1 -1 1

Indeed, if (a,4) = 1, then for a character X of order two on (0f/4)*,
X(a) = x(a)® = x(a®) and o3 is in the four element subgroup of classes
= 1(mod 2). Thus, each of the four listed characters uniquely extends
to a character of order two on the whole group (0x/4)*. Only X3 and
X4 are possibilities for e since e(—m) = —&(m) eliminates the first two
characters. In fact, both X; and X2 are ideal characters (mod4); X
is the trivial character and X corresponds to the quadratic extension
K(V=T) of k, Xa(r) = (~1/p).

The time has come to calculate (4(A). Write 7 = m + nf where
0 = (—3++/D)/2is aroot of 22 + 32+ (9 — D)/4 = 0. We have

(2)- ()= (e

_ <mn3n n(DmQ)/4> <;9>

and hence, by (10),

pB1 = <mn3n n(DmQ)/4) ,

a matrix of determinant p = N(m). Therefore A is determined (mod 4)
from this by (9) as

AE(l g)pB_lz <m—3n n(D—9)/4> (mod 4).

0 pn pm

Since 7 (mod 4) determines m,n and p (mod 4), the matrix A (mod 4)
depends only upon 7 (mod 4).
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From the expression for (;2(A) in (4) above, if A = (Z Z) is an

integral matrix of determinant 1, and d is odd, then

C4(A) _ (—1)3(d_1)/2i [d(b—c)—(d*—1)ca]
(_1)(d_1)/2i d(b—c)‘

Hence, when m is odd,

<4(A) = (_1)(11771—1)/22'pm[n(D—Q)/4—pn]

(11) (_1)(pm—1)/22~pmn(D—Q)/4—mn.

Although knowledge of (4(A) for all A gives us a formula for ¢ for
every element of the group (oy)/4*, it suffices to determine (1 + 26)
to decide whether € is X3 orXy4. Suppose that

T=1+26 (mod 4),

so that m =1 (mod 4), n = 2 (mod 4), and p = m? — 3mn + n?(9 —
D)/4 =3 (mod 4). From (11), we find that when 7 = 1+ 260 (mod 4),

C4(A) _ (71)(371)/22- 6(D—-9)/4—2

_ (71)(D79)/4
1 D=1 (mod 8)
| -1 D=5 (mod8)’

Therefore,

X if D=1 (mod 8)

X4 if D=5 (mod 8).
Anyone wishing to directly verify our evaluation of £(7) for all residue
classes of 7 (mod 4) would need both versions (4) and (5) of Weber’s

formula for 12(A)?; the point of the presentation here is that one select
residue class suffices.

4. A further rescaling of the curve. Now we wish to rescale the
curve in order to bring down the field of definition from H to Ht. If
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a is in H with numerator and denominator relatively prime to 3, we
may rescale by multiplying (3) with z = @ through by a3. With

z=aX, y:a3/2Y,

we have

12 2 48— 22 33
(12) e TR TTS

Since () splits completely in H, « is preserved by the Frobenius map,
but

(al/2yp = <3>a1/2 (mod *).
‘B
Therefore, (a/P)e(m)m serves as the Frobenius automorphism when the
curve (12) is reduced (mod ‘).

A particular case is of interest. This is the case where
a=aVvD,

with @ in H* with numerator and denominator relatively prime to 9.
The curve (12) takes the shape

D
(13) y? = da® azDz—;x L aspBYD

which is the curve E, in Theorem 1. Here (a/)(v/D /) ()7 serves as
the Frobenius automorphism for this curve when it is reduced (mod ).

Since P is a first degree prime ideal of H just as (7) is of k and since
VD is in k,
VD\ (VD
(5)= (%)

The Legendre symbol on the right tells us how (7) splits in ky =
k((v/D)'/?) and, according to the reciprocity law, this is governed by a
quadratic character with conductor precisely the relative discriminant
of ky/k. This relative discriminant in turn divides the polynomial
discriminant 4v/D of the defining polynomial 22 — v/D of ko /k and
differs from this polynomial discriminant by a square ideal factor in k.
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Thus v D is present in the conductor. Since there is only one numerical
quadratic character (modv D) with conductor v/ D, we must have

(14 (2) = (),

where 1 (7) is a numerical quadratic or trivial character (mod 4) whose
conductor is a square and divides 4. Thus ¥ is one of the four characters
X1, X2, X3, X4 defined above. But, further, the left side of (14) depends
only on the ideal (7) and so is the same whether we are dealing with
either £7. On the other hand, since

(#)-@)--

W(-1)= 1.

we see that

Thus 1 is either X3 or X4, and it remains to determine which. In
fact, for the case that D =1 (mod 8) where 2 splits in k as p2ps, with
p2 = (2,60) and p2 = (2,0 + 1), general theory determines ¢ since the
relative discriminant of ky/k is precisely p%x/ﬁ Indeed, set t =y +1
in the defining polynomial 22 — v/D getting y? + 2y + 1 — /D where
1—v/D = —2—26 which is divisible by p, only once but by p2. Thus, the
power of py in the polynomial discriminant is correct, but the power
of pa comes down by 2. Hence, 1 has conductor precisely p3. The
conductor of X3 is p2 while the conductor of X4 is p2. Therefore, for
D =1 (mod 8), ¥ = X3. However, for D = 5 (mod 8), an instance
which includes the most interesting class-number one examples, ¥ has
conductor (4), both X3 and X4 are primitive characters (mod4), and
so knowledge of the exact conductor does not distinguish between the
two possibilities for us.

For this, we need the explicit quadratic reciprocity law in number
fields. In the process, we will rederive the desired result for D =
1 (mod 8). Again, choose a prime 7 such that

1=14+20=2++vVD (mod 4).
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Since both 7 and v/D are congruent to 1 (mod 2) and since k is
complex, Siegel [10] tells us that

Thus ¢ = X3 always. Hence, the Frobenius automorphism for the curve

E, is given by

() (R () s
) { (%) (%)w if D=1 (mod 8)
- (%‘) (%) 7 D=5 (mod 8).

Now write

‘We have

Therefore
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is the Frobenius automorphism for the curve £,. The number of points
on E, reduced (mod‘P) is then

N(r' —1)=p+1—tr ()
(%) (f—ﬁ) v if D=1 (mod 8)
(%’) (f—“|> u if D=5 (mod 8).

This completes the proof of Theorem 1.

5. An historical remark. Deuring’s work [1] shows that the
Frobenius automorphism for the curve E, of Theorem 1 is given
by a Grossencharacter. Indeed, for a = +6, the conductor of this
Grossencharacter would divide 24|D|. Thus, in fact, for any particular
curve such as the seven examples of Section 1, a finite amount of
experimentation would determine which Grossencharacter and hence
verify the results of Theorem 1 for that curve. The question arises as
to how it was possible for Deuring to have such a result and still not
instantly have Theorem 1 in general. From the point of view of this
paper, the answer is that there was not a good enough version of the
reciprocity law for complex multiplication available at the time.

Deuring already knew that the Frobenius automorphism for the
reduced curve was either +7. But which? Following the innovations
brought to the theory of complex multiplication by Hasse in [2],
S6hngen [11] proved the reciprocity congruence (7) for any principal ()
such that p =1 (mod M). (This allows B in (6) to be chosen so that
B =1 (mod M) andthen pB~! =1 (mod M). Thus, fo(pB~1)(Bo#)
reduces to f(B o 6) which is Schngen’s theorem. By using such a B,
he did not have to deal with the extra general complications of either
introducing or finding fo(pB~!).) In particular, for r =1 (mod M), a
choice of B as in (8) above has both pB~! = I (mod M) and Bof = 0,
and hence fo(pB~!)(Bof) reduces to f(6). This suffices to prove that
f(0) is in K(M), the ray class field of k& (mod M). This in turn allows
our proof to go through that there is a Grossencharacter (mod4N)
when we consider a general N-division point, or even (mod N) when
4|N.

With S6hngen’s work available, and by using N = 4, we can already
show that the desired Grdssencharacter for the curve in (3) with z = 0 is
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g(m)m where € is either X3 or X4. The correct choice can be determined
as soon as we know precisely the effect of the algebraic Frobenius
automorphism for any single m where X3(w) # Xa(w). Sohngen’s
theorem already has amazing utility. Unfortunately, in our situation
with N = 4, we can apply Sohngen’s theorem only when p = N(7) =
1 (mod4). Since Xz2(m) = (—1/p), X2(w) = 1 for all # to which
S6éhngen’s theorem applies. Hence 7 (mod 4) is always in the index
two subgroup of (0x/4)* on which X3 agrees with X4. In other words,
with our approach, it is only with the full fledged reciprocity law, which
was not available to Deuring, that we can distinguish between X3 and
X4 and hence prove Theorem 1 in general.

In actual fact, Deuring had a completely different normalization
of a CM curve to control the y-coordinate of a division point, but
he still ultimately relies on the fact that we know what happens
on the principal ray class, and this allows the proof that there is a
Grossencharacter to go through. Deuring’s work also provides another
numerical way to help decide on the precise Grossencharacter for any
fixed curve. It was this alternate way that I first used for the six class-
number one examples. I hope to return to this alternate approach for
the general case in the future.
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