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NONSINGULAR ZEROS OF QUINTIC FORMS
OVER FINITE FIELDS

DAVID B. LEEP AND CHARLES C. YEOMANS

ABSTRACT. Let f be a nondegenerate homogeneous poly-
nomial of degree 5 defined over the finite field F; in at least six
variables. We show that if ¢ > 101, then f has a nonsingular
F,-rational zero.

1. Introduction. Let f € Fy[z,...,z,] be a homogeneous form
of degree d, where F is the finite field with ¢ elements. If n > d, then
one knows (see Lemma 2.2) that f has a nontrivial F -rational zero.
It is also useful to know under what conditions one can guarantee the
existence of a nonsingular F,-rational zero of f.

To cite one example, suppose F' is a polynomial defined over a p-adic
field K with coefficients in the ring A of integers of K, and let F denote
the reduction of F' modulo the maximal ideal of A. Then F is defined
over some finite field. If F has a nonsingular zero over this finite field,
then Hensel’s lemma allows one to construct a nonsingular K-rational
zero of F.

A theorem of Lang-Weil [4, p. 824, Corollary 3| says that if f is
absolutely irreducible and ¢ is sufficiently large (depending on n and
d), then f has a nonsingular zero over F,. But other than for the
well-known and easy cases of a quadratic or cubic form (see the end of
Lemma 3.5 for the cubic case), the only other effective general result
comes from Deligne’s solution of the Weil conjectures, from which one
can obtain a bound on ¢ for nonsingular f (see [2, p. 276, Theorem
6.1]).

Our main result is the following (Corollary 4.5):

Let f be a nondegenerate quintic form in at least six variables over
the finite field F,. If ¢ > 101, then f has a nonsingular F4-rational
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While our result is specific to forms of degree 5, it does not require
that the form be nonsingular, or even absolutely irreducible. Further-
more, the techniques of the proof can be applied more generally, at
least to forms of low degree.

For some quintic forms in 3 to 5 variables, we also obtain the same
bound of 101 in Theorem 4.4. Unfortunately, we must require in
advance that the form has a singular F,-rational zero. Thus, for
nonsingular quintic forms in less than six variables, we can do no better
than the theorems of Weil and Deligne.

We now give a summary of notation and terminology.

We denote by F the finite field of cardinality ¢q. For a field K, P"(K)
denotes n-dimensional projective space over K.

Let f be a nonzero homogeneous polynomial (or form) with co-
efficients in a field K. We define the order of f as follows. Let
f € K[z1,...,z,] be a homogeneous polynomial, and let v(f) be the
number of variables occurring in the monomials in f with nonzero co-
efficient. Define the order of f to be min{y(f(Az)) | A € GL,(K)}.
This is the number of variables upon which f actually depends. A poly-
nomial for which v(f) > order (f) is said to be degenerate; otherwise,
it is said to be nondegenerate. By definition, every polynomial can be
made nondegenerate by a linear change of variables. We note that any
absolutely irreducible homogeneous polynomial of degree greater than
1 has order at least 3.

Let f € K[z1,... ,z,], and let L be a field containing K. If there
exist z1,...,2n € L satisfying f(z1,...,2n) =0, then z = (21,...,24)
is said to be an L-rational zero of f. If at least one of the z; # 0,
then the zero is said to be nontrivial. Suppose z = (z1,...,25)
is an L-rational zero of f. By a linear change of variables defined
over L, we may assume that z = (1,0,...,0). Thus, we may write
f= ZZ:O z{*Ap(2q,... ,2,), where Ay is a homogeneous form of
degree k or the zero polynomial. Since f(1,0,...,0) =0, Ap =0. The
minimum degree of the nonvanishing Ay is said to be the multiplicity
of z. Clearly the multiplicity of z is at least 1 and at most d. If f is
nondegenerate, then the multiplicity of z is at most d — 1.

Let f be a polynomial in n variables, and let f be the restriction of
[ to alinear subspace V. If z € V is a zero of f and a nonsingular zero
of f, then z is a nonsingular zero of f.
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We shall require some basic definitions and facts about algebraic
curves, for which we take [3] as a reference.

2. Known results. We list for reference some results which we
shall use throughout this paper.

Lemma 2.1. For n > 2, let H, be the homogeneous ideal in
F,[z1,...,2,] (i-e., generated by homogeneous polynomials) of poly-
nomials vanishing at every point of ¥y. Then H,, is generated by the
forms zlz; — xixg, where © and j satisfy 1 < i < j < n. In particular,

if f is nonzero and f € H,, then deg (f) > ¢+ 1.

Lemma 2.2 (Chevalley’s theorem). Let f be a homogeneous form
of degree d in n variables over F,. If n > d, then f has a nontrivial
F,-rational zero.

This result was originally proved in [1].

We shall make use of the Weil estimate for the number of rational
points on a curve over a finite field. From [6], Corollary 1 we recall a
version which applies to plane curves with singularities.

Proposition 2.3. Let C be an absolutely irreducible projective plane
curve defined over F, of degree d and genus g. Let N be the number of
F,-rational points of C. Then N satisfies

IN = g+ 1)| < g2@) + 3(d - 1)(d-2) — g

If C is nonsingular, then g = (1/2)(d —1)(d —2) and one recovers the
usual estimate of Weil, as enhanced by Serre in [8].

3. Reducible forms. In this section we consider forms of degree 5
which are not absolutely irreducible. First we need to consider forms
of lower degree.
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Lemma 3.1. Let f = z9A(z1,... ,2n) — B(x1,... ,z,) be a form of
degree d over Fy, with A # 0. If ¢ > d—1, then f has a nonsingular
F,-rational zero.

Proof. Since ¢ > d—1, there exist aq, ... , a, such that A(ay,...,a,) #
0. One then checks easily that (B(a1, ... ,an)/A(a1,... ;an),a1,... ,an)
is a nonsingular F-rational zero of f. i

Lemma 3.2. Let f = =zoA(z1,...,2n) — B(z1,...,2,) and
g(zo, ... ,z,) be homogeneous forms over Fy-rational of degrees d and
e, respectively, with A # 0. Assume that f does not divide g, f is
irreducible and that ¢ > de. Then there is a nontrivial Fg-rational zero
of f which is not a zero of g.

If ¢ > d(d — 1+ e), then there is a nonsingular F,-rational zero of f
which is not a zero of g.

Proof. Assume that every zero of f is a zero of g. We have

(%) (A(z1,...,20))%9(z0, ... ,2p)

=g(zoA(z1, ... ,2n), .- ,2p ATy, ..., Ty))

9(B(z1,... ,Zp), 21 A1, ,Zn),ye ey
TnA(xy,... ,2,)) mod f.

Define h(z1,... ,zn) = g(B(z1,-.. yZn), 21 A(Z1,... yTn),... , oAz,
,Zn)); his a homogeneous form of degree de. For all ay,... ,a, such
that A(aq,...,a,) # 0, we have

h(ai,...,an) =g(B(ay,... an),a1A(a1,... ,apn),... ,a,A(a1,... ,ay))

=(A(ay, ... ,mm(W ) =0,

] ,an)’al"” y On
since (B(a,... ,a,)/A(a1,... ,an),a1,... ,a,) is a zero of f and thus
also a zero of g. Let ay,...,a, be such that A(ay,...,a,) =0. Then

h(ai,...,an) =g(B(ay,... an),a1A(a1,... ,apn),... ,a,A(a1,... ,ay))
=g(B(ay,...,a,),0,...,0) =0,

since (a,0,...,0) is a zero of f for all a and hence a zero of g. We
have shown that h vanishes on all of Fy. Since, by assumption,
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q > de = deg h, Lemma 2.1 implies that A must be the zero polynomial.
By (%), we see that f divides A°g. But gecd(4, f) = 1, since f is
irreducible. Thus f divides g.

To verify the second statement of the lemma, one applies the first
part to the forms f and Ag. If every F,-rational zero of f is a zero
of Ag, then f divides A9t¢g. As above, we see that f divides g. We
conclude that if f does not divide g, then there is a zero of f which is
not a zero of A or of g. The fact that A does not vanish implies that
the zero is nonsingular. ]

The bound g > d(d—1+e) is not best possible. For example, if d = 2
and e = 1, then the second part of the lemma holds for ¢ > 2.

Lemma 3.3. Let f be a nondegenerate form of prime degree defined
over a perfect field K which has a nontrivial K-rational zero. If f is
not absolutely irreducible, then f is reducible over K.

This is Lemma 3.3 of [5], in which a proof of this lemma is given.

Lemma 3.4. Let QQ be a nondegenerate quadratic form in n variables
over Fy. If n > 3, then Q is nonsingular and has an F ;-rational zero.
If n = 2, then Q factors into distinct linear factors. If Q factors over
F,, then Q has a nonsingular zero. If Q is irreducible over F, then Q
has no nontrivial F,-rational zeros. If n = 1, then Q factors over F,
as the square of a linear form and has no nontrivial Fy-rational zeros.

Lemma 3.5. Let f be a nondegenerate cubic form defined over F,
in n variables. Then f has no nontrivial F;-rational zeros if and only

if
(i) f is the third power of a linear form;

(i) f is irreducible over Fy, but factors over Fgs into conjugate
linear factors.

If f has a nontrivial F ;-rational zero, then it must have a nonsingular
F,-rational zero.
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Proof. Assume first that f is reducible over F;. Then f has a linear
factor. Either f is divisible by a simple linear factor L or f is divisible
by the cube of a linear factor. In the first case, f clearly has a nontrivial
F,-rational zero; in the second case, nondegeneracy of f implies that
f has no nontrivial zero.

Now assume that f is irreducible over Fg4, but not absolutely irre-
ducible. Since F, is perfect, Lemma 3.3 implies that f has no non-
trivial Fy-rational zeros. One sees easily that f has a linear factor L
over some extension of F, of degree d > 1. The product of L and its
conjugates is a form of degree d defined over F; and which divides f.
Since f is irreducible over Fy, we conclude that d = 3.

Now assume that f is absolutely irreducible, in which case f has order
at least 3. If f has order at least 4, then Chevalley’s theorem implies
the existence of an F,-rational zero. If f has order 3, then f defines
a curve of genus 1, if f is nonsingular, or a curve of genus 0, if f is
singular. Then the existence of an Fg-rational zero of f follows from
Proposition 2.3.

Now suppose that f has a nontrivial F,-rational zero, which we may
assume to be (1,0,...,0). If this zero is singular, then we may write
f=z1A(z2,... ,x,) + B(za,... ,zn), where A is not the zero polyno-
mial and has degree 2. It follows that A(zs, ..., 2,) # 0 for some choice
of z3,... , 2, € Fy. It follows easily that (—B(z2,... ,2)/A(22,... , 2n),
Z2,--.,%n) is a nonsingular F ,-rational zero of f. |

Lemma 3.6. Let C be a nondegenerate cubic form in n variables
and H a linear form in the same n variables. If ¢ > 8 and C' has
a nontrivial F-rational zero, then either there is a nonsingular Fg-
rational zero of C which is not a zero of H or C = HQ, where Q has
no nonsingular F-rational zeros; in particular, @ has order at most 2.

Proof. Suppose first that C' is not absolutely irreducible. Since C'
has a nontrivial Fj-rational zero, it is reducible over F, by Lemma 3.3
and thus has a linear factor. The proof of Lemma 3.5 shows that in
fact f has a simple linear factor L. Write C = LQ. If L # H and
q > 3, then we may apply Lemma 3.2 to the forms L and QH to find a
nonsingular rational zero z of L which is not a zero of QH. Application
of the product rule shows that z is a nonsingular zero of C' which is not
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a zero of H.

Otherwise, C' = HQ. If @ has a nonsingular rational zero, using
Lemma 3.2 we see that (Q has a nonsingular rational zero which is not
a zero of H; such a zero is then easily seen to be a nonsingular zero
of C. Otherwise, @) has no nonsingular F,-rational zeros and thus by
Lemma 3.4, @ has order at most 2.

We now assume that C' is absolutely irreducible. Suppose first that
n = 3. In this case, one knows that C defines a curve of genus 1 if
it is nonsingular; if C is singular, then it defines a curve of genus 0
which has exactly one singular point, and that point is defined over
F,. Bézout’s theorem tells us that C' and H intersect in at most three
distinct points. When C' is nonsingular, it suffices to choose ¢ large
enough so that C has at least four rational points. When C' is singular,
it suffices to choose g large enough so that C has at least five rational
points. From Proposition 2.3, we obtain the following information: if
C is nonsingular and ¢ > 8, then C has at least four rational points. If
C is singular and ¢ > 5, then C has at least five rational points.

Now suppose that n > 4. Chevalley’s theorem implies that C' has
a nontrivial zero; thus, by Lemma 3.5 C' has a nonsingular rational
zero, which we may assume to be (1,0,...,0). Then we may write
C = 2?L(zs,...,2n) + 19(T2,... ,xn) + h(x2,... ,2,), with L # 0.
Since C' is absolutely irreducible, H does not divide C'. Thus, if ¢ > 3,
by Lemma 3.2 there is a point w satisfying H(w) = 0, C'(w) # 0. Let
p be a point such that H(p)L(p) # 0. Let II be a plane containing
(1,0,...,0), p and w. The restriction of C' to this plane has a
nonsingular rational zero because L, restricted to II, is not the zero
polynomial. Since H(w) = 0, C'(w) # 0, we see that H does not divide
C after restriction to II. Since H does not vanish identically on II,
H|y is not the zero polynomial. Since C|r has a nonsingular rational
zero, C| has order 2 or 3 and the previous cases give a nonsingular
F ,-rational zero of C| which is not a zero of H|r, and thus there is a
nonsingular F,-rational zero of C which is not a zero of H. o

Lemma 3.6 first appeared in [7] as their Theorem 2. They stated
that the result was true for ¢ > 7, but this is incorrect. The mistake
occurred on p. 298, line 7 of [7], where a formula for the number of
points on a curve was applied incorrectly.
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A counterexample is given over F7 by the nonsingular curve defined
by y?z = 22 + 42> and the hyperplane defined by 2 = 0. One can check
that the curve has exactly three Fr-rational zeros, all of which lie on
z=0.

In addition, the theorem is slightly misstated. In the case where
C = HQ, their condition “...QQ has no k-zero off H = 0...” should
be modified to our statement, “...Q) has no nonsingular F, -rational
zeros...”. To see this, one considers the example C' = 2Q(y, z), H = z,
where @ is a rank 2 quadratic form having only singular rational zeros.
Then (1,0,0) is a rational zero of @ and is the only rational zero of C
not lying on H, but it is singular. The point of possible confusion is
that the ambient space is P2, and @ must be considered as defining a
variety in P2, not P'.

Proposition 3.7. Let f be a nondegenerate quintic form over F,
and assume that f is not absolutely irreducible.

If f has no nontrivial Fy-rational zeros, then f is one of the following:
(i) the fifth power of a linear form
(ii) the product of linear forms defined over Fys and conjugate over
F,.
(i) f = QC, where (after an appropriate linear change of variables)
Q = Q(z,y), C = C(x,y), Q and C have order exactly 2 and neither
form has a nontrivial F ;-rational zero.

If f has a nontrivial F ;-rational zero, but no nonsingular rational zeros,
and q > 8, then f = QC, where Q has degree 2, C has degree 3, and
neither Q nor C' has an F;-rational nonsingular zero. In particular, Q
has order at most 2, C' has order at most 3, and f has order at most 5.

Proof. Assume first that f has no F,-rational zero, and that f is
neither the fifth power of a linear form nor the product of linear factors
conjugate over F . Since f is not absolutely irreducible, it has an
absolutely irreducible factor g of degree d < 5 defined over the extension
of Fy of degree r. The product of g and its conjugates is a factor of
[ defined over F, of degree rd. If rd = 5, then d = 1 (since d < 5)
and r = 5. But this case was ruled out above by the assumption at the
beginning of the proof. Thus rd < 5, and we conclude that f must be
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reducible over F.

The assumption that f have no nontrivial F,-rational zero easily
implies that F' cannot have a linear factor defined over F,. Thus, f
must factor as QC, where ) and C' are irreducible over F,. If Q has
order at least 3, then it has a rational zero by Lemma 3.4. We conclude
that @) has order exactly 2; irreducibility of @ then implies that it has
no nontrivial rational zero. After a linear change of variables, we may
assume that @ = Q(z,y). If any variable appears nontrivially in C
other than z or y, then (0,0,1,...,1) would be a nontrivial rational
zero of f. Thus C'= C(z,y). Since C is irreducible over F, it has no
nontrivial rational zero and has order exactly 2.

Now assume that f has no nontrivial rational zero, but no F,-rational
nonsingular zero. Since f is not absolutely irreducible, f is reducible
over F, by Lemma 3.3. Suppose that f = Lg, where L is linear and L
and g are relatively prime. If ¢ > 4, then the second part of Lemma 3.2
implies that there is a nonsingular zero of L which is not a zero of g.
The product rule then shows that this gives a nonsingular zero of f.
Thus f must factor as QC, where @ and C are relatively prime and
neither has a simple linear factor. If () has a nonsingular zero, then
after a change of variables we may suppose that Q = 1L + Q' and we
may again apply Lemma 3.2, if ¢ > 8. Thus, by Lemma 3.4 we see that
@ has order at most 2 and no F,-rational nonsingular zeros.

Suppose now that C' has an Fg-rational nonsingular zero. We may
assume that all of the Fg-rational zeros of @) are singular and thus
lie in a proper linear space. Let H be a hyperplane defined over F,
containing this linear space. If H|C, then, since C' does not have a
simple linear factor by assumption, H3|C; but this would imply that
C does not have a nonsingular zero. Thus, H does not divide C.

Since ¢ > 8, then by Lemma 3.6 there is a nonsingular F,-rational
zero of C' which is not a zero of H and therefore not a zero of Q.
This gives a nonsingular rational zero of f. Since we assume at the
outset that f has no such zeros, we conclude that C' has no nonsingular
rational zeros and thus has order at most 3. ]

Corollary 3.8. Let f be a quintic form of order at least 6 defined
over Fy which is not absolutely irreducible, and assume that g > 8.
Then f has a nonsingular F,-rational zero.
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4. Absolutely irreducible quintic forms.

Lemma 4.1. Let C be an absolutely irreducible projective plane curve
of degree 5 over Fy, and suppose that z s an Fy-rational singular point
of f. Then C has a nonsingular zero in the following cases:

(1) the multiplicity of z is 2 and q > 101;
(2) the multiplicity of z is 3 and q > 37;
(3) the multiplicity of z is 4 and ¢ > 3.

Proof. The first two cases follow, with a little work, from Proposi-
tion 2.3. The last case follows immediately from Lemma 3.1. ]

Lemma 4.2. Let f,g,h € Fylz1,...,z,] be homogeneous forms
of positive degrees a, b and c, respectively. Assume that f and g are
relatively prime and that ¢ > max{ab,a + b+ c}. Then there exists
a line L C P"~! defined over F, such that f| and g|L are relatively
prime and such that h does not vanish identically on L.

Proof. Since ¢ > a+ b+ c, there exists a point in P"1(F,) at which
none of f, g, h vanish. After possibly changing variables, we may assume
that none of f,g and h vanishes at (1,0,...,0). This also implies that
the leading x;-coeflicients of f and g have degree 0 and thus lie in F,.

Let R(f,g) denote the resultant of f and g with respect to the
variable z;. Since f and ¢ have no common factor of positive z;-
degree, R(f,g) is not the zero polynomial. By [9, p. 30, Theorem
10.9], R(f, g) is a nonzero homogeneous form of degree abin s, . .. , z,.
Since ¢ > ab, R(f,g) does not vanish identically, so we may assume,
after a linear change of variables which fixes z;, that R(f,g) does not
vanish at @ = 1, z3 = --- = z, = 0. Now choose L to be the line
zg = --- = x5, = 0. Then R(f|z,9|L) = R(f,9)(z2,0,...,0). By
arrangement, R(f|L,g|r) does not vanish on all of L and thus is not
the zero polynomial. The leading z1-coefficients of f|,, and g|z, continue
to have degree 0. Thus it follows from [9, p. 29, Theorem 10.7] that
f|r and g|r have no common nonconstant factor, and thus they remain
relatively prime. Finally, we see that h|r(1,0) # 0. O
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Corollary 4.3. Let f,g € Fy[z1,...,z,] be homogeneous forms of
degrees a and b, respectively. Assume that f does not divide g and that
q > max{ab,a+b}. Then there ezists a line L C P"~! defined over F,
such that f|r # 0 and f|rp does not divide g|r.

Proof. To verify the corollary, we apply the preceding lemma to the
forms f/gcd(f,9), g/gcd(f,9) and ged(f,g). We may assume that
a < b Let ¢ = deg(ged(f,g)). Since f does not divide g, we have
0<c<a-1 Thena—c+b—c+c=a+b—c<max{ab,a+b}. Now
the preceding lemma implies that the restrictions of f/gcd(f,g) and
g/ gcd(f, g) to some line L remain relatively prime and that ged(f, g)
does not vanish identically, and thus is not the zero polynomial. We
conclude that f|r, does not divide g|. O

Theorem 4.4. Let f € Fy[xo,... ,x,] be an absolutely irreducible
nondegenerate form of degree 5 with a nontrivial F ;-rational zero. Then
f has a nonsingular F-rational zero if ¢ > 101.

Proof. We may assume that (1,0,...,0) is a zero of f. If this zero is
nonsingular, we are finished, so assume that it is singular. Since f is
nondegenerate, (1,0, ... ,0) has multiplicity 2, 3 or 4. If the multiplicity
of this zero is 4, then the existence of a nonsingular zero of f follows
immediately from Lemma 3.1.

Since f is absolutely irreducible, it has order at least 3. If f has
order 3, then f defines an absolutely irreducible projective plane curve
and the theorem follows in this case from Lemma 4.1. Henceforth we
shall assume that f has order at least 4 and that (1,0,...,0) is a zero
of f of multiplicity 2 or 3.

Let A be the leading zo-coefficient of f. It follows from the absolute
irreducibility of f that there is another nonzero xzg-coefficient B of f
such that A does not divide B. We have deg (A) < 3, deg(B) < 5.
Thus max{deg (A)deg (B),deg (A) + deg (B)} < 15. Since ¢ > 15, it
follows from Corollary 4.3 that there is a line L such that the restriction
of A to L does not divide the restriction of B to L.

By a linear change of variables which fixes zy, we may suppose
that L is the span of (0,1,0,...,0) and (0,0,1,0,...,0). Now set
f = f(zo,21,22,0,...,0) and consider the curve defined by f. Observe
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that f(1,0,0) = 0.

If f is absolutely irreducible and ¢ > 101, then it has a nonsingular
F,-rational zero by Lemma 4.1, and thus so does f. Otherwise, since
f has an F,-rational zero, it is reducible by Lemma 3.3. From above,
we see that A(xy,z2) # 0, thus 2 < deg,,(f) < 3. Note that f must
have order at least 2, for if it had order 1, then it would be the fifth

power of a linear form and would therefore satisfy either deg ,,(f) =0

or deg ., (f) = deg (f) for all i.

Assume that f has a factor of zo-degree 0. Let g be the product of
all factors of f of zo-degree 0 and write f = gh. Easily one sees that
ged(g, h) = 1 and that g divides each xg-coefficient of f. Since A(z1,x5)
does not divide B(z1, z2), we have deg (g) < deg (A(z1,2z2)). It follows
that deg (h) > deg,,(h) = deg,,(f) > 2; that is, h has (1,0,0) as a
zero and has order at least 2 and degree at least 3. If g is linear and
q > 4, then it follows from Lemma 3.2 that f has a nonsingular F -
rational zero. Otherwise, h is a cubic, and the existence of a nontrivial
F,-rational zero implies that h has a nonsingular rational zero, by
Lemma 3.5. Proposition 3.7 then shows that f has a nonsingular
rational zero, if ¢ > 8.

Now assume that f has no factor of zo-degree 0. Since 2 <
deg ,,(f) < 3 and f is reducible over Fy, each irreducible factor of f
has xzo-degree 1 or 2, and at least one of them has x(-degree exactly 1.
As before, it is easy to argue that f is not a power of a linear form.
Thus we may write f = hk, where deg,,(h) = 1 and ged(h, k) = 1. If
either h or k is linear and ¢ > 4, then by Lemma 3.2 we see that f has a
nonsingular F,-rational zero. Otherwise h is either quadratic or cubic.
Since deg (k) = 1, (1,0,0) is a nontrivial Fg-rational zero of h. If h
is quadratic, then we see easily that (1,0,0) is a nonsingular zero of h.
If h is cubic, then Lemma 3.5 implies that h has a nonsingular zero.
It then follows from Proposition 3.7 that f has a nonsingular rational
zero, if ¢ > 8. u]

Corollary 4.5. Let f be a nondegenerate quintic form of order at
least 6 over Fy. If ¢ > 101, then f has a nonsingular F ;-rational zero.

Proof. If f is not absolutely irreducible, then the result follows from
Corollary 3.8.
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If f is absolutely irreducible, then Lemma 2.2 gives an F,-rational
zero of f. The result then follows from Theorem 4.4. o
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