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1. Introduction. There has been much activity, in recent years,
in developing theorems from the classical geometry of numbers into
the adele space of a number field. The pioneering work in this area
was done independently by McFeat [11] and Bombieri and Vaaler [3],
who produced the adelic analogue of Minkowski’s successive minima
theorem. Such machinery has primarily been used to solve various dio-
phantine problems. The adeéle space approach has been amply justified
by relatively simple inequalities, and a much clearer presentation of the
roles played by arithmetic and the geometry of Euclidean space. In fact,
arithmetic is the result of geometry at the nonarchimedean completions
of the number field. Here we wish to illustrate these methods by pro-
ducing new sharp upper bounds for the size of solutions to systems of
linear congruences over number fields. In the early 1900’s, Aubry [1]
and Thue [13] independently proved the following result which is now
often referred to as the Aubry-Thue theorem.

Theorem 1. Let a, b and m > 0 be integers. Then there exists an
integer solution to
ax+by =0 (mod m)

where 0 < max{|z|,|y|} < m!'/2.
Improvements and generalizations in various directions were given by
Vinogradov [14], De Backer [9], Ballieu [2] and Nagell [12]. In 1951

Brauer and Reynolds [4] used Dirichlet’s box principle to prove the
following extension of the Aubry-Thue theorem.

Theorem 2. Let A be an M x N matriz having rational integer
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entries and rank(A) = M < N and m > 0 an integer. Then there
ezists a (column) vector x € ZN such that

Ax=0 (modm) and 0 < |x|<mM/",

where x = (z122---xn)T and |x| = maxi<n<n{|Zn|}

Brauer and Reynolds also formulated a number field analogue in the
case of one linear form in two variables, thus generalizing Theorem 1.

In 1987 Cochrane [8] improved the Brauer-Reynolds bound on |x| by
replacing the box principle with Minkowski’s convex body theorem. In
particular, he proved

Theorem 3. Let A be an M x N matrixz having rational integer
entries and rank(A) = M < N and m > 0 an integer. Then there
exists a vector x € ZN such that

M
Ax=0 (modm) and 0<|x|< mM/Nchd(m,di)fl/N )
i1

where dy,da, ... ,dp are the invariant factors associated with A.

Using the classical geometry of numbers over Euclidean N-space,
Cochrane then produced a number field analogue that generalized the
upper bound of Theorem 2. We remark that if the number field has
class-number greater than one, then the ring of integers is not a unique
factorization domain and hence greatest common divisors and invari-
ant factors are no longer well-defined. Thus one cannot expect an
improvement of Theorem 2 in this general setting to be of the form of
Theorem 3.

Returning to the classical situation, if we let
A={xeZ": Ax € (mZ)M},
then A is easily seen to be a Z-module of rank N in RY, that is, A is

a lattice in RN. Thus it is natural to ask for N linearly independent
vectors in A that are relatively small. Here we address this question and
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prove a very general result over arbitrary number fields which we will
show to be sharp. As a corollary we provide a number field analogue
of Cochrane’s improved upper bound where we replace the product of
greatest common divisors of the invariant factors and the modulus with
a product of local heights. In Section 4 we show that in the case when
the number field is Q this upper bound is identical to that occurring
in Theorem 3.

In Section 2 we carefully define all notation, but briefly, let k£ be an
algebraic number field of degree d over Q with ring of integers Oy. Let
7 be a fractional ideal in k. It follows that Z may be factored uniquely
into prime ideals in Oy as

=[P

vtoo

where ¢, € Z with ¢, = 0 for almost all places v of k. The sequence of
exponents {e, } oo is known as the divisor of Z. It follows that there
is a natural one-to-one correspondence between divisors and fractional
ideals. For each nonarchimedean place v of k, let m, be a generator for
the unique maximal ideal in the ring of v-adic integers O,. Given an
M x N matrix A over k and fractional ideals Z and J in k having
divisors {ey}ujeo and {fu}ujee, Tespectively, we define an associated
augmented (M + N) x N matrix A, = A,(A,Z,J) over k, by

m, v A
Av = - - )

ﬂ'v_fv ]-N

where 1y denotes the N x N identity matrix. Let c; be the field
constant defined in Section 2 by (2.1) and H,(A,) the normalized local
height on the Grassmann coordinates of A, also defined in Section 2.
Finally we denote the N-fold Cartesian product of the fractional ideal
Z by (Z)V. Our main result is the following

Theorem 4. Let A be an M x N matriz over k of rank(A) = M < N.
If T and J are fractional ideals in k and A, = A,(A,Z,TJ) the
associated (M + N) x N matriz over k, for each nonarchimedean place
v, then there exist N linearly independent vectors Xi,Xs, ... ,Xn in k%
so that



878 E.B. BURGER

(i) xn € (J)N foralln=1,2,...,N.
(i) Ax, € ()™ foralln=1,2,...,N.
(iii)

N

TT T el < e T Ho(AL) -

n=1y|co vtoo

If the matrix A is over O and Z is a nonzero ideal in O, then
by setting J = Op, Theorem 4 provides the following number field
analogue of the Cochrane formulation of the Aubry-Thue theorem.

Corollary 5. Let A be an M x N matriz over Oy with rank(A) =
M < N. IfT is a nonzero ideal in Oy, then there exists a vector
x € (Or)N such that

Ax € (I)M and 0< H %] < ck H Hv(Av)l/N-

v|oo vtoo

In this case, if {e, }yjoo is the divisor associated with Z, then ¢, > 0 for
all v. This, together with our normalization of H, and the fact that A
is over O, implies that

H H,(A,) < Norm(Z)M/4

vtoo

Thus Corollary 5 immediately provides a number field analogue of
Theorem 2. Moreover, we show in Section 5 that Theorem 3 and
Corollary 5 are identical in the case of £ = Q, O = Z. We also provide
examples over Q for which there is equality in (iii) of Theorem 4.

Another application of Theorem 4 may be given in the context of the
subspace version of Siegel’s lemma. Let

N:{xekN:Ax:O}

be the nullspace of dimension N — M of A. The Bombieri and Vaaler
[3, Theorem 9] refinement of Siegel’s lemma states that there exists a
basis for N for which the product of the heights of the basis vectors is
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relatively small. In particular they show that there exist NV — M linearly
independent vectors Xi,Xz,...,Xx_ar in (Or)V so that Ax; = O for
alll=1,2,... ,N — M and

N—-M
IT nx) <l MH(4),
=1

where H(A) = ][, H,(A) is the global height on the Grassmann
coordinates of A and h(x) is the projective height of x in k% (see [7]
for a recent refinement of this formulation of Siegel’s lemma). We may
now use Theorem 4 to show the existence of M linearly independent
vectors y1,¥2,... ,yam in kN \ A so that Ay,, is in some arithmetical
sense small for each m = 1,2,... , M and with the ‘size’ of the y,,’s
under control. Thus, the y,,’s are small vectors that are close to the
subspace V. In particular we have

Corollary 6. Let A be an M x N matriz over k of rank(A) = M <
N. If T and J are fractional ideals in k and A, = A,(A,Z,J) the
associated (M + N) x N matriz over k, for each nonarchimedean place

v, then there exist M linearly independent vectors yi,yo,... ,Ym in
(TN so that Ay, € ()M, Ay #0 form=1,2,... .M and

M
T IT ¥mls < e Norm (7)™ =3/4 T Ho(A,) -

m=1y|oo vtoo

As an illustration of Corollary 6, we consider the case when k = Q,
7 = mZ, where m > 1 is an integer and J = Z. Then by the corollary,
there exists a vector y € ZV such that

Ay =0 (mod m), Ay #0

with
0<lyl< [ Hp(Ap)Y™.

p prime
As will be shown in Section 5, the previous inequality is equivalent to

M

(1.1) lyl <m ][] ged(m,d;)~"™,
=1
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where dy,ds, ... ,dps are the invariant factors associated with A. Thus,
inequality (1.1) is nontrivial whenever Hf\il ged(m, d;) > 2M.

2. Heights and measures. Let k£ be an algebraic number field
of degree d over Q with ring of integers Of. For each place v of k,
we let k, denote the completion of k£ with respect to v and for each
nonarchimedean place v we write O, = {z € k, : |z|, < 1} for the ring
of v-adic integers. We also let d, = [k, : Q,] denote the local degree.
If v is an infinite place we write || ||, for the usual Euclidean absolute
value on k,. If v is a finite place then || ||, denotes the unique absolute
value on k, which extends the usual p-adic absolute value on Q,, where
v | p. We normalize a second absolute value | |, at each place v by
setting | |,= || ||i”/ ¢ It follows that these absolute values satisfy the
product formula: [[, |a|, =1 for all o € k, o # 0. We define the field
constant ci by

1) 0 = ((%)Smw/?)l/d,

where s is the number of complex places of k and Ay, is the discriminant
of k.

Let 7 be a fractional ideal in k, that is, Z is a nonzero finitely
generated Og-submodule of k. We recall that there is a natural one-
to-one correspondence between fractional ideals Z and divisors {e, }yjoo

given by
T=][Ps,
vtoo
where the P,’s are prime ideals in Op. We define the norm of Z,
Norm(Z), by
Norm(Z) = [ [lmo|l5 ¢,

vtoo

where 7, is a generator for the unique maximal ideal in O,. For our
purposes, it will be convenient to view Z ‘geometrically’ as follows.
Given 7 and its associated divisor {e, } o0, We have

(2.2) IT={zeck:|z|, <|mly forall vtoo} .
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Let
T1

€2

TN
be a column vector in (k,)". We extend the absolute values || ||, and
| |, to (k)™ by defining

Il = max {llan .}

dy/d
v

and |x|, = ||x|| for all v.

Let X = (Zmn) be an M x N matrix over k,. If J C{1,2,... ,M}is
a subset of cardinality |J| = L, we write

7 X = (Tmn), medJ, n=1,2,...,N,

for the corresponding L x N submatrix. Similarly, if I C {1,2,... ,N}
is a subset of cardinality |I| = L, we write

X1 = (Tmn), m=12,..., M, nel,

for the corresponding M x L submatrix. Now suppose the rank(X) =
M < N. We define the local height H,(X) on the Grassmann
coordinates of X as follows:

(i) If v | oo then

dy/2d
HU(X):< > ||detX,||3> )

|I|=M

(ii) If vt oo then

H,(X) =«

det X7|,}-
ma {|det X1}

The local nonarchimedean heights are of fundamental importance in
the current work.

We select a Haar measure (3, on the additive group of k, by the
following normalization:
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(i) If k, = R then 8, is the usual Lebesgue measure on R.

(ii) If k, = C then f, is Lebesgue measure on the complex plane
multiplied by 2.

(iii) If v { co we require that G, (0,) = |DU|Z/2, where D, is the local
different of k at v.

We write ka for the adeéle ring of k£ and (8 for the normalized Haar
measure on ka which is induced by the product measure [], 5,. If
(ka) is the N-fold product of adele spaces we write V' for the product
Haar measure 3V on (ka)™. We remark that in the geometry of
numbers over the adeles, the Haar measure V plays the role of volume
in the classical theory.

We may embed kY < (ka)" via the usual diagonal embedding. It
follows that k” is discrete and the quotient (ka )" /& is compact with
induced Haar measure

V ((ka)N/EN) =1

(see, for example [15]). The vector space k% plays the role of the
lattice. An overview of recent results in the geometry of numbers over
the adéles may be found in [5] or [6].

For each place v of k let R, C (k,)" be a nonempty set. If v | co we
assume that R, is open, convex and symmetric. If v { co we assume
that R, is a k,-lattice, that is, a compact open O,-module. We further
assume that for almost all finite v, R, = (0,)Y. We define the set

R =[] R

From our previous assumptions it is clear that R C (ka)Y. We call a
subset R admissible if it has the form described above. For o > 0 we
define the dilation oR by

oR =[] (eR,) x [ Ro -

v|oo vtoo

We now recall the definition of the successive minima 0 < A} < Ay <
-o- < Ay < o0 of R. We define

Ap = inf {o > 0:0RNEYN contains n linearly independent vectors} .
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The adelic analogue of Minkowski’s successive minima theorem (see [3,
Theorem 3|) states that

(2.3) (A2 An)V(R) < 27V,

3. Proof of Theorem 4. For each place v of £ we define the set
R, C (k,)" as follows. If v | co then

R, = {x e (k)" : |Ix]o < 1} .

If v 0o then
R, ={x¢€ (kv)N s Aux|ly < 1},

where A, is the (M + N) x N augmented matrix

m, v A
Apy=| - - —

ﬂ-v—fu 1y

We note that for almost all v, R, = (O,)~. We define R C (ka)" be
the admissible set R = [[, R,.

For v | 0o, we easily have

2N if v is real,

5 () - {

(2m)N if v is complex.

For v { 00, R, is a nonarchimedean cube slice and thus from equations
(4.8) and (4.9) of [3] we have

BY(R,) = Hy(Ay) 4BY ((0,)N) .

Since

112" = A,

vtoo
we conclude that

V(R) = 2% (m/2)*N ||~ [T Ho(Au) ™

vtoo
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Hence by (2.1) and inequality (2.3),

(31) )\1)\2"')\1\] S C]évHHv(.Av).
vtoo
Let Xi,Xs,... ,Xn be linearly independent vectors in k" associated

with the successive minima of R. That is, for A > A,

{X17X27'-' ,Xn} - )‘R7

forn =1,2,... ,N. Given that dilation of admissible sets only occurs
at the archimedean places, we have that for all n =1,2,... , N,
(3.2) | Avxp|lo <1 for all places v { 0.

If we consider the lower N x N portion of the augmented matrix A4,
we conclude that ||x, ||, < ||7,||lr for all v { co. By (2.2), we have that
xn, € (J)N for all n = 1,2,..., N which establishes part (i) of the
theorem. In view of the top IV x IV portion of the augmented matrix
Ay, (3.2) implies that

[A%nlo < [l

for all v { co. Thus, Ax,, € (Z)M for all n = 1,2,..., N, and hence
part (ii) holds.

Finally, for v | oo, we have ||x,||, < A, for n =1,2,... ,N. Thus for
each n,

T lalo = TT llcalié/
v|oo

v|oo

< T

v|oo

> dy/d

vjoo ¥
= )\n

= .

The inequality of (iii) now follows from (3.1), which completes the
proof. |
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4. Proof of Corollary 6. If we let x1,X2,...,Xny be as in
Theorem 4, then it follows from the previous proof that, for each n,

H |Xp |0 = H |%5|v H |%n]o < An Norm(7) 14,

v|oco vtoo

However, by the product formula, as x,, is not the zero vector, we have
1 <TI, Ixn|v. This yields

(4.1) Norm(J)Y?4 < \,,.

Inequalities (3.1) and (4.1) imply that

AN MAN M2 AN < NOTm(j)(MiN)/d H H,(A,).

vtoo

Plainly at most N — M of the vectors x1,Xs,... ,Xy are contained in
the null space of A. As the successive minima are nondecreasing, the
corollary now follows by selecting any M vectors from xi,Xs,... ,Xn
which are not in the null space of A. O

5. Remarks in the rational number field case. We begin
by demonstrating that in the case £ = Q, Corollary 5 is identical to
Theorem 3. Suppose that A is an M x N matrix over Z of full rank M
and Z = mZ, where m > 0 is an integer with prime factorization
m = p{'p3*---pr”, og > 0 for all I. Corollary 5 asserts the existence
of a vector x € Z" such that Ax =0 (mod m) and

(5.1) 0<x|< ] HolAn)"".

p prime
Plainly H,(Ap) = 1 for all p{ m and therefore we need only investigate
H,(A,) for p | m, that is, p € {p1,... ,pr}.

Let di,do,... ,dpr be the invariant factors associated with A. It
follows that for each r, 1 < r < M, (see, for example, [10, Chapter VI,

Section 3])
_ max|y|—r_1 {Hp(sA4)}
= 11 { max|r— {Hp(14)} }

p prime
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Therefore,

_ maX\J|=r—1{Hp(JA)} o
|dr|”_< max|y = {Hy,(1A4)} > ’

or alternatively,

62 g GA) =, max (G))

=r-1

a1

Suppose now that p* € {pi*,p5?,...,p7"} is an arbitrary fixed
element. Then
p~ A
A= ———

1y

Thus by successive applications of the reduction (5.2) we have

Hp(Ap) = max {p“r{glﬁg{Hp(zA)}}}

0<r<M

max {7laly{ e (1,40} |}

0<r<M

max {par|drdr_1|p{ lJE%XZ{Hp(JA)}}}

0<r<M

= Ognr%%{paqdrdrfl T dl‘P}'

For each r = 1,2,... , M, we let 8, denote the nonnegative integer
so that |d.|, = p~P~. It follows from well-known properties of the
invariant factors that 0 < 31 < B3 < --- < By. Therefore the above
computation for Hy(A,) may be expressed as

(5.3) Hy(Ap) = max {p*" 27},

0<r<M
Next let T be the largest index so that 87 < . Hence (5.3) reveals
T
HP(‘AP) = p“T*Zizl Bi
_ paMfzi\il max{a,B;}

= paM{ ﬁgcd(p"‘, di)}l-

i=1
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Given the factorization of m and the fact that H,(A,) = 1 for all
primes p { m, the previous identity implies that

M ~1/N
11 Hp<Ap>1/N=mM/N{chd<m,di>} .

p prime i=1

Therefore the upper bound occurring in (5.1) is identical to the upper
bound of Theorem 3.

We now produce examples to illustrate that the upper bound of
Theorem 4 is sharp. Let g1 < g2 be two primes, Z = (¢?q2)Z, J = Z

and A be given by
Gz 01
A= .
< 0 q1g2 1>

Thus by Theorem 4 there exist linearly independent vectors xi, X2, X3
in Z3 such that

(5.4) Ax, =0 (mod ¢lg2),
and
3
(5.5) H Ixn| < H Hp(Ap).
n=1 p prime

It is easily seen that Hy, (Ay,) = ¢3, Hy, (Ag,) = g2 and Hy(A,) = 1 for
all other primes p. Therefore the upper bound in (5.5) is simply ¢3gs.
One may verify that the smallest three linearly independent vectors in
Z? that satisfy (5.4) are

q1 0 -1
X1 = 0 ) X2 = q1 ) X3 = -1 )
0 0 0192

and hence |x1||x2||x3| = ¢3g2. Thus there is equality in (5.5).

Acknowledgments. The author wishes to thank Professors W.M.
Schmidt and R.I. Mizner for their helpful comments regarding this
work.



888 E.B. BURGER

REFERENCES

1. L. Aubry, Un théoréme d’arithmétique, Mathesis 3 (1913).

2. R. Ballieu, sur des congruences arithmétiques, Bulletin de la Classe des
Sciences de 1’Académie Royale de Belgique 34 (1948), 39-45.

3. E. Bombieri and J. Vaaler, On Siegel’s lemma, Invent. Math. 73 (1983), 11-32.

4. A. Brauer and R.L. Reynolds, On a theorem of Aubry-Thue, Canad. J. Math.
3 (1951), 367-374.

5. E.B. Burger, Homogeneous diophantine approzimation in S-integers, Pacific
J. Math. 152 (1992), 211-253.

6. , Badly approzimable systems and inhomogeneous approzimation over
number fields, in Number theory with an emphasis on the Markoff spectrum (A.
Pollington and W. Moran, eds.), Marcel Dekker, New York, 1993.

7. E.B. Burger and J.D. Vaaler, On the decomposition of vectors over number
fields, J. Reine Angew. Math. 435 (1993), 197-219.

8. T. Cochrane, Small solutions of congruences over algebraic number fields,
Illinois J. Math. 31 (1987), 618—625.

9. S.M. De Backer, Solutions modérées d’un systéme de congruences du premier
degré pour un module premier p, Bulletin de la Classe des Sciences de I’Académie
Royale de Belgique 34 (1948), 46-51.

10. F.R. Gantmacher, The theory of matrices, Volume One, Chelsea Publishing
Company, New York, 1960.

11. R.B. McFeat, Geometry of numbers in adéle spaces, Dissertationes Math.
(Rozprawy Mat.) 88 (1971), 1-49.

12. T. Nagell, Sur un théoréme d’Azel Thue, Ark. Math. 1 (1951), 489-491.

13. A. Thue, Et bevis for at lignigen A3+ B® = C® er remulig i hele fra nul forsk
jellige tal A, B og C, Archiv. for Math. og Naturvid 34 (1917),

14. J.M. Vinogradov, On a general theorem concerning the distribution of the
residues and non-residues of powers, Trans. Amer. Math. Soc. 29 (1927), 209-217.

15. A. Weil, Basic number theory, Springer, New York, 1974.

DEPARTMENT OF MATHEMATICS, WILLIAMS COLLEGE, WILLIAMSTOWN, MAS-
SACHUSETTS 01267
E-mail address: Edward.B.Burger@williams.edu



