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GEOMETRY OF BANACH SPACES
WITH (o, ¢)-PROPERTY
OR (3,¢)-PROPERTY

J.P. MORENO

ABSTRACT. Many authors investigated Banach spaces
with property « or property 3. They showed that a space with
property o (property ﬁ) shares many geometrical properties
of l1(lsc). We shall investigate the structure of the unit
sphere of Banach spaces with property « or 3 in terms of
points of local uniform rotundity, Fréchet differentiability and
vertex points. As a consequence of this, we obtain that every
Banach space can be renormed in such a way that there is no
locally uniformly rotund point but the set of points of Fréchet
differentiability for the norm is an open and norm dense subset
of the space.

1. Introduction. Properties A and B were defined by J. Linden-
strauss [7] in the study of norm attaining operators. The Banach space
X has property A if, for every Banach space Y, the norm attaining op-
erators are dense in L(X,Y) and the Banach space Y has property B
if, for every Banach space X, the norm attaining operators are dense in
L(X,Y). He gave two geometric criteria for property A and B named
property a and § [7, 13]. J. Partington [12] proved that every Banach
space can be (3 + ¢)-equivalently renormed to have property 8 but,
if the continuum hypothesis is assumed, a nonseparable Banach space
is constructed in [11] which cannot be equivalently renormed to have
property a. As a consequence, we observe that not every dual Banach
space admits an equivalent dual norm with property 8. Properties a
and [ generalize, in some sense, the geometric situation of [y and .,
as is pointed out in [3, 5, 6 and 13].

A vertex point of a closed bounded convex body C'is a point which
is strongly exposed by an open set of functionals. A face is the
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intersection of a hyperplane with the boundary of C, in the case that
this intersection has nonempty interior in the relative topology to the
hyperplane. The duality between both concepts is a good tool to study
some geometrical properties shared by l; and [, with spaces having
property « and property 5. One of these properties is that the unit ball
contains no locally uniformly rotund point. From this fact, we deduce
that the set of norms failing property « or property 3 is residual. Also,
the set of points of Fréchet differentiability for the norm on a Banach
space with property 3 is open and dense. This result generalizes the
situation of .

A particular class of vertex points are the strongly vertex points. Some
properties of these points are studied. For example, it is not difficult to
see that strongly vertex points are isolated in the set of extreme points.
Conversely, if the space has the Krein-Milman property, a denting point
isolated in the set of extreme points is strongly vertex. Using this
result, we prove that every extreme point of the unit ball of Lorentz
sequence space d(w, 1) is strongly vertex, and the dual norm is Fréchet
differentiable in an open dense set.

Finally, we mention that a Banach space X having a biorthogonal
system with cardinality equal to dens X can be (1 4 ¢)-equivalently
renormed to have property « [6]. It is proved in [4] that even [*°(T")
admits a fundamental biorthogonal system with the cardinality of I’
so we can say that, in a geometrical sense, [*°(T') can be renormed
close to I1(T'). Throughout this paper, we use the notation («,¢)-
property or (53, €)-property instead of property « or property /3 in order
to make a reference to the parameter € appearing in the definition of
both properties.

2. Faces and vertex points of convex bodies. We only consider
Banach spaces over the reals. Given a Banach space X, we denote by
B(X) the closed unit ball, by S(X) the unit sphere and by X™* the dual
space of X.

Definition 2.1. Given f € X*\{0} and 0 < p < 1 the set

K(f,p) ={x € X: f(x) = pllfI l|=]|}

is called a p-cone. It is not difficult to see that K(f,p) is a closed
convex set. Let C' be a closed, bounded convex set and x € C. The
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point z is said to be a vertez point of C' if there exists a p-cone K (f, p)
so that

We also say that x is a vertex point of C' with respect to f.

Example 2.2. (i) Every point of the unit vector basis {ep}nen of
l; is a vertex point of the unit ball B(l;).

(ii) Let X be an arbitrary Banach space,  a point of its unit sphere
and A > 1. If we consider the set

Ba(X) = conv ({£Az} U B(X)),

then the point Az is a vertex point of By (X).

The example (ii) motivates the following definition. Let C be a closed,
bounded convex set and « € C'. The point z is said to be a strongly
vertex point of C' if there exists a closed, bounded convex subset D C C
with z ¢ D satisfying

C = conv ({z} U D).
Let f € X*\{0} attaining its maximum in C. The set

Cj={aeC: f(o) = sup f)

is called a face (with respect to f) whenever it has nonempty interior
in the relative topology of {z € X : f(z) = sups f}. We denote this
interior by int (C'f) and the boundary of C' by 0C. The point z € C is
said to be a strongly exposed point provided there is f € X*\{0} with
f(z) = sup¢ f satisfying that lim,, ||z, — z|| = O whenever {z,} C C
and lim,, f(z,) = f(z). We also say that f strongly exposes z in C.

It is clear that every strongly vertex point is vertex and that every
vertex is a strongly exposed point. The next propositions actually
prove more, namely, the duality between vertex and faces. A vertex of
a closed, bounded convex body C' induces a face in its polar set C°,
and a face in C is induced by a vertex in C°.
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Lemma 2.3. Given f € X* and 0 < p < 1, define the set
K(f,p)={g€ X*: there exists 0 < v < 1 with K(f,p) C K(g,7)}-

Then:
(i) K(f,p) is an open set.
(ii) lim, o diam (K(f,p) N S(X*)) = 0.
(iii) g € K(f,p) if and only if —g strongly exposes 0 € K(f, p).

Proof. (i) Let g € K(f,p) and 0 < v < 1 be such that K(f,p) C
K(g,v). We are going to prove that, for every 0 < n < 7, we have
K(g,7) € K(h,n) whenever [|g — hl| < (1/2)[|g]l(v —n). Indeed, if
y € K(g,7), then

RPN G/ Nlyll) = g/ llgll (u/liyll)
+ (0/1IBl =g/ llgl) (w/llwll)
>y = [IRllgll = lIpllgll (1Rl lgl)
>y —2|h—gl g™
1.

(ii) Assume that ||f]| = 1. To prove (ii) it is enough to show that
limy, ||gn — f|l = 0 whenever

gn € K(f,n™) N S(X*).

For every n € N, there exists v, € (0,1) such that K(f,n™') C
K(gn,vn). First we see

(2.1) Kerg, C {zr € X,|f(z)| < n '|z|}, n € N.

Let y € Kerg, so that |f(y)| > n~!||y]. This implies that ay €
K(f,n '), where o = sign f(y). Hence, ay € K(gn,Vn), which is a
contradiction.

Since K (f,n~!) is an open set, according to the Bishop-Phelps
theorem (cf. [1, p. 13]) we may assume that g, attains its norm at
some point y,, € S(X), i.e., gn(yn) = 1. It is easy to see that

(2.2) B(X) C{z+4+Ayn: 2z € Kergy, ||2]] <2,|A] <1}, n € N.
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Now choose z,, € S(X) such that
(2.3) f(zn) >1—-n"t,

For n > 2 we have f(z,) > 1—n~"' > n~!. Then z, € K(f,n™') C
K (gn,vn) and, hence, g, (z,) > v,. Using (2.2) we can find z,, € Ker g,
with &, = 2z, + Apyn, ||2|| <2, and |A,| < 1. Therefore,

gn(xn) =X =7 >0,

that is, A, > 0, n € N. Also, by (2.1) it is clear that |f(2,)| < 2n7!,
n € N. Thus, it follows from (2.3) that

(2.4) 1—n" < f(zn+ Angn) <207+ A f(yn)
and, as 0 < A\, <1, then

(2.5) F(yn) = Anf(yn) = 1—3n7"

Let z € B(X). By (2) we can find z € Kerg,, ||z < 2, so that
z = z+ Ayn, |A| < 1. Using (1), (4) and (5), we obtain the following

estimate:
[(f —gn)z| = |(f — gn) (2 + Ayn)|
= [f(z) + A(f(yn) = 1)
< [f(R)]+ AT = £(yn))
<on '+ 3nt=s5n""t
So ||f — gnll < 5n~! and (ii) is proved.

(iii) If g strongly exposes 0 in K(f,p), there exists v > 0 such
that g(z/||z||) < —~ for every z € K(f,p)\{0} and, equivalently,
—g(z) > «||z||. This implies that

K(f,p) € K(~g,7lgI™")

so —g € K(f,p). Assume now that —g € f((f,p), and let v € (0,1)
so that K(f,p) € K(—g,7). If g does not strongly expose 0 in
K(f,p), we can find a sequence {x,}5° C K(f,p) with ||z,|| > >0
and lim, g(z,) = 0. This implies that limg(z,/||z,|) = 0, which
contradicts the fact that z,/||z,| € K(—g,7). o
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Lemma 2.4. Let f,ge X* and0 < p < 1.

(i) If there is a v € R so that g(z) < v for every x € K(f,p), then
g(z) <0,z e K(f,p).

(i) If g(z) < 0 for every x € K(f,p) and 0 < p < 0 < 1, then g
strongly exposes 0 in K(f, o).

Proof. We shall only prove (ii). Suppose that g does not strongly
expose 0 in K(f,0). Then there exists a sequence {z,}{° C K(f,0)
such that lim g(z,,) = 0 and ||z, || > § > 0. Set y,, = =,,/||x,,||. We have
yn € K(f,p), img(y,) = 0 and ||y,|| = 1. Without loss of generality,
we may assume that ||f]| = |lg|| = 1. Let z € S(X), g(z) > 0, and
consider a = (o — p)/2. Since

fyn + az) = f(ya) + af(z) > ollynll — allz||
=o0—a=p+a>pl|y, +az

we get y, + ax € K(f,p). Then g(y, + az) < 0, a contradiction with
the fact that lim g(y, + az) = ag(x) > 0. o

Proposition 2.5. Let C' be a closed, bounded convex body with
0 € int (C). Consider a functional f € C, the polar of C, and suppose
that the set Cy = {xz € C': f(x) =1} is a face of C. Then f is a vertex
point of C°.

Proof. First of all, we see that € int (Cy) implies that x strongly
exposes f in CU. Indeed, assume that there exists a sequence {f,}° C
CY lim f,(z) = 1 and ||f, — f|| > € > 0. We claim that, for every
n verifying |(f, — f)z| < (¢/2)||f]|~" there is y, € Ker f N S(X),
fu(yn) = €/(2+2[|f]])- Since

B(z) C {z+ Az,z € Ker f, [[2]| < 1+ [IF]l, Al < (I}

and ||f — full > €, there exist 2 € Ker f, ||z]| < 1+ [|f|| and A € R,
Al < ||f]| such that

|fn(z) + A(fn - f)I‘ > €

hence

[fa(2)] > & = IfI1(fn = )] > /2,
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so setting y, = az/||z]|, @ = sign (fn(z)), we have y,, € Ker f,, N S(X)
and fn(yn) > €/(2 + 2||f]]), which proves the claim. Now, take 0 < ¢
verifying {y € X : f(y) = 1, ||z — y|| <0} C Cy and ny € N such that

oe

fno(m) > 1-— T4||f||

Then, z = 2 + dy,, € C and

oe oe

Fra(2) = fg (2 4 0yno) 21 = e + 5o

a contradiction. Thus, = strongly exposes f in C°.

By Lemma 2.3 (ii), we can choose 0 < p < 1 so small that y € int (Cy)
whenever y € K (z, p)NdC. Suppose that C°\ f — K (z,0) # & for some
0<o<p,andlet g € C°\f—K(z,0). Theset f—K(z,0) is w*-closed
so, by the Hahn-Banach theorem, there exist z € X and 7 > 0 such
that

g(z) > 7> h(z)

for every h € f — K(z,0). Lemma 2.4 (i) shows that z attains its
maximum over the set f — K(x,0) at f. Hence, by Lemma 2.4 (ii),
z strongly exposes f in f — K(z,p), and Lemma 2.3 (iii) implies that
z € K(z,p). To finish the proof, it is enough to consider

n =sup{p(z): p € C°} < 0

and w = z/n. From the bipolar theorem, it follows that w € 9C so
w € int (Cy), f(w) =1 and it is not possible that g(w) > f(w) because
geC’ o

Corollary 2.6. Let C be a closed, bounded convezr set with 0 €
int (C). Let x € C and suppose that the set {f € C°: f(z) =1} is a
face of C°. Then x is a vertex point of C°° C X** and hence of C.

Proposition 2.7. Let x be a vertex point of a closed, bounded convex

set C with 0 € int (C'). Then
(i) The set C2 = {f € C°: f(z) = 1} is a face of C°.
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(i) The point x is a vertex of C with respect to every g € int (CY).

Proof. Lemma 2.3 (i) shows that K(f, p) is an open set. To prove (i)
it is enough to show that

K(f,p)nac® c C°.

Let g € K(f,p) N OC°. There exists v € (0,1) such that K(f,p) C
K(g,7). Therefore, C C z — K(g,7) so it is clear that g exposes z in
z — K(g,v) and, hence, in C. Thus

g(x) =sup{g(y) :y € C} =1

and g € CY. Part (ii) follows directly from Proposition 2.5. u]

In other words, we have proved that, given a closed, bounded convex
set C with 0 € int (C) and a vertex point z of C, z is vertex with
respect to an open set of functionals in X* which also strongly expose
x at C. The closure of this set consists of functionals attaining their
maximum over C in x.

Definition 2.8. A point z of a closed, bounded convex body C' is
said to be locally uniformly rotund (lur) if lim, ||z, — z|| = 0 whenever
there exists f,,, f € X* such that

(1)
sup{fn(c) : c€ C} <sup{f(c) : c€ C} = f(x)

(i)
lirllnfn((xn +x)/2) = f(x), z, € C.

If C is the unit ball, the summation of (i) and (ii) is equivalent to

(iii)
lim|/(z, +2)/2| =1, |lzl=1,  [lz.] <1

Also we say that z is a denting point of C' if, for every v > 0 there exists
f € X*and 0 < § < f(x) such that diam{y € C : f(y) > 6} < v.
We denote by lur C' the set of locally uniformly rotund points of C', by



GEOMETRY OF BANACH SPACES 249

ext C the set of extreme points, and so on. A norm is said to be locally
uniformally rotund (LUR) if every point of its unit ball is lur.

Observation 2.9. It is clear that not every vertex point is strongly
vertex. The main reason to distinguish both concepts is because
strongly vertex points are not lur points.

3. Banach spaces with vertex or faces in its unit sphere.

Definition 3.1. The Banach space X has («,¢)-property if there
exists a system {z;, 2} }ier C X x X* and 0 < e < 1 such that

(3.1) zi (@) = [lzdl| = llz7 | =1, lzi(z;)| <&, 177
(3.2) B(X) =conv ({£z; }ier)-
The Banach space X has (8,¢)-property if there exists a system
{zi, 2} }ier € X x X* and 0 < e < 1 satisfying (3.1) and
(33 lell = sup o (&), we X

In the following proposition, we examine the geometry of Banach
spaces with (8, €)-property by using an idea of [13].

Proposition 3.2. Let X be a Banach space with (8, €)-property.
Then the set of faces of the unit ball with diameter greater than or
equal to 1 — € is dense in the unit sphere.

Proof. Let {z;, z} };c1 be a system verifying (3.1) and (3.3). For every
1 € I, define
F,={z € B(X):z}(z) =1}
If we denote by int (F;) the interior of F; in the relative topology to
the set {z € X : z}(z) = 1}, then x; € int F;. Indeed, if ||z|| = 1 and
|z — z;|| < (1 —¢)/2 we have
i (x) = @i (@) + z(z — i)
>1-(1-¢)/2=(1+¢)/2
|z} (z)| = |z} (zi + = — ;)| < e+ (1 —¢€)/2
=(+e)/2<1,  j#4
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and this implies, by (3.3), that z}(z) = 1, so z € F;. Therefore,
F; is a face with diam (F;) > 1 — e (F; contains the relative ball
(z; +27'(1—e)B(X))N{z € X : z}(z) = 1}).

We only need to prove that the unit sphere S(X) is the closure of
UierF;. Given € S(X) and 0 < § < 1, there exists ¢ € I such that
|zf(x)] > 1+ de — 6. Setting z = x + (signz}(z))dx;, then

|zf(2)] >14+0e—0+5=1+0d¢
zj(2) < 1+de,  i#j,

so z/||z|| € £F; and ||z — z/||z]|]| < 20. o

A first consequence of the previous proposition is that, if we assume
the continuum hypothesis, the question of whether every dual Banach
space admits an equivalent dual norm with property § has a negative
answer. Indeed, a norm on X* having a face in its unit sphere with
respect to a functional of X**\ X is not dual. Then, if a dual norm
has property 8 with respect to the system {z},z}*};cr C X* x X**,
necessarily z}* € X, ¢ € I, and thus X has property a. As it was
observed in [5], the Kunen space cannot be equvalently renormed with
property a.

Proposition 3.3. Let X be a Banach space with (8,e)-property.
Then lur B(X) = @ and the set of points of Fréchet differentiability for
the norm is open and norm dense.

Proof. Let {z;,z}}icr C X x X* be a system verifying (3.1), (3.3) and
F;, as in the preceding proposition. Clearly, if z € int (+F;), then = ¢
lur B(X). In the general case, given z € S(X) and 0 < § < (1 —¢)/2,
there exists i € I and y € £F; such that || —y|| < §. By the preceding
proposition we can find z € Fj, |ly — 2| > (1 — ¢)/2. Then

e =zl = lly =zl —llz -yl = (1—-€)/4>0
and, also,

[+ 2l = lly + 2l = [le =yl = 2 = (1 —¢)/4
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which proves the first part of the proposition. For the second part,
the norm is Fréchet differentiable at every point of int (F;), ¢ € I, and
the set U;cr(£int F;) has been proved to be dense in the unit sphere.
On the other hand, if z € S(X)\ Ujes (Lint F;), then either there is
a sequence {z:} C {«}}ics of pairwise different functionals satisfying
lim,, 2% (z) = 1 or there exist 4,5 € I, i # j, with z](z) = zj(z) = 1.
Using the Smulyan test, c.f., e.g., [1, p. 3], we obtain that, in both
cases, x is not a point of Fréchet fifferentiability for the norm. ]

Corollary 3.4. Every Banach space admits a (3+¢)-equivalent norm
Fréchet differentiable in an open dense set with no locally uniformly
rotund point.

Proof. The proof follows directly from Corollary 3.2, and the crucial
result of Partington [12] stated in the introduction. o

We mention now that every Banach space admitting an LUR norm
has the following property: every equivalent norm can be uniformly
approximated by a norm Fréchet differentiable in an open dense set
[9]. See also [10] for this subject. However, if X is a non-Asplund
space, then X admits no LUR norm Fréchet differentiable in an open
set. Moreover, the existence of a norm Fréchet differentiable in an
open set which contains a lur point implies the existence of a Fréchet
differentiable norm in the whole space except at the origin. The proof
of this fact is based on the following lemma.

Lemma 3.5. Let X be a Banach space and || - || an equivalent norm
Fréchet differentiable in an open set U C S(X). Suppose that there
exists f € S(X*) and 0 < § < 1 such that {x € S(X): f(x) =6} CU.
Then X admits a Fréchet differentiable norm.

Proof. Consider the set V = {z € B(X) : f(z) = ¢} and a point
zo € V, with ||z¢]| < 1. Let H = Ker f and define
W={y—zy:yeV}CH.

It is clear that W is a closed convex and bounded neighborhood of 0
in the relative topology of H. Let p be the Minkowski functional on
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H relative to the set W. The implicit function theorem used in the
equation
lzo +p7 (AR =1, heH

asserts that p is Fréchet differentiable, so g(h) = p(h) + p(—h) is an
equivalent Fréchet differentiable norm on H. Since X is isomorphic to
H @ R, we can define a new equivalent norm

((h,7)| = (*(h) +7%)*/2,  heH, reR

which is Fréchet differentiable. O

Notice that in separable Asplund spaces there exist norms which
are locally uniformly rotund and Fréchet differentiable. Also, there
exist some non Asplund spaces admitting a rotund norm Fréchet
differentiable in an open dense set. In the next proposition we turn back
to examine the geometrical structure of Banach spaces with property
Q.

Proposition 3.6. Let X be a Banach space with («,e)-property.
Then its unit ball B(X) is the closed, convex hull of its strongly vertex
points and

(a) dent B(X) = strver B(X)
(b) lur B(X) =0

Proof. If the Banach space X has («,¢)-property, then there exists
a system {z;,z}}ier C X x X* satisfying (3.1) and (3.2). Let z €
S(X)\{£z;}icr- Suppose that, for every n € N, we can find f, €
S(X*) and 6, € (0,1) such that diam{y € B(X) : f(y) > 6.} < 1/n
and f,(z) > 0,. From property (3.2) we can choose, for every n € N,
in, € I so that z;, € {y € B(X) : f(y) > 0,}. We may assume that
x;, # x;,,, n #m (taking a suitable subsequence) so {z;_} is a Cauchy
sequence, which is a contradiction and (a) is proved.

To prove (b), every lur point is a denting point; thus, we only need
to check the set {£x;};cs. For every ig € I, we can write

(34) B(X) = conv({a,}) = conv ({;, } Ueonw ({£: }ier (i)
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By property (3.1), dist (zi,,conv ({£; }icn\{ip})) = 1 — € 50 x4, is a
strongly vertex point of B(X) and, therefore, z;, is the extreme point
of many segments contained in S(X). Thus z;, ¢ lur B(X) and (b) is
proved. ]

Having in mind the fact that the Banach space X has («, ¢)-property
with respect to the system {z;,zf}ic; C X x X* if and only if
its dual space X* has (B,e)-property with respect to the system
{zf,z;}ier C X* x X C X* x X*, it is clear that a Banach space
with (a, €)-property verifies

lur B(X) =lur B(X*) = lur B(X*) =@

On the other hand, if X is a Banach space having (3, €)-property with
respect to the system {z;,z}};cs, then X* does not necessarily have
(o, €)-property with respect to {z}, x;};c;. However, we can insure, for
every i € I, that =} is a vertex point of B(X*) with respect to z;. This
fact is an immediate consequence of Proposition 3.2.

Given a Banach space X, let (N(X),p) be the metric space of all
equivalent norms with the uniform metric. The space (N(X),p) is a
complete metric space so it is also a Baire space.

Corollary 3.7. The set of norms failing to have (a,£)-property or
(B, €)-property for every ¢ € [0,1) is residual in (N(X), p).

Proof. From the preceding results, it is enough to prove that the set
{I-]1 € (N(X),p) : lur B.; # @} is residual in (N(X),p). In [1] it is
proved that the set of lur norms in (N (X), p) is either empty or residual.
The same proof given in [1] applies to show that the set of norms locally
uniformly rotund in a fixed point € X is also either empty or residual,
but actually this set is never empty as the following simple geometrical
construction proves. Let g € X, f € X*, f(zo) =1 = ||z]| = ||f]|]-
Define, by induction,

By = B(X)\{z € B(X) : [f(z)| > 0}
By = conv ({+z¢} U By)
By = Bo\{z € By : |f(x)| > 1/2}
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The Minkowski gauge relative to the set B is a norm |-| € (N(X), p)
such that (2/3)zo € lur B),. Observe also that (2/3)zo is an isolated
point in the set lur B|,. u]

Let C be a closed, convex subset of a Banach space. Then C'is said to
have the Krein-Milman property, KMP, if each closed bounded convex
subset K of C satisfies K = conv (ext K) where ext K is the set of
extreme points of K. Equivalently, C has the KMP if each closed,
bounded convex subset of C' has an extreme point. The following
proposition can be used to recognize strongly vertex points in some
special sets.

Proposition 3.8. Let C be a closed, bounded convex set with
the KMP. Then x € C is a strongly vertex point of C' if and only
if © is denting and there exists a neighborhood V of x such that
VNextC = {x}.

Proof. If © € strver C, then there exists a closed, convex subset
D e C, z ¢ C, such that C' = conv ({z} U D). By using a separation
argument, we can find f € X* and o > 0 verifying

f(z) > o >sup{f(y):y € D}

so we can take V ={ce C: f(c) > o}.

On the other hand, suppose that z € C' is a denting point with a
neighborhood z € V so that ext CNV = {z}. There exists f € X* and
0<o< f(zr)with S={ceC: f(c) >0} CV. We claim that C =
conv ({z} U (C\S))}. Indeed, assume that y € C\conv ({z} U (C\S)).
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The Bishop-Phelps theorem insures the existence of a functional g € X*
attaining its supremum over C', and a positive number ( satisfying

9(y) > ¢ > {g(2) : z € conv ({z} U (C\S))}.

Let ¥ = sup{g(c) : ¢ € C}. By using the KMP, the set {c € C': g(c) =
¥} contains an extreme point, a contradiction. a

Given a nonincreasing sequence of positive numbers w = {w,}22,,
the Lorentz sequence space d(w, 1) consists of all sequences of scalars
z = (a1,as,...) for which

oo

foll = sup (3 laxaylen ) < oc

n=1

where the supremum is taken over the set of all permutations 7 of the
positive integers.

Corollary 3.9. Consider the space d(w,1). Then:

(i) Every extreme point of the unit ball By, 1) is a strongly vertex
point and
Bg(w,1y) = conv (strver By, 1))-

(ii) The dual norm is Fréchet differentiable in an open dense set.

Proof. Since d(w, 1) is a separable dual space, cf., e.g., [8, p. 9], then,
according to Bessaga-Pelczinski’s theorem, it has the KMP, cf., e.g.,
(2, p. 160]. Also, every point of ext By, 1) is denting point, and it is
isolated in the set ext By, 1)-

To prove the second part, we use the KMP to obtain that, for every
f € S(X*) attaining its norm, there exists ¢ € I such that f(z;) = 1,
so f belongs to the face F; = {f € d(w,1)* : || fl| = f(z;) = 1}. O
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