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ON THE NEAR-RING COUNTERPART OF THE
MATRIX RING ISOMORPHISM M,,,(R) = M,,(M,,(R))

J.H. MEYER

1. Introduction. When R is a ring with identity, it is well known
(and easy to show) that the nxn matrix ring over the m X m matrix ring
over R is isomorphic to the mn X mn matrix ring over R. The near-
ring situation is somewhat different to handle because matrices over
near-rings are defined in a functional way (Meldrum and van der Walt
[7]) which has very little, if any, resemblance to the traditional way
of portraying matrices. However, when the near-ring happens to be a
ring, the matrix near-ring is isomorphic to the familiar matrix ring.

The introduction of the concept of a matrix near-ring (in 1984) was
soon followed by a series of papers covering a variety of basic results
on this concept (cf., e.g., [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18]). Notably absent among these results is an answer
to the natural question on the existence or non-existence of the matrix
near-ring isomorphism under consideration. This problem has to date
withstood a considerable amount of effort—at one stage it was even
strongly believed that the two matrix near-rings are isomorphic if and
only if R is a ring. The question is finally settled in this paper.

2. Preliminaries. Let R be a right near-ring (not necessarily zero-
symmetric) with identity 1. For any natural number n, R™ denotes
the direct sum of n copies of the group (R,+). The elements of R"
will be written as (ry,rs,...,r,), where r1,79,...,7, € R. The ith
coordinate projection and injection functions are denoted by
#™.R" R and LZ(»n) :R— R",

i
respectively.

Furthermore, for any (additively written) group G, M (G) will denote
the near-ring of all mappings of G into itself. The n xXn matrix near-ring
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over R, denoted M,,(R), is defined to be the subnear-ring of M(R"™)
generated (as a near-ring) by the set

{fi:R" — R"|r€ Rand 1 <i,j < n}

of elementary n xn matrices. For r € Rand 1 <4, j < n, an elementary
n X n matrix is defined as the function f;; : R" — R"™ which maps each
(ri,r2,...,rn) € R™ onto Lgn)(rrj). It follows that M, (R) is a right
near-ring with identity I = f{; + fl +--- + fL,.

In order to handle these matrices, we need a way of expressing them
in terms of the elementary matrices. We therefore introduce the set of
n X n matrix expressions E, (R) over R, namely, the subset of the free

semigroup over the alphabet
(17 Rand 1<i,j <n}U{(),+}
recursively defined as follows:
(a) fl; € Ep(R) forallr € Rand 1 <4, j <m;
(b) If Ey and E5 are elements of E, (R), then E; + E3 € E,(R);

(c) If E € E,(R), then f/;(E) € E,(R) for all r € R and 1 < 4,
j<n.

It follows immediately that every element of E,(R) represents a
matrix in M, (R) and, conversely, every matrix in M, (R) can be
represented by (infinitely many) elements of E, (R). The length ((E)
of an expression £ € E,(R) is defined to be the number of f’s in it.
The weight w(U) of a matrix U € M, (R) is the length of an expression
E € E,(R) of minimal length representing the matrix U.

We will use the notation mat (F) to denote the matrix represented by
the expression F. Note that mat sometimes refers to the function mat :
E,(R) - M, (R) and sometimes to the function mat : E,,(M,(R)) —
M, (M,,(R)) for some natural number m. This will never cause any
ambiguity, since it will always be clear from the context which function
is actually referred to. The following lemma is immediate and is stated
for future reference:

Lemma 1. For any two expressions E; and E2 in E,(R), we have
that
mat (Ey + E3) = mat (F) + mat (Es)
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and

mat (flT](El)) = mat (f{j)mat (E1)

forallr € R and1<1i, j<n.

3. Matrices over M,,(R). Henceforth m and n will denote
arbitrarily chosen, but fixed natural numbers. Our aim is to define
a near-ring isomorphism

¢ : My (R) — M, (M,,(R)).
This will be done via a map
0:Epn(R) — E,(M,,(R))

which is constructed as follows: Let f;; € E;,,(R). Then there are
uniquely determined natural numbers k1, k2,11, l2, where 1 < ky, ko < n
and 1 <y, Iz < m such that i = m(k; —1)+1; and j = m(ks — 1) +lo.
Let

fT‘
0f7) = fge.

For an arbitrary expression E € E,,,(R), just replace each occurrence

of ff; in it by 6(f];) to obtain §(E). Then 6 is well-defined because

each f'; € M,,(R), and we also have the following immediate result
which will be referred to later on.

Lemma 2. For any two expressions Ey and Ey in E,,,(R) we have
that

0(E1 + E3) = 6(FE1) + 0(E-)
and

0(fi;(E1)) = 0(f;)0(E1)

forallr € R and 1 <1, j <mn.

Before defining the map ¢, we need the following lemma which plays
a crucial role throughout the remainder of this article.



234 J.H. MEYER

Lemma 3. Let E € E,,(R). Take any (Vi,Va,...,V,) €
(M,.(R))"™ and any (r1,72,... ,7m) € R™. Suppose that Vi(r1,r2,...,
Tm) = (811,812, - -+ »Sim) for each 1 =1,2,... ,n. Then

mat (0(E))(Vi, Va, ... , V) = (Wi, Wa, ..., W) € (Mm(R))"

where

Wiri,re, ... ,Tm) = <Zt§m)w£n"(‘2)_1)+t>
t=1

-mat (E)(s11,512,--+ , S1m, 5215+ -+ » Snm)

forallk=1,2,... ,n.

Proof. We use induction on £(F), the length of E. Let £(E) =1, i.e.,
E = f]; for some r € R and 1 <4, j < mn. Then there are unique

numbers ki, ko,l1,lo where 1 < ki, ko < mn and 1 < Iy, I < m such
that i = m(ky — 1) + I and j = m(ky — 1) + l. Hence 6(E) = f, 2.
It follows that

i,

mat (Q(E))G/l?‘/% 7Vn> = kiko <‘/1"/éa ,Vn>
- <W17W27"- 7Wn>

where .
Wk = fﬁlzka if k = kl
0 if k # ky.
Now
Wiy (ri,m2s oo s Tm) = [, Via (11,72, 0 Tm)
= flTllg <Sk217 Sko2y e - 7Sk2m>

= Ll(:n) (Tskzlz)'

On the other hand,

mat (E)<811,312,... 9y S1my S21y -« ,Snm>
= ffj<511,812,--- y S1my S215 - - - 75nm>

l’z(mn) (Tskzlz ) )
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which implies that

<Z (m)’]'['( (k1) 1)+¢ >mat (E)<811, S125+ ¢+ yS1my S21y .-+ ,Snm>

t=1
<Z ;) ml’:1) 1)+ >L§mn)(rskzlz)

= Ll(l )’/T(mn) 5 )(T8k212)
_Ll1 (Tskzb)
= Wi, (r1,72, -+, Tm)-

If & # Ky, then

<Z Ltm)ﬂ- m:) 1)+t) mat (E)(S11, 812, -+ 5 S1m; $21, - - - » Snm,)

( Z l’tm T o > Lz(mn) (Tsk2lz)

— <0,0,... ,0)
:Wk<7"1,’l"2,--- 771m>

because i = m(k; — 1) +1y # m(k—1)+¢ for any ¢, 1 <t < m, if
k # k.

Now suppose ¢(E) = p > 1 and that the result is true for all
expressions in E,,,, (R) of length less than p. There are two possibilities:

(a) E = E; + E,, where E1,Ey € E,(R) and ((E4),0(E3) < p
Because mat ((E)) = mat (6(F1)) + mat (f(E2)) by Lemmas 1 and 2,
the result follows immediately in this case.

(b) E = fl;Ey for some r € R, 1 < i, j < mn, and where
By € By (R) with £(E,) < p. Here we have 0(E) = f; 126(E;) where

=m(ky — 1) +1; and j = m(ky — 1) + I for unique numbers 1 < ky,
ke <mand 1 <y, I3 < m, as before. By the induction hypothesis, it
follows that

fi

mat (6(E))(Vi, Va, ... , V) = fulZmat (8(E1))(Va, Vas ... , Vi)
i,
k;ilk;l; <W17W27"- 7Wn>



236 J.H. MEYER

where

Wk<T1,T’2, s 77'm>

= <Z Lgm)ﬂr(nnzl:’)l)ﬂ) mat (E1)<511, 812y -+ yS1my S21y- - - ,Snm>
t=1

forall k =1,2,...,n. Hence
fT‘
mat (0(E))<V1, ‘/2, e 7Vn> = fkilkl; <W1, WQ, PN ,Wn>
= (Wi, W3,..., Wp)

where .
wr e k=1
k 0 if k # ki

Now, if we suppose that

mat (E1)<811, 8125+« y81myS21y- - 73nm>
= <3111:5’127 st 73,1m78,217 st 78nm>7

it follows that

W,,;1 (ri,7m9, .« yTm)

_flllz<zb(m)7r 1)+ >

~mat (E1)(511,512,+ -+ ,S1m» 5215+ > Snm)

— § : (m) o / / /
flllz( L 7[' k2 1)+ <511’5127"- »S1ms S215 - - - 75nm>

= f l1l2<sk217sk227 s 73k2m>

- Ll(l )(r8%2l2)

m) _(mn)
= (A mi )
- mat (fijE1)<511’8127 e 381myS21y . ,Snm>
= (B o)
m(k1 1

- mat (E)<811,812, e 3 81myS21y .- - 73nm>-
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Also, if k # kq, then

<Z Lgm)ﬂr(nnzz)—l)—l—t) mat (f{jEl)<811, 8125+ 9S1my S21y+ - 75nm>

t=1

=(0,0,...,0)
=Wi(ri,ra, .. ,Tm)
because i = m(k; — 1) + 13 # m(k — 1)+t for any ¢,1 < t < m, if
k£ k.
This completes the proof. a

We can now proceed to define the map ¢. Let U € M,,,,(R). Take
any F € E,,,(R) such that mat (E) = U. Define ¢(U) to be the matrix
mat (A(E)) in M,,(M,,(R)).

Before we can say anything further, we need to show that ¢ is
a well-defined function. So suppose Ej,Es; € M,,,(R) such that
mat (Ey) = mat (Ey) = U. Take any (V1,Va,...,V,) € (M, (R))"

and (ry,re,...,r,) € R™ and suppose that Vi{ri,ro,...,r,) =
(S11, 812, - - - » Sim) for each 1 = 1,2,... ,n. Then, by Lemma 3, it follows
that

mat (0(E1))(Vi, Va, ... , Vi) = (W1, Wa, ... ,Wa) € (M (R))"

where
Wi(ri,ra, -, Tm) = <ZL1(5m)7r£nw(LZ)l)+t>
t=1
-mat (E1)(s11, 8125+« - , S1ms 5215+ - - 5 Snm.)
for all k =1,2,...,n. Similarly, we have

mat (0(E2))(Vi, Va,... , Vo) = (W[, Ws,... ,W,) € (M,,,(R))"

where

Wilri,ra, ... 1) = (ZLE’")W;"(LZ)HH>

t=1
- mat (E2)<811, 8129+ 3 S1myS215 -+ ,Snm>
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forall k =1,2,...,n. But since mat (E;) = mat (Es), we deduce that
Wy =Wj, for all k =1,2,...,n and hence that ¢(U) = mat (6(E1)) =
mat (6(E>)), i.e., ¢ is well-defined.

That ¢ is indeed an isomorphism is formalized in the following
theorem.

Theorem 4. The mapping ¢ : My, (R) = M, (M, (R)) is a near-
ring isomorphism.

Proof. 1t follows directly from Lemmas 1 and 2 that ¢ is a homomor-
phism.

To show that ¢ is injective, let U € M,,,,(R) be a nonzero matrix
with

U<’I‘11,1"12,... sT1imsT21y - - a""nm) = <811,812,... s S1my S215 -+« ,Snm>
where (say) s11 # 0. Now define V; = f[i* + fo& + -+ + flim
for each | = 1,2,...,n. Then V| € Mm(R) and Vi(1,1,... 1> =
(rin,ri2y -« Ty for alll = 1,2,... ,n. By Lemma 3 it follows that

d(U)(V1,Vay ..., Vo) = (Wi, Wa,...,W,) where

Wi, 1,...,1) = <ZL§T")W§"”’)>
t=1
U(r

11,7125 -+ 5 T1m, 7215 - - - 77‘nm>

<Z )

<811,812,--- S1m, 8215 - - - 78nm>
= <811,812,--- 731m>
£1(0,0,...,0).

This shows that W is a nonzero matrix in M, (R), implying Ker ¢ =
{0}

The surjectivity of ¢ follows easily by an induction argument on the
weight of the matrices in M,, (M, (R)), starting with matrices of weight
1, i.e., matrices of the form fl:/lkz’ where V€ M,,(R) and 1 < ki,
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k2 < mn. A separate induction argument on the weight of V' ensures the
existence of an element of M,,,(R) which maps onto f;, .

(The routine character of this latter part of the proof is illustrated

through considering an example.
Take e .
Vo _ el (3 )+ s
Tirks = Jiosks )

which can be written as
Vo _ it [ pfid i3 fas
fk1k2 — Jkiko fk2k2 +fk:2k:2 +fk1k2'

Then ¢(U) = [y, Where

z2

U= fsml(klfl)+1,m(k271)+l(fm(k271)+1,m(k271)+1
F foks—1)+1,m(ka—1)+2)

T Fonks —1)+2,m (ks —1)+2

is an element of M,,,,,(R).) u]

Corollary 5. For any natural numbers m and n it follows that

M, (M (R)) = Mp (M (R)).
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