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AFFINE ALGEBRAIC MANIFOLDS WITHOUT
DOMINANT MORPHISMS FROM EUCLIDEAN SPACES

SHULIM KALIMAN AND LEONID MAKAR-LIMANOV

ABSTRACT. We develop a method which in some cases
enables us to establish the absence of dominant morphisms
from Euclidean spaces into affine algebraic manifolds which
are hypersurfaces in C™. This approach shows that many
of recently constructed smooth contractible hypersurfaces in
C™, n > 4, are not isomorphic to Euclidean spaces and
cannot be used as counterexamples to the Zariski cancellation
conjecture, to the Abhyankar-Sathaye conjecture, and to the
problem of linearizing a C*-action on C3.

1. Every smooth factorial affine surface which admits a dominant
mapping from a Euclidean space is isomorphic to C? [10, 8, 13]. This
theorem is a generalization of the cancellation theorem for surfaces
[3]. For dimensions higher than two this generalized version of the
cancellation theorem does not hold even if we consider contractible
manifolds. P. Russell constructed a dominant morphism from C3
into the hypersurface {(z,y,2,t) € C* | =z + z%y + 2% + t* = 0}.
This hypersurface is one among many contractible hypersurfaces which
appeared recently in [2, 4, 14, 11, 16]. The main aim of this paper
is to introduce a method which enables us to prove that many of
these hypersurfaces do not have dominant morphisms from Euclidean
spaces and, in particular, they are not isomorphic to a Euclidean space.
It is important not only in connection with the Zariski cancellation
conjecture. Every nontrivial hypersurface in these papers is the zero
fiber of a polynomial whose generic fibers are not isomorphic to a
Euclidean space. Had this hypersurface been isomorphic to C3 we
would have a counterexample to the Abhyankar—Sathaye conjecture [1,
15]. Using our method, we show that it is not so for many of these
hypersurfaces. For instance, a hyperbolic modification of a smooth
contractible surface of Kodaira logarithmic dimension 1 (see [11, 16]
for definitions) is not isomorphic to C3. Perhaps the most interesting
construction of contractible hypersurfaces is presented in [14] (it is a
pleasure to acknowledge that our paper was inspired by the result of
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P. Russell). This construction gives contractible threefolds which admit
“hard-case” C*-actions, and, of course, it is important to distinguish
these threefolds from C2 in connection with the linearizing problem.
Our method enables us to do this in most cases. (It is worth mentioning
that eventually we constructed another invariant which distinguished
all Russell’s threefolds from C3 [9, 6]. But not only is the computation
of this invariant far more complicated than the method presented in
this paper, it is also not an obstruction to the existence of dominant

mappings.)

2. Let z = (z1,...,2,) be a coordinate system in C” and & =
(é1,... ,&,_1) be a coordinate system in C* 1. Consider a hypersurface
X C C" given by a polynomial equation P(z) = 0. Suppose that
¢ : C""! — X is a morphism. Then, using the generated mapping
from a ring of regular functions C[X] on X to C[¢], we shall treat the
elements of C[X] as polynomials in £. Denote by J; the determinant of
the Jacobi matrix {0z;/0¢;k =1,... ,n—1;5=1,... Ji,...,n} and
by P; the ith partial derivative of P.

Lemma. Suppose that for every point z° € X there ewists ig such
that P;,(2°) # 0, i.e., X is smooth. Then for every i = 1,...,n a
polynomial J; € CI¢| is divisible by P; (which is also treated as an
element of C[£]).

Proof. Consider ¢ = 1. Note that the determinant of the Jacobi
matrix

J.fl,... En—1 (Ig, cee y Li—1, P? Tiglyee- 7xn)
is
PiJy + (=1)'P1J; = 0.

Suppose that z° = ¢(£°) and P;(z°) = 0. Choose i so that P;(z?) # 0.
Then one can see that J; has a zero at ¢ at least of the same
multiplicity as P; o ¢. Hence Jj is divisible by P; o ¢. ]

3. Let d; be the degree of the polynomial z; € C[¢{], and let D; be



AFFINE ALGEBRAIC MANIFOLDS 603

the degree of P; as a polynomial in £. Note that

deg Jy < 3 (d; — 1) — (d — 1)

j=1

j=1

This inequality and Lemma 2 imply

Theorem. Under the assumptions of Lemma 2 we have

Jj=1

In particular, for every subset I C {1,2,...,n} of size |I| we have

(3.2) 115 2 D+ ) + 1110 — 1),

iel

Note that in the case when I = {1,... ,n} the last equality may be
written in the form

(3.3) (nfl)idj >n(n—1)+> D

j=1 i=1

Remark. These inequalities make little sense when J; = 0 and
P; = 0 since the degree of the zero polynomial is —co. Hence it is
worth considering the above theorem under the assumption that ¢ is
dominant.

Definition. A smooth hypersurface X = {x € C* | P(z) = 0} is
called simple nondominated if one of the inequalities (3.2) cannot hold
for natural dy, ... ,d,.
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Corollary. There is no dominant morphism from C*~ into a simple
nondominated hypersurface X C C".

4. Let us consider several examples. Let P be given by
(a) @1+ 2% tey + 2d 0 + 24
where d — 1 > a > 1, and a is relatively prime with d and d — 1 (so
a > 2) or;
(b) x1 + xxd + 25 + 5.
where a > 2,b > 3,¢c > 3.

It is worth mentioning that the hypersurfaces X = {z € C* | P(x) =
0} corresponding to the case (a) present contractible hypersurfaces from
[2]. Anyway, in both cases (a) and (b) X is simple nondominated.
Indeed, in case (a),

Dy = (d— 2)d1 + do

Ds (d — a)d2 + ((l — 1)d3
D, = (d—1)d,.

SH

Hence for I = {1, 3,4}, inequality (3.2) implies

2dy + 3da + 2d3 + 2d4 > (d— 2)d1 + (d— a+ ].)dg
+ (af 1)d3 + (d* ].)d4 +9.

The last inequality has no solutions with natural di,ds,ds and dy
under the given restrictions on a and b.

Similarly, in case (b) one may check that inequality (3.3) does not hold
for natural dy,ds, ds,ds. Hypersurfaces given by the zero loci of forms
(b) include some Russell’s threefolds. For more accurate computation
of this type for Russell’s threefolds see [7]. It is worth mentioning
that the condition on a,b,c is essential in this case. For instance the
hypersurface z; + z?x2 + 3 + 22 = 0 admits a dominant morphism
from C? (Russell) and should be fought by other means [9].

5. The method used in the above examples may be formulated in
the form of
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Lemma. Let P, P; be as in Section 2, and let I be a nonempty subset
of {1,...,n} of size |I|. Suppose that for every i € I the leading part
of Pi(x) is a monomial c;z™ where z™ = m;ni Lz, Suppose also
that for every j =1,... ,n we have deg, P; = mj. Let Diermy > |
when j & I, andlet ), ; m;'- > |I|—1 otherwise. Then the hypersurface

X = {P(x) = 0} is simple nondominated.

Proof. Assume that there exists a dominant morphism ¢ : C"~! —
X. Then we may treat P; as an element of C[¢y,... ,&,—1]. It is easy
to see that its degree D; coincides with the degree of 2™ o ¢ which is
2?21 mg-dj where d; is the same as in Section 3. Hence (3.2) cannot
hold for nonnegative d;. ]

6. Before we apply our technique to hyperbolic modifications we
have to consider some properties of smooth contractible surfaces with
Kodaira logarithmic dimension 1. Let n and m be coprime natural
numbers such that n > m > 1. Let hy (21, 22) = (21 +1)" —
(w2 + 1)™. Put fp (w1, 22,23) = hpm(@123, 2203)/23. Then f, .
is a polynomial. Consider the hypersurface Viy, ) = {(%1,22,73) €
C3?|fn,m(z1,22,w3) = 1}. It is a smooth contractible hypersurface of
Kodaira logarithmic dimension 1 [12]. It contains the only line L, ,,
which coincides with the zero locus of the function x3 on V{; ;). The
following fact may be extracted from [12, pp. 150-151].

Lemma. The surface V(n,m) is isomorphic to the complement of
the proper transform of the curve {(y1,y2) € C?|y1™ — y.™ = 0} in
the blow-up of C? at the point (1,1). For every smooth contractible
surface W of Kodaira logarithmic dimension 1, there exists a unique
pair (n,m) such that

(1) either W is isomorphic to V(n,m) or

(2) W can be obtained by the following procedure. Let p = pjo---opy :
W — V(n,m) be a blow-up of V(n,m) at a point ¢ € Ly, and
infinitely near points such that the center q; of each blow-up p; lies on
the exceptional divisor of pi—y for i > 2. Then W coincides with the
complement of the proper transform in W of the curve (pj—10---0
p1) " (L(n,m)) under the blow-up p;.
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7. Let j be a nonnegative integer and let P be of the form

(7.1)  P(zy1,22,x3) = [(x37 1z + g1 (23))"

— (x37 ™z + go(z3))™ — xa]xyjj_l

where g1, g2 € Clzs], g1(0) = g2(0) = 1, degg1,deggs < j, and g1, 92
are chosen so that P is a polynomial (note that g; may be chosen
arbitrary and the last condition determines go uniquely).

Let us denote by k(W) Kodaira logarithmic dimension of a surface
w.

Theorem. The hypersurface P=1(0) is smooth contractible with
Kodaira logarithmic dimension 1. Moreover, every smooth contractible
surface W with k(W) = 1 may be represented in this form and when
j > 0 it has the same meaning as in Lemma 6 (2).

Proof. For j = 0 the statement follows from Lemma 6.1 (1). Put
wo(z1, 22, 3) = (z321 + 1, 2329 + 1) for (z1,22,23) € V(n,m). Then
©0(Va,m) is the union of C% — {(y1, y2)|y? —y5* = 0} and the point w =
(1,1). Note that @g*(w) is the line L, ,, = {z3 = nz; — mzs — 1 = 0}
in Vi m.

Suppose that the theorem holds for j, and show that it is true for
j+ 1. Let W and p; be as in Lemma 6 (1). Then by assumption W
coincides with P~1(0) where P is of the form (7.1). Put

(21,72, m3) = (24" 21 + g1(w3), 2 w2 + ga(w3))
for (z1,z2,23) € W. By induction we may suppose that (W) is again
the union of C2 — {(y1,y2)|y? —y5* = 0} and w, and ¢~ (w) is the line
Lw = {x3 =0} N W in W which is the exceptional divisor of p;.

Let W be a smooth contractible surface with & = 1 which requires
j + 1 blow-ups described in Lemma 6 (2). Then we may suppose that
W is obtained from W by blowing up a point @ € Ly, and deleting the
proper transform of Ly,. Let & = (aj,a2,0). Replace z; by z1 + a1
and x2 by z2 4+ az. Then we have to blow the origin up and delete
the proper transform of the intersection of the polynomial zero fiber
with the plane z3 = 0. If the zero fiber of a polynomial Q(z1, z2,x3)



AFFINE ALGEBRAIC MANIFOLDS 607

contains the origin, then after this procedure the proper transform of
this fiber is the zero fiber of Q(z1z3,zex3,z3)/x3. If we apply this
argument to P with the shifted z; and x4, one can see that W is given
by the zero fiber of the polynomial

(7.2) (@21 + G1(23)" — (@] 22 + Go(ws))™ — wala ™2

where i, g, satisfy all desired conditions. More precisely they are of
the form g (zs) = amv%“ + gr(z3). Put

G(x1, 22, 23) = (23221 + §1(3), 24222 + o(a3))
for (z1,x2,23) € W. Then one can see that ¢~ (w) is again the line

{zs = 0} NW which is the exceptional divisor for p;1i. This completes
the induction.

It is a simple observation that for every polynomial of the from
(7.2) its zero fiber is a smooth contractible hypersurface with Kodaira
logarithmic dimension 1. Indeed, every pair of polynomials §i, g2
such that form (7.2) is a polynomial, §;(0) = §2(0) = 1, and deggx,
deg o < j + 1 can be rewritten as gy (z3) = ayz ™" + g1(x3), Go(3) =
azwg"'l + g2(x3) where g1, g2 satisfy the assumption of the theorem and
the point (a1,az,0) belongs to the line ¢ ~!(w) (where ¢ is defined via
g1, 92 as above). o

8. Now we can obtain a result which was mentioned in the introduc-
tion.

Corollary. FEvery smooth contractible surface with Kodaira logarith-
mic dimension 1 is simple non-dominated.

Proof. Let P be of the form (7.1) and Py, P> be its partial derivatives
with respect to x; and x5. Then,

Pi(x1,@2,23) = n(zy @y + g1 (x3))"?

and '
Py(z1, @2, 23) = m(zaz] ™ + ga(ws))™ .
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Note that nm?ilmgn_l)(jH) and macgnflmgm_l)(jﬂ) are leading mono-
mials for P; and P,, respectively. These monomials and I = {1,2}
satisfy the assumption of Lemma 5. Therefore, the hypersurface P = 0
is simple nondominated. O

9. In Section 6 we used the following procedures. We blow up
a surface W at a point w from a line Ly on this surface and then
remove the proper transform of Ly, . As a result we get a new surface
W. This procedure is called a half-point attachment (see [3]). Note
that Ly may be treated as a hypersurface in W. One can generalize
this procedure by considering a blow-up of the algebraic manifold X
at a smooth locus C' which belongs to a hypersurface E in X and then
removing the proper transform of E. We call this procedure a half
locus attachment over the divisor £ with locus C. The result of this
attachment is an algebraic manifold X. This procedure is important
since when X is affine, X, C, and E are contractible, and E is smooth
then X is again affine contractible [5] (the assumption on smoothness
of E may be weakened).

Let us consider the case when X = C", C = {a; = -+ =z = 0},
and E is the zero fiber of a polynomial P. One can easily check that
in this case X coincides with the nonzero fiber of the polynomial

P(zy,...,2p41) = P(21%ni1, - - s B0Tnt1, Tot1y- -+ »Tn)/Tnt1

in C"t1,

Lemma. Let P, P;, 2™, I satisfy the assumption of Lemma 5.
Let C = {z1 = -+ = xy = 0} be contained in the zero fiber of P.
Suppose that X = {P(xy,... ,Zni1) = 0} is the result of the half locus
attachment over P~1(0) with locus C. Let

4

3OS mi > 2.

j=1iel
Then X is simple non-dominated.

Proof. Let P; be the ith partial derivative of P;. Then for i € I

. 5. . i mb .
the leading part of P; is the monomial ¢;z™ x, " where m] ,, =
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2521 mj. — 1, by construction. The assumption of this lemma implies
that ,.; mi ., > |I|. Hence P, P;, I satisfy Lemma 5 and, therefore,
X is simple non-dominated. ]

10. When in the previous lemma ¢ = n, i.e., C is the origin, P is
called a hyperbolic modification of P (see [11, 16]). If the hypersurface
P~1(0) is smooth contractible then the remarkable fact from [11,
16] says that every fiber of P is diffeomorphic to a Euclidean space.
Moreover, the Kodaira logarithmic dimension of P~1(0) is not less than
the Kodaira logarithmic dimension of P~1(0). The main example in
[11] and [16] is P(zy,zo,z3) = [(z123 +1)" — (z2x3+1)™|zz ' — 1, i.e.,
P~1(0) = V(n,m) in terms of Section 6. Since k(V(n,m)) = 1, the
fiber 15*1(0) is not isomorphic to C3, but nothing is said there about
nonzero fibers of P. Meanwhile an application of Lemma 9 immediately
shows that all fibers of P are simple non-dominated. The situation is
similar if P is of form (7.1). It remains the same due to Lemma 9 if,
instead of one hyperbolic modification of P of form (7.1), we consider a
sequence of hyperbolic modifications beginning from this polynomial.
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