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QUALITATIVE ANALYSIS OF
A SINGULARLY-PERTURBED SYSTEM

OF DIFFERENTIAL EQUATIONS RELATED TO THE
VAN DER POL EQUATIONS

EDWARD F. ABOUFADEL

ABSTRACT. A method to qualitatively analyze certain
three-dimensional singularly-perturbed, nonautonomous, non-
linear systems is presented. The analysis involves the con-
struction of a trapping region for solutions of the system.
This method can be applied to the Oregonator model of
the Belousov-Zhabotinskii reaction. One result is a new and
clearer proof of Hastings and Murray’s result that there is a
nontrivial periodic solution of the model.

0. Introduction. This paper is concerned with the singularly-
perturbed, nonautonomous, nonlinear ordinary differential equation:

(1)

ẋ =
1
ε
(y − xz) + e1(t)

ẏ = −x + e2(t)

ż =
1
ε
(x2/3 − 1 − z) + e3(t)

where 0 < ε � 1, ei(t), i = 1, 2, 3 are bounded functions (for example,
periodic functions with common period L), and with e2(t) small.

1. Motivation. There are certain muscle fibers in the heart known
as the cardiac Purkinje fibers. The primary function of the Purkinje
fibers is to transmit electrical pacemaker impulses in the heart. The
Purkinje fiber also exhibits a secondary activity; if the fiber is not
subject to any outside stimulus, then it spontaneously and regularly
generates an electrical impulse. Noble derived a four-dimensional
autonomous system of singularly-perturbed differential equations to
model the Purkinje fiber by modifying the Hodgkin-Huxley equations
[9].
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In the Nobel model, V represents the potential difference across the
surface of the fiber, m and h measure the flow of sodium ions across
the fiber surface, and n does the same for the flow of potassium ions.
Using a transformation by Cronin [5], the Nobel model is:

(2)

dV

dt
=

1
ε

1
ε′

(F (V, m, h, n)),
dm

dt
=

1
ε

1
ε′

m∞(V ) − m

Tm(V )
dh

dt
=

1
ε

h∞(V ) − h

Th(V )
,

dn

dt
=

n∞(V ) − n

Tn(V )

where m∞, h∞, n∞, Tm, Th and Tn are well-behaved functions of V , and
F is a well-behaved function of all four variables. ε and ε′ are small,
fixed, positive numbers.

The Nobel model is a bit complicated. A simpler system which shares
many characteristics of (2) is

(3) ẋ =
1
ε
(y − xz), ẏ = −x, ż =

1
ε
(x2/3 − 1 − z)

which is the case where the forcing terms ei(t) in (1) are all identically
zero. Numerical experiments indicate the both (2) and (3) have a glob-
ally stable periodic solution. Both systems are singularly-perturbed,
and both systems are of the form investigated by Mishchenko and Rosov
[8]. Clearly (3) is an easier system to study than the Nobel model. We
are also interested in determining how an outside force can affect the
systems like (2) and (3). For example, how would an electrical im-
pulse applied to the heart affect the behavior of a Purkinje fiber? This
question can be considered by adding forcing terms to our model.

Although both the Noble equations and (1) can be solved numerically,
a numerical solution does not explain why solutions behave the way that
they do. To strengthen our understanding of the solutions, a qualitative
analysis is in order. In this paper we develop qualitative methods that
can be applied to systems such as (2).

At the conclusion of this paper, we will consider how our analy-
sis applies to another three-dimensional, singularly-perturbed system,
namely the Oregonator model of the Belousov-Zhabotinskii reaction
[10] and prove a result about that model stronger than the result of
Hastings and Murray [7]. We will also describe how to extend the anal-
ysis to the Noble model. For related work in this area, see Albrecht
and Villari [1], Alexander, Doedel, and Othmer [2] and Chicone [3].
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2. Overview. Mishchenko and Rosov’s approach to systems such
as (2) is to first consider the existence of a discontinuous solution, that
is, where ε is zero, and then to construct some sort of tube around that
discontinuous solution that will trap solutions of the system in question.
(We do not need to prove that a discontinuous solution exists, which
saves a lot of analytic work.) This approach can be seen in an analysis
of the van der Pol system in the Liénard plane:

(4) ẋ =
1
ε
(y − x3/3 + x), ẏ = −x.

A trapping region for (4) was developed by Flanders and Stoker [6].
The region and the discontinuous solution can be seen in Figure 1.

For (3), we define a set S̃, which we call the slow manifold , as

S̃ = {(x, y, z) | y = xz and z = x2/3 − 1}.
This is the set where ẋ = ż = 0 in (3). As indicated in Figure 2, S̃ is
“S-shaped” (we can also consider it as the graph of ỹ(x) = x3/3 − x),
and, in general, solutions of (1) are attracted by certain parts of the
slow manifold and repelled by other parts. This situation is (purposely)
reminiscent of (4).

In our analysis of (1), we shall show first that solutions of (1) are
attracted (at least locally) to the “attracting” parts of S̃. Then
we will prove the oscillatory behavior of solutions of (1) they move
between the “attracting” parts of S̃ and the “fast areas” indicated in
Figure 2 by constructing a tube to trap solutions. In the case where
the forcing terms ei(t) are all identically zero, the case of system (3),
we can prove, using the Poincaré map, that we have a periodic solution.

3. Analysis, Part I. Each part of the construction will be true for
ε sufficiently small, with specific conditions on ε given in the proofs of
the lemmas. In the statements of the lemmas, we omit the condition
“for ε sufficiently small.” The trapping region, Θ(ε), will be defined in
six sections Θi(ε), i = 1, 2, . . . , 6. To construct the region, we begin by
defining

Bi = max−∞<t<∞ |ei(t)|, i = 1, 2, 3,

and fixing three positive constants: a, γ1 and γ2 with γ1 + γ2 < 1,
2γ1 < γ2, a � 1 (in particular, a < 1/3), and B2 < 1 − 2a. Let
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FIGURE 1. The trapping region of Flanders and Stoker.

ŷ = (1/3)(a − 1)3 − (a − 1). Then 0 < ŷ < 2/3. Let d = 1 − 2a − B2.
Then d > 0. Later, we will define y∗ such that ŷ < y∗ < 2/3.

Cross sections of Θ1(ε) will be ellipses in the planes y = ȳ, where
−3/2 < ȳ < y∗. The center of each ellipse will be a point on S̃,
which we will call (x̄1(ȳ), ȳ, z̄1(ȳ)), or simply (x̄1, ȳ, z̄1). Clearly, for
any ȳ ∈ [−3/2, y∗], there is a unique value, x̄1(ȳ) < −1, such that
(x̄1, ȳ, x̄2

1 − 1) ∈ S̃.

Define:

Q = −z̄1, R = −x̄1, S = 2x̄1/3, T = −1

B =
T − Q

S
=

x̄2
1 − 6
2x̄1

,

C =
Q2 + T 2 + 2(QT − RS)

2S2
=

x̄2
1 + 12

8

Q, R, S, T, B and C are continuous functions of y defined for y < 2/3.

The following is a technical lemma that we will refer to many times.
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FIGURE 2. S̃ for (3), showing attracting and fast regions.

The proof is algebraically straightforward and is based on the fact that
QT − RS = x̄2

1 − 1 = ỹ′(x̄1).

Lemma 1.1. For all y < 2/3, we have that Q+T < 0, QT −RS > 0,
S �= 0, 2Q + BS < 0, BR + 2CT < 0 and (BQ + BT + 2R + 2CS)2 −
4(2Q + BS)(BR + 2CT ) < 0.

For (x, y, z) on or near the section of S̃ for which x < −1, define a
function H1 by:

H1(x, y, z) = (x − x̄1)2 + B(x − x̄1)(z − z̄1) + C(z − z̄1)2

where x̄1, z̄1, B and C are functions of y.

Lemma 1.2. For any ȳ < 2/3, the set {(x, y, z) | H1(x, ȳ, z) =
εγ2 , y = ȳ} is an ellipse with center (x̄1(ȳ), ȳ, z̄1(ȳ)).

To prove this lemma, it is sufficient to show that C > 0 and
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FIGURE 3. Θ(e), the trapping region for (1).

B2 − 4C < 0. The proof is straightforward and so we omit it.

Define y∗ to be the largest y less than 2/3 such that all points in the
set {(x, y, z) | H1(x, y∗, z) = εγ2} satisfy x ≤ −1 − εγ1 . y∗ depends on
ε and y∗ approaches 2/3 as ε approaches 0. We require that ε is small
enough so that ŷ < y∗.

Define the following sets (see Figure 4a)

Θ′
1(ε) = {(x, y, z) | H1(x, y, z) ≤ εγ2 ,−3/2 ≤ y ≤ y∗}

C0(ε) = {(x,−3/2, z) | H1(x,−3/2, z) ≤ εγ2}
C1(ε) = {(x, y∗, z) | H1(x, y∗, z) ≤ εγ2}
D′

1(ε) = {(x, y, z) | H1(x, y, z) = εγ2 ,−3/2 ≤ y ≤ y∗}.
We will construct Θ1(ε) later. It is not difficult to show that dH1 �= 0,
hence D′

1(ε) is a manifold. Now we demonstrate how solutions of (1)
are attracted to the slow manifold.

Theorem 1. For any t0 ∈ R and for any solution of (1)
with (x(t0), y(t0), z(t0)) ∈ Θ′

1(ε), there exists t1 ≥ t0 such that
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FIGURE 4. Θ′
1(ε) and Θ1(ε).

(x(t), y(t), z(t)) ∈ Θ′
1(ε) for t0 ≤ t ≤ t1 and (x(t1), y(t1), z(t1)) ∈

C1(ε).

Proof of Theorem 1. For all points of Θ′
1(ε), ẏ = −x + e2(t) >

1−2a−B2 = d. Clearly, in the case where (x(t0), y(t0), z(t0)) ∈ C1(ε),
the theorem is true with t1 = t0. In the case where (x(t0), y(t0), z(t0)) ∈
C0(ε), then the solution will enter the interior of Θ′

1(ε).

In that case, or in the case where (x(t0), y(t0), z(t0)) ∈ D′
1(ε), we

will show that the solution cannot “escape” Θ′
1(ε) through D′

1(ε).
Technically, we need to demonstrate that at all points of D′

1(ε), �υ · �N >

0, where �υ = 〈ẋ, ẏ, ż〉 is the tangent vector to the solution of (1) and �N

is an inner normal to D′
1(ε). It follows from �υ · �N > 0 and from ẏ > d

that the solution must intersect C1(ε) in finite time.

In order to investigate �υ · �N , we transform (1) using u = x − x̄1,
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ν = z − z̄1 and get the following relationships:

(5)

ẋ =
1
ε
(Qu + Rν − uν) + e1(t)

ẏ = −(u + x̄1) + e2(t)

ż =
1
ε
(Su + Tν + u2/3) + e3(t).

Now �N = 〈−∂H1/∂x,−∂H1/∂y, ∂H1/∂z〉. Therefore,

�υ · �N = −∂H1

∂x
ẋ − ∂H1

∂y
ẏ − ∂H1

∂z
ż

= −(2u + Bν)ẋ − (Bu + 2Cν)ż − ∂H1

∂y
ẏ

= −1
ε
[u2(2Q + BS) + uν(BQ + BT + 2R + 2CS)

+ ν2(BR + 2CT ) +
1
3
u2(Bu + 2Cν) − (2u + Bν)uν]

− (2u + Bν)e1(t) − ∂H1

∂y
ẏ − (Bu + 2Cν)e3(t).

We wish to show that �υ · �N > 0 for ε sufficiently small. This can be
attacked a few terms at a time. Since slices of Θ′

1(ε) are ellipses we have
that u2 +ν2 are O(εγ2). So the term (1/3)u2(Bu+2Cν)− (2u+Bν)uν
is O(ε3/2γ2).

Using the Rayleigh quotient, we can show that there is a positive
constant k1, such that u2(2Q + BS) + uv(BQ + BT + 2R + 2CS) +
ν2(BR + 2CT ) < −k1(QT − RS)εγ2 , making use of the definition of
D′

1(ε). Since QT − RS = x̄2
1 − 1, and since x < −1 − εγ1 for every

point of D′
1(ε), we have that QT − RS > 2εγ1 . Therefore, there is a

positive constant k2 such that u2(BQ + BS) + uν(BQ + BT + 2R +
2CS) + v2(BR + 2CT ) < −k2ε

γ1+γ2 . A similar argument will show
that ∂H1/∂y is O(εγ2−2γ1), and clearly the other terms are bounded.

So, we have �υ · �N > k2ε
γ1+γ2−1 plus other, bounded terms. Therefore,

for ε sufficiently small, we have that �υ · �N > 0.

Let ε0 be such that all the previous lemmas hold for ε ∈ (0, ε0).
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FIGURE 5. W and the behavior of a typical solution of (1).

Remark. For each ȳ < 2/3, (x̄1(ȳ), z̄1(ȳ)) is an equilibrium point for
the system

(6) ẋ = ȳ − xz, ż = x2/3 − 1 − z.

The linear variational system corresponding to (6) is

(7) u̇ = Qu + Rν, v̇ = Su + Tν.

As a result of Lemma 1.1, (x̄1, z̄1) is an asymptotically stable equi-
librium point of (6). Much of Theorem 1 is basically a proof that
H1(x, ȳ, z) is a Lyapunov function of both (6) and (7) with respect to
(x̄1, z̄1).

4. Analysis, Part II. In Theorem 2, we determine that we
can extend solutions past C1(ε) to the plane x = −1 + 2a. Define
z∗ = max{−1, ŷ/(−1 + 2a)}. It is not hard to show that z∗ < −2/3.
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Theorem 2. For any t1 ∈ R and for any solution of (1) with
(x(t1), y(t1), z(t1)) ∈ C1(ε), there exists t2 > t1 such that x(t2) =
−1 + 2a, y∗ < y(t2) < 1, and z∗ ≤ z(t2) ≤ 1.

Proof of Theorem 2. Define W and W1 (see Figure 5) by:

W =
{

(x, y, z) | −9
4
≤ x ≤ −5

4
z∗ − 9

4
, y∗ ≤ y,−4

5
x − 9

5
≤ z ≤ 1

}

∪
{

(x, y, z) | −5
4
z∗ − 9

4
≤ x ≤ −1 + 2a, y∗ ≤ y, z∗ ≤ z ≤ 1}

W1 =
{

(x, y, z) | −9
4
≤ x ≤ −1 + 2a, y∗ ≤ y, z = 1

}

∪
{(

− 9
4
, y, z) | y∗ ≤ y, 0 ≤ z ≤ 1

}

∪
{

(x, y, z) | −9
4
≤ x ≤ −5

4
z∗ − 9

4
, y∗ ≤ y, z = −4

5
x − 9

5

}

∪
{

(x, y, z) | −5
4
z∗ − 9

4
≤ x ≤ −1 + 2a, y∗ ≤ y, z = z∗

}
.

W will serve as a gutter to funnel solutions from C1(ε) to the plane
x = −1 + 2a. As in Theorem 1, we need to demonstrate that for
�υ = 〈ẋ, ẏ, ż〉 and �N a vector normal to W1, which is pointing into W ,
we have that �υ · �N > 0 along W1. To do this, we consider each section
of W1 separately.

For example, along {(x, y, z) | −9/4 ≤ x ≤ −1 + 2a, y∗ ≤ y, z = 1}
we have that �N = 〈0, 0,−1〉. Therefore,

�υ · �N = −ż = −1
ε
(x2/3 − 1 − z) − e3(t)

= −1
ε
(x2/3 − 2) − e3(t)

≥ −1
ε
((1/3)(−9/4)2 − 2) − B3

≥ 1
ε
(5/16) − B3,

which is positive for ε sufficiently small. The other sections are dealt
with similarly. In the case of the points of W where an inner normal is
not defined, we can make arguments similar to the ones above.
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Since C1(ε) ⊂ W , we have that (x(t1), y(t1), z(t1)) ∈ W . It is
straightforward to show that solutions of (1), while in W , behave as
demonstrated in Figure 5, that is, although solutions may at first pull
away from the x = −1 + 2a plane, they are eventually attracted to
the plane once z is large enough. Again, this behavior holds when ε is
sufficiently small. So there exists t2 > t1 such that x(t2) = −1 + 2a
and z∗ ≤ z(t2) ≤ 1. As far as y(t2) goes, either y(t2) < 3/4, or else
there exists t∗ > t1, such that y(t∗) = 3/4. In this case, to show that
y(t2) < 1, we note that ẏ(t) = −x(t) + e2(t) < 2 + B2. It can then be
shown without too much difficulty, using a series of estimates based on
the shape and size of W , that an upper bound on t2−t∗ is 1/[4(2+B2)],
so we get that y(t2)− 3/4 = y(t2)− y(t∗) < (2 + B2)(t2 − t∗) < 1/4, so
y(t2) < 1.

5. Analysis, Part III. Let Q1(y, ε) be a smooth function of y
and ε, defined on [−3/2, 2/3] × [0, ε0], that satisfies Q1(y, ε) = εγ2

0

if −3/2 ≤ y ≤ −ŷ/2, that dQ/dy < 0 if −ŷ/2 ≤ y ≤ 0, and that
Q1(y, ε) = εγ2 if 0 ≤ y ≤ 2/3.

Define the sets (see Figures 3 and 4b):

Θ1(ε) = {(x, y, z) | H1(x, y, z) ≤ Q1(y, ε),−3/2 ≤ y ≤ y∗}
D1(ε) = {(x, y, z) | H1(x, y, z) = Q1(y, ε),−3/2 ≤ y ≤ y∗}.

Lemma 3.1. For any t0 ∈ R and any solution of (1) with
(x(t0), y(t0), z(t0)) ∈ Θ1(ε), there exists t1 ≥ t0 such that (x(t), y(t),
z(t)) ∈ Θ1(ε) for t0 ≤ t ≤ t1, and (x(t1), y(t1), z(t1)) ∈ C1(ε).

The proof of this lemma is very similar to the proof of Theo-
rem 1, except that now �N is an inner normal to D(ε), so �N =
〈−∂H1/∂x, ∂H1/∂y+∂Q1/∂y, ∂H1/∂z〉. The complications this change
causes are minor.

We now define the set Θ2(ε), an extension of Θ1(ε). We wish for
any solution of (1) which intersects C1(ε) to enter Θ2(ε) and remain
in Θ2(ε) until the solution intersects the plane x = −1 + 2a. One way
to do this is to construct Θ2(ε) as a union of all of the solutions of (1)
which intersect C1(ε).
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For each initial point (x0, y0, z0) ∈ C1(ε), and for t1 ∈ R, let
X(t; x0, y0, z0, t1) be the solution of (1) with X(t1; x0, y0, z0, t1) =
(x0, y0, z0). Define

Θ2(ε) =
⋃

(x0,y0,z0)∈C1(ε)
t1∈(−∞,∞)

{X(t; x0, y0, z0, t1) | t1 ≤ t ≤ t2}

C2(ε) = {X(t2; x0, y0, z0, t1) | (x0, y0, z0) ∈ C1(ε), t1 ∈ (−∞,∞)}

where t2 is defined above for each initial condition. (See Figure 3.)

In the same way, we can define the function H4(x, y, z) about the
section of S̃ where x > 1, and we can construct sets Θ4(ε), C4(ε),
Θ5(ε) and C5(ε). So we see, for instance, that the section of Θ4(ε) for
which ŷ/2 ≤ y ≤ 3/2 is defined using ε0 instead of ε.

We have considered solutions with initial points in Θ1(ε) and have
shown that they eventually cross the plane x = −1 + 2a. We now wish
to extend solutions past that plane. In an informal sense, the solutions
will jump from the plane x = −1 + 2a to the set Θ4(ε). In order to
describe this jump formally, it is necessary that a section of Θ4(ε),
which is the “target” of the jump, be defined independently of ε, as we
have done. In the same way, Θ1(ε) will be a “target” for solutions at
the plane x = 1 − 2a.

To analyze the jump, we define the set

C = {(x, y, z) | x = −1 + 2a, ŷ ≤ y ≤ 1, z∗ ≤ z ≤ 1}

and we transform (1) using the change of variables t = ετ .

(7)

dx

dτ
= y − xz + εe1(ετ )

dy

dτ
= −εx + εe2(ετ )

dz

dτ
= x2/3 − 1 − z + εe3(ετ ).

For ε = 0, this is

(8)
dx

dτ
= y0 − xz,

dz

dτ
= x2/3 − 1 − z
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where y0 is some fixed number.

We see that (8) resembles (6), and two facts about (8) are first, that
if y0 > 2/3, then there exists a unique point, (x̄4, z̄4) which is a stable
node of (8), with x̄4 > 1; and second, that there exists T > 0 such
that for any (x0, y0, z0) ∈ C the solution of (8) with x(τ2) = x0 and
z(τ2) = z0 satisfies H4(x(τ3), y0, z(τ3)) < (1/2)εγ2

0 , where τ3 = τ2 + T .
This second fact follows from the first and because C is a compact set.

Lemma 3.2. For any t2 ∈ R and any solution of (1) with
(x(t2), y(t2), z(t2)) ∈ C2(ε), there exists t3 > t2 such that (x(t3), y(t3),
z(t3)) ∈ Θ4(ε).

Proof of Lemma 3.2. To prove this lemma, we use the dependence of
solutions of ordinary differential equations on parameters. Let ε1 be a
number such that 0 < ε1 ≤ ε0 and such that if 0 < ε < ε1 then all of
the previous lemmas hold.

We can think of (7) as defining a map:

Φ : C × R × [0, ε] −→ R3

as follows: For each (x0, y0, z0) ∈ C, τ2 ∈ R and ε = [0, ε1], let

(x(τ ; x0, y0, z0, τ2, ε), y(τ ; x0, y0, z0, τ2, ε), z(τ ; x0, y0, z0, τ2, ε))

be the solution of (7) with (x(τ2), y(τ2), z(τ2)) = (x0, y0, z0) and define

Φ(x0, y0, z0, τ2, ε) = (x(τ2 + T ), y(τ2 + T ), z(τ2 + T )).

Φ is a continuous function in all of its variables, and we have that

Φ(x0, y0, z0, τ2, 0) ∈ {(x, y0, z) | H4(x, y0, z) < (1/2)εγ2
0 }.

Using the fact that C is compact, we have for ε sufficiently small,

Φ(x0, y0, z0, τ2, ε) ∈ {(x, y, z) | H4(x, y0, z) < εγ2
0 , (1/2)ŷ < y < 3/2}

⊂ Θ4(ε).

We once again make the change of variables t = ετ , and then we have
the statement of Lemma 3.2.
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Now we can define the rest of the annulus Θ(ε). For each initial point
(x0, y0, z0) ∈ C2(ε), let X(t; x0, y0, z0, t2) be the solution of (1) with

X(t2; x0, y0, z0, t2) = (x0, y0, z0).

Define

Θ3(ε) =
⋃

(x0,y0,z0)∈C2(ε)
t2∈(−∞,∞)

{X(t; x0, y0, z0, t2) | t2 ≤ t ≤ t3}

where t3 is defined above. Define Θ6(ε), which connects Θ5(ε) with
Θ1(ε) in a similar fashion.

We can now define the annulus Θ(ε) to be the union of the six parts.
(See Figure 3.) It should be clear from the construction that solutions
of (1) with initial points in the annulus, near the slow manifold, will
flow through the annulus and that oscillations will occur. In the case
of system (3), where the forcing terms ei(t) are all identically zero,
we have an autonomous system, and using a Poincaré map, slicing
through Θ1(ε), we find that there is a nontrivial periodic solution of
(3) contained in Θ(ε).

6. Application to a model of a chemical reaction and
to the Nobel model. A quite similar analysis can be made for
the Oregonator model of the Belousov-Zhabotinskii reaction. This
reaction involves the mixing of sulfuric acid, malonic acid, cerium
ammonium and sodium bromate. Rather than directly approaching a
stable equilibrium, the reaction oscillates between a yellow state (which
corresponds to a relatively large concentration of cerium ions) and a
colorless state (when the concentration of cerium ions is small) [10].

The Oregonator model, developed by Field and Noyes, is a mathe-
matical model of this reaction with three variables. In the model ξ is
the concentration of the hydrogen bromate, η is the concentration of
bromium ions, and ρ is the concentration of cerium ions. There are
also parameters ω, h, q and p, which have the following approximate
values:

ω ≈ 0.0002, h ≈ 0.5, q ≈ 0.000008, p ≈ 300.
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The model is

(11)

ω
dξ

dτ
= ξ + η − qξ2 − ξη

dη

dτ
= −η + 2hρ − ξη

p
dρ

dτ
= ξ − ρ

where ξ, η and ρ are all positive.

Hastings and Murray [7] showed that there exists a cube B ⊂ R3

such that solutions of (11) which start in B or are on the boundary of
B at τ = 0 must lie entirely in B for τ > 0. Further, they subdivided B
into eight smaller cubes, Bi, i = 1, 2, . . . , 8 and proved that solutions
in B actually travel through six of the eight cubes in the sequential
order. Hastings and Murray also demonstrated that (11) has nontrivial
periodic solution.

In an analysis similar to that of (1), we can construct a trapping
region for (11) and use it with a Poincaré map to prove that (11) has
a nontrivial periodic solution. This improves on the result of Hastings
and Murray in two ways. First, we can extend the analysis to a model
with periodic forcing terms. This would be analogous to, for example,
adding a certain amount of cerium ammonium to the reaction every
25 seconds. Using the analysis of (1) as a model, it can be seen
that, with the forcing terms, the reaction still oscillates between a
yellow and colorless state, although we cannot determine whether or
not the oscillation occurs at a periodic rate. Second, in the case where
the forcing terms do not exist, we have the existence of a nontrivial
periodic solution, as before, but we can locate the periodic solution
more precisely and in such a way that the underlying structure of the
situation is better represented.

To see how we can apply our approach to the Oregonator model, we
begin by making the following change of variables: ε = 1/p, t = τ/p,
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ζ = ωξ, c = 1/ω and k = q/ω2. We get a new system:

(12)

dζ

dt
=

1
ε
(cζ + η − kζ2 − cζη)

dη

dt
=

1
ε
(−η + 2hρ − cζη)

dρ

dt
= cζ − ρ

where ε ≈ 1/300, h ≈ 0.5, c ≈ 5000 and k ≈ 200.

This system has three equilibrium points, one of which is

ζ0 =
1

2ck
(
√

[(2h − 1)c2 + k]2 + 4c2k(2h + 1) − k − (2h − 1)c2)

η0 =
2chζ0

1 + cζ0

ρ0 = cζ0

ζ0, η0 and ρ0 are all positive.

By setting x = ζ − ζ0, y = ρ0 − ρ and z = η − η0, we can then
reformulate (12) as

(13)

dx

dt
=

1
ε
(αx + βz − kx2 − cxz)

dy

dt
= −cx − y

dz

dt
=

1
ε
(γx + δz − 2hy − cxz)

where
α = c − cη0 − 2kζ0, β = 1 − cζ0

γ = −cη0, δ = β − 2
and where x > −ζ0, y < ρ0 and z > −η0. It is not difficult to show
that α, β, γ and δ are all negative.

Finally we add forcing terms to (13) to get:

(14)

dx

dt
=

1
ε
(αx + βz − kx2 − cxz) + e1(t)

dy

dt
= −cx − y + e2(t)

dz

dt
=

1
ε
(γx + δz − 2hy − cxz) + e3(t).
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FIGURE 6. S̃ for (13), the Oregonator model of the Belousov-Zhabotinskii
reaction.

The system (14) is quite similar to the system (1) in two key ways.
First of all, if we define the slow manifold, S̃, by

S̃ = {(x, y, z) | αx + βz − kx2 − cxz = 0 and γx + δz − 2hy − cxz = 0}

it is not difficult to show that S̃ is an “S-shaped” curve in R3. (See
Figure 6.) Second, like before, we can define functions Q, R, S, T, B
and C, this time by:

Q = α − 2kx̄1 − cz̄1 R = β − cx̄1

S = γ − cz̄1 T = δ − cx̄1

B =
T − Q

S
C =

Q2 + T 2 + 2(QT − RS)
S2

.

It turns out that Lemma 1.1 can be proved for these functions, too.
Lemma 1.1, a technical lemma, is the key to the construction, because
satisfying the lemma means that points on the slow manifold are
asymptotically stable equilibrium points of what is commonly referred
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to as the “fast system.” This is a vital criterion for constructing the
trapping region Θ(ε) for (14) and should be considered when analyzing
other systems similar to (1) and (14). In the case of (14), we get a
trapping region similar to Figure 3. Solutions oscillate, with solutions
with y � 0 corresponding to the yellow state of the reaction and
solutions with y � 0 corresponding to the clear state of the reaction.

System (2), the Nobel model, is related to this work in that it, too,
has an “S-shaped” slow manifold. In this case, we define the slow
manifold as

S̃ = {(V, m, h, n) | F (V, m∞(V ), h∞(V ), n) = 0,

m = m∞(V ), h = h∞(V )}

which is a one-dimensional curve in Euclidean 4-space. The equation
F (V, m∞(V ), h∞(V ), n) = 0 implicitly defines n as an “S-shaped”
function of V for −90 ≤ V ≤ 50 (the physiologically significant values
of V ), and m∞(V ) and h∞(V ) are well-behaved, monotonic functions
of V . The attracting parts of this slow manifold are the sections where
V < −77 or V > −20, and the behavior of solutions of (2) near these
parts of the slow manifold is similar to the behavior described earlier
for Θ1(ε) and Θ4(ε).

The “fast areas” of the system are where −77 < V < −20, and in
this area n is nearly constant with respect to t (approximately either
0.415 or 0.6997, corresponding in (3) to y equaling ±2/3). The other
variables are determined by

(15)

ε
dV

dt
=

1
ε′

(F (V, m, h, n))

ε
dm

dt
=

1
ε′

m∞(V ) − m

Tm(V )

ε
dh

dt
=

h∞(V ) − h

Th(V )

which is also a singular-perturbation problem, this time with perturba-
tion parameter ε′. It is not difficult to show that, for small ε′, solutions
of (15) are attracted to a stable equilibrium point in a way similar to
what was described in Section 5 of this paper so that, like solutions
of (1), solutions of (2), either with or without forcing terms, oscillate
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between the “attracting” parts of S̃ and the “fast areas.” For more
details of this analysis of the Nobel mode, see Cronin [4].
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