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ON SOME QUASILINEAR SYSTEMS

I. PERAL AND R.C.A.M. VAN DER VORST

0. Introduction. In this paper we will be interested in systems
of quasilinear equations whose action-functional is strongly indefinite.
The general problem is the following

—Apu = Fy(u,v) in
(P) Agv = F,(u,v) inQ
u=v=0 on 0f)

where Q C R” is a bounded domain with smooth boundary, N > 2,
1 < p,qg< N and F is a C'-function. On the function F we impose
the following

Coupling condition (C). The equations F,,(0,v) = 0 and F,(u,0) =
0 have only finitely many solutions.

We shall see later on that, due to this coupling condition, it is
impossible for the Problem (P) to have solutions of the form (u,0)
or (0,v).

Our goal is to give two methods for finding solutions of Problem (P).
Section 1 will be devoted to studying Problem (P) by means of the
reduction to a semilinear system following the ideas by [8, 9]. Here the
method consists of a convenient splitting and using a duality argument
(see [7] and [5]). The remaining sections will be dealing with a more
general case using a Galerkin type argument in combination with the
finite dimensional linking theorem (see [1, 14]). The Galerkin approach
was previously used by other authors [3, 11, 14].

1. The splitting method. Due to technical obstructions, we study
a particular case where we assume 2N/(N +2) < p < 2, ¢ = 2. Notice
that the equations of Problem (P) are the Euler Lagrange equations of

Received by the editors on June 21, 1995.

Copyright ©1997 Rocky Mountain Mathematics Consortium

913



914 I. PERAL AND R.C.A.M. VAN DER VORST

the functional

1 1
JIp(u,v) = —/ |Vu|pdx—§/ |Vu|2dw—/F(u,v)dx.
P Ja Q Q

The functional J, is defined on the Banach space W, () x W, ()
and clearly J, is strongly indefinite, which makes it difficult to apply
standard critical point theory for finding solutions of Problem (P). We
shall, however, rewrite the equations of Problem (P) in such a way
that the problem becomes semilinear and stated in a Hilbert space,
which simplifies matters. The system, however, keeps it a strongly
indefinite structure. Problem (P) can be equivalently formulated as
follows. Define

w = |VulP 2 Vu;

consequently,
Vu = |w| P/ Py,
Then problem (P) becomes
—divw = F,,(u,v)
(1.1) Av = F,(u,v)
Vu = ‘w|(2—p)/(p—1)w
In order to find weak solutions of Problem (P), we shall study (1.1),

since these two formulations are equivalent. This splitting of the p-
Laplacian allows us to consider the linear differential operator

0 0 -—div
(1.2) A=[o0o A o
vV o 0

It is very important to observe that Ker (A) = N(A) is infinite
dimensional.

The functional analytic setting. The operator A will be considered
in the following functional analytic context, see Clément-van der Vorst
[8] for notation,

(1) A: D(A) C H — H where H = L2(Q) x L%(Q) x (L2(2))" and

D(A) = H(Q) x H* 0 HY(Q) x Hay ()
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and the domain of the divergence operator is

Haiy () = {v € (L2(Q)N | v = v1 + vg,
dive; = 0,09 = Vu,u € H> N HY(Q)}.

The operator A is selfadjoint.

(2) With the scalar product in the Hilbert space H and the operator
A we have the following strongly indefinite quadratic form

(1.3) %(A¢,¢)H = /Qqudac — %/Q V|2 dz = Q(9).

Here ¢ = (u,v, w)".

Performing integration by parts we have continuous extensions of Q)
to:

(1) Bo = L3(Q) x HE(9) x Haiv (),
(2) By = Hg(Q) x Hg(Q) x (L*(Q))".

Then by interpolation between Fj and Ej, see [8], we obtain continuous
extensions of () to the one-parameter family of spaces:

Eo = [Ey, Er]a = ©F(Q) x Hy(Q) x 037 *(Q),

where
0% (Q) = D(AY?) = {u € L*(Q); (—A)*?u € L*(Q)}
H*(Q) 0<a<1/2,
- HSLO(Q) a = 1/27
H*(Q) 1/2<a<1,
and
037(Q) = {v e (L3(Q)Y; v =v; + vz, divey =0,
vy = Vu, u € H>=* N Hi(Q)}.
On ©%(Q) and ©3 *(R) we have the usual equivalent norms | - llox
and || - ||®;7a and, therefore, || - HQEQ = ||%% +1| - ||§13 + - ”Z);—a'
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As in [8] we can associate with A a selfadjoint partial isometry L
such that

1 1
_<A¢a ¢> = _(L¢7 ¢)Ecx '
2 2
We have the decomposition of E, = ET ®E~ ® E°, where ET, E~ and

E° are the eigenspaces of the operator L associated with the eigenvalues
A=1,A=—-1and A =0.

Let us consider the operator

(L.4) do = <g _%iv>

on ©%(Q) x O3 *(Q), with associated operator L., see [8].

With the eigenvalues A = 1, —1, 0 of L,, we have the eigenspaces
Ef, E and E? = N(div). Using the latter, we can characterize the
spaces Et, E~ and E°;

(1) ET ={¢ € Eu; (u,w) € Ef,v =0}

(2) B~ ={¢ € Eqo; (u,w) € E,v € Hy()}

(3) By = {¢ € Ey; (u,w) € E2,v =0}.

With this decomposition of E, we have

(i) @> 0 in ET,

(i) Q< 0in E-,

(ifi) Q =0 in E°.

Sobolev embeddings. In the last section we saw that the quadratic
form @ is well-defined on the one-parameter family of interpolation
spaces E,, a € [0,1]. If we include the nonlinear part of Problem (P),
we need embeddings of E,, in proper LP-spaces, the so-called Sobolev
embeddings. Using the characterization of F, in terms of Sobolev
spaces, we have from the Sobolev embeddings:

Et@E- — Lt x L2t x [t = X

1< 2N t1< 2N

" N—2a’ 2 N—2
9N

T‘3+1<

N —-2+2a’
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For ry and r3, this yields the relation

1 n 1 >N—l
’f‘1+1 7“3+]. N

Furthermore, Eq C (L?)V and, see, e.g., [8],
(i) Ep N X is closed in X,
(i) Ef® E~ @ (EyN X) is dense in X,
(iii) (Ep N X) is dense in Ey.

Formulation of the Hamiltonian. System (1.1) has, of course, a
variational structure, and the equations of System (1.1) are the Euler-
Lagrange equations of the function

£(6) = 5(A6,0) ~ H(9) = Q(6) - H(5),

where (@ is defined above and H is given by

H(p) = p;l/ |w|P/ (P~ 1) dm+/ F(u,v)dz.
p Q Q

We assume that F' is a smooth function which is strictly convex and
meets the following growth conditions

(1) F,, F, are strictly monotone with respect to the preorder in R?.
(2) erful™ < |Fu(u,v)| < ealul™ + 3 ul ol
(3) ealvl™ < |Fu(u,v)| < calv]™ + 3 Jul[o]" Y,
(4) uFy, + vF, —yF > A(Ju|™ + |v|™®) — B for v > 2 with
a

<1
7"1+1+T‘3+1

and rq,rg, 73 subcritical. On the other hand, we need that for fixed p
the w-component in H must satisfy
p 2N

(1.5) p—1<N—2+2a for some 0 < a < 1,

which can indeed be met when 2N/(N +2) < p < 2.
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In this way we obtain that H is well-defined and strictly convex on
E, for some appropriate o € (0,1), depending on the growth of the
function F'(u,v). We have that

is a proper C'-functional on E,. We are now in a position to give an
existence result using an abstract critical point theorem due to Benci
and Fortunato [5], which is based on a dual method, see [7].

Theorem 1.1. Suppose p verifies 2N/(N+2) < p < 2 and F satisfies
the growth conditions mentioned above. Then Problem (P) has at least
one nontrivial solution. Moreover, if F(u,v) is even, Problem (P) has
infinitely many nontrivial solutions.

Proof of Theorem 1.1. The Sobolev embeddings and the properties
of the Hamiltonian allow us to consider the idea of combining duality
with critical point theory due to Clarke and Ekeland [7]. See also
Benci and Fortunato [5], where this method is developed. For the
sake of completeness, we include the idea of the proof. More precisely,
consider H* the Legendre transform of H and K compact extension of
the inverse of A, i.e.,

K: B S RA) M2 Ria) A5 R(A) & B,

Then the new functional is defined for ¢y € W = (E+)* @ (E~)* and
given by
1

() =H"(¥) — 5 {w, K(w)).

We can apply the mountain pass theorem in [2] and we get a critical
point w € W. This critical point verifies

K(w) = PdH* (w)

where the last equality is in R(.A) and P is the projection. This implies
the existence of a wg € (Ep N X) such that wy = K(w) = dH*(w). Call
¢ = wo + K(w), then we get A(¢) = dH(¢), which is equivalent to
system (1.1). For the rest of the details, see [4, 5] and [8].
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Remark 1.2. The case ¢ # 2 and 2 > p > 2N/(N +2) can be handled
in a similar way.

The case ¢ # 2 and 1 < p < 2N/(N —2) or p > 2 can also be
considered. For example, by making an additional splitting for the
v-equation (one obtains a semilinear system of four equations, Or
system). The proper functional analytic setting in a Banach space
can be found in [9]. A slightly different system was considered there
but the main ideas remain the same. The method for finding critical
points seems more delicate in this case, and the duality method does not
seem straightforward since the Hamiltonian will no longer be convex. It
remains an open question how to find a critical point for this semilinear
system.

2. The Galerkin approach. In this section we consider the
following particular system, that is, we take F' to be

1

F(u, ’U) = G(u, ’U) |’U,|7l+1 — H—l"l)‘s—‘rl.

S+l

Without using the splitting as described in Section 1, we search for
solutions of Problem (P) by means of a Galerkin type method. The
problem is

—Apu = |u|""tu + Gy (u,v) in €,
(2.1) Agv = |v|* v+ Gy (u,v) in Q,
u=v=0 on Of.

The numbers r and s satisfy p <r+1 < pN/(N —p) and ¢ < s+1 <
gN/(N — q). On G we impose the following conditions:

(gl) G € CY, G4(0,0) = 0 = G,(0,0) and G > 0,
(g2) [VG(u,v)| < c1 + calul? + c3lv]?, where max(p,q) < d+1 <

min(r + 1,s + 1),
(83) |Gu(w,0)| = o(|uP~), as |u| — 0,
(g4) 0 < G(u,v) < (1/p)uG, + (1/q)vG, for |u|,|v] > n > 0.

(g5) Coupling condition. The equations G,,(0,v) = 0 and G, (u,0)
0 possess only finitely many solutions.

We have
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Theorem 2.1. Let 2, p, q, r and s as before, and suppose that G
satisfies the conditions (gl)—(gb). Then Problem (2.1) has at least one
weak solution (u,v) € Wy () x Wy?(Q) with nontrivial components.

The Lagrangian associated with Problem (2.1) is given by
1 1
J(u,v) = —/ |VulP do — —/ |Vu|?de
pPJa q/a
(2.2) — / G(u,v) dz
Q

u,v
1 1
/|’U,‘T+1— /|U|S+1.
'f'+]. Q S+1 Q

By conditions (gl) and (g2), J is a C!-functional on the Banach space

E = WP (Q) x Wy4(Q).

Weak solutions must be understood as critical points of this functional.

With the hypothesis (g1)—(g5), we do not pursue full generality since
one can allow for G to satisfy less restrictive growth conditions. For
instance, (g2) can be generalized. A good example for G can be a
function G(u,v) = h(u + v) with h(t) satisfying similar conditions.
The strategy of the proof is as follows:

1) Consider a family of projected problems on a finite dimensional
family of subspaces, and we look for positive critical values by means
of the linking theorem [1, 14].

2) We prove a compactness property which is stronger than the usual
Palais-Smale condition: the (PS)*-condition.

3) Using the latter condition we pass to the limit and we find a
positive critical value of J.

3. The proof of Theorem 2.1. The space E is a separable
Banach space and therefore there exists a filtering of finite dimensional
subspaces such that

1) E, = E* x EY
2) E, C En+1
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3) UE,, = E. The spaces E¥ and E? are considered to be the same.
The restriction of J to E, is denoted by J,.

Definition 3.1. We say that the functional J satisfies the (P.S)*-
condition if, for any sequence {z,} C E, with z, € E,, such that
|J(zn)| < C and J)(z,) — 0, implies that there exists a convergent
subsequence and the limit is a critical point for J (see also [3]).

Lemma 3.2. Let Q, p, q, r and s be as before, and suppose that
G satisfies (gl), (g2) and (g4). Then the functional defined by (2.1)
satisfies condition (PS)*.

Proof of Lemma 3.2. First we observe the following.

Let Z,, be a vector in E such that P, 2z, = z, is the vector z,, seen as
an element of E. Then

In(2n) = J(PnZy).

Now 5
<‘]7,z(zn)) ¢n> = <Jl(Pn2n)’ Pn¢n>7 V(f)n S Ena

and thus if we write P, %, = 2, and Pn<;~5n = ¢, as a vector in E, we
have

(Jn(2n), &n) = (J'(20), fn)-

Suppose {z,} C E is a sequence as indicated in Definition 3.1. Then
(3.0)
, 11
C+ellznlle < J(zn) — (I (2n), Z_)Un, avn

1 1
— (__ >/ ‘un‘r—kl
p r+1 Q
1 1
(o= oq) [t
qg s+1 Q
1

1
+_/ unGu(unavn)+_/ UnGu(unavn)
Q q

p Q

[ Gl
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() [
p r+1 Q

1 1
() e
q s+1) Jq
Furthermore,

\ [P = [ = [ 10Gulnsea)
)| 9= [l = [ oGt on)

We continue with the inequality (3.1),

/Q|Vun\p—€||un\|wol,p(9) < ‘/Qun|r+1+/ﬂuncu(un,vn)
< [ a0 [ |G )
(3.3) h ¢

< [l [ fun
Q Q

+C [ ual(ua 7+ o)
Q

< €||un\|W1 »(q)

< ellvnlls ooy

and, similarly for (3.2),

/ Von = ellonllgaey < [ 1onl** e [ ol

+C [ ol + ),

Combining (3.3) and (3.4) and using (g2) yields

| v+ [ vunlt el
< [l [ ot e [ (unl + o)
Q Q Q

+C [ (a4 o)
Q

§C+C/ |un|d+1+/ \vn|d+1.
Q Q
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Eventually, this gives
(35) el —elzle <C+C / |1 / 41
Q Q

for some o > 1. Next we substitute (3.0) in (3.5), which gives
Iznll% = ellznlle < C + €llzn]le,

proving that ||z,|lg < C. Because E is compactly embedded into
L™1(Q) x L¥+1(£), this provides the following statements

(i) 2z, — z weakly in E
(ii) 2, — z strongly in LT+1(Q) % Ls+1(Q)
(iii) z, — z almost everywhere.

Because E is uniformly convex and ||z, ||g — ||z||&, we obtain a strong
convergence of {z,} in E. Thus,

J(zn) = J(2) =c.

Finally we need to verify whether or not z is a critical point of J. We
fix a number M. Then

(' (20)s D) < €nlldmll

for m < M < n, provided M is large, and ¢, — 0 as n — oo. Along a
subsequence, this yields

<Jl(z)v¢m>:07 Vém EPm(E)-
The latter holds for all M € N. Since UE,, is dense in E, we get that
(J'(2),¢) =0, VoE€E,

which proves the lemma. m]

Remark 3.3. If we take a (PS)-sequence in a fixed E,, it follows
from the proof of Lemma 3.2 that the functionals J,, satisfy the (PS)-
condition in any finite dimensional subspace E,. This observation will
be useful later on.
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Next we investigate some geometric properties of J in order to find
critical points by means of a mini-max characterization. Define

S = {(u,0); ||uHW01’p(Q) =p}
Let et € Ef with |le|| = 1 and fixed p,r1,72 > 0,71 > p. Consider

Q ={(te*,v);et € WgP(Q), 0 <t <7y,
CAS W(JLq(Q)’ ||v||W01’q(Q) < 7"2}-

Then 0Q is given by

{0, w); [vllyra(q) < r2} U{(rie™, w)s vllyra) <2}
U {(te"‘,w);O S t S r1, ||UHW01"1(Q) = 7“2}.

We can prove the following lemma.

Lemma 3.4. Let Q,p,q,r and s be as before, and suppose that G
satisfies (gl)—(g3). Then there are numbers 0 < p < 11 and r1 < 1o
such that

J|S >a>0, J‘BQSOa J|Q < 0.

Proof of Lemma 3.4. We start with S:

1 1
J(u,0) = —/ |VulP do — / G(u,0)dr — —/ |u|"* de,
pJa Q r+1Jg

then )
T(4,0) > —/ VP da
PJa

—g/ |u|pdx—C(8)/ | dg
Q Q

(r+1)/p
—C(/Vu|pdw> >a>0,
Q

provided p > 0 is small enough.

As for 0Q we proceed as follows.
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a)
J(0 v):—l/ |Vu|qda:—/G(0 v)dx—i/ | < 0.
’ qJo Q ’ s+1 /g N

b)
. 1, 1
J(rie",v) = —rf — = [ |Vv|?dz
p qJ/a

- / G(riet,v)dx
Q

1
+r+1 _ s+1
TH/'“@ | —SH/M
117

<—rf—c—— +1 ritt - /|Vv|qdw

o
— | G(riet,v da:——/ v|*T?
| émetvde—— [ 1o

1

1
< —rf —e—— r{+1<0
p r+1

if 71 > 0 is sufficiently large.

c)

1
J(teT,v) = tp - —7"2 / G(te,v)dx

/|t +|r+1 /‘ ‘s—i-l
r+1 s+1

1
§Et——r2 /Gte ,v)dz <0

if ro > ry.
Finally,
J(tet,v) < %T’f < 00
and
J(z) > —o0, z€Q.
This completes the proof. a

We observe now that, by the choice of the subspaces E,, the geometric
properties of J are preserved after the restriction to E,. To be more
precise:
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() So = SN E,
(ii) @, = QN E, and
(iii) Jn|gn >a>0, Jn|8Qn <0, Jn|Qn < 0.

Proof of Theorem 2.1. From Remark 3.3 it follows that J,, satisfies
(PS) for every n > 2 and for Lemma 3.4 it follows that J,, satisfies the
conditions of the linking theorem, see [1, 4 and 14] and this gives that,
for every n, J, has a nontrivial critical point, z, € FE, with critical
value

0<a<duzn) =cn <C.

We thus have a sequence {z,} C E, for which ||J](z,)]] = 0 and
|Jn(2r)] < C. Then since J satisfies the (PS)*-condition, it follows
that there exists a subsequence {z,,} C E converging to z € E, which
is a nontrivial critical point of J, u #Z 0 or v # 0.

As for the proof that both components are nontrivial, we argue as
follows. Suppose that v = 0. Then u satisfies the equation

—Apu = |u]"u + Gy (u,0).

From regularity theory for this equation, see [10, 15], it follows that
u € C°(Q) N C1(Q). On the other hand, we know from (g5) that the
equation

Gy (u,0) =0,

has only finitely many solutions and thus, due to the continuity of wu,
this gives that v = C, a constant, in Q. The boundary condition on
u then determines the constant to be zero, which would imply that
(u,v) = (0,0), a contradiction. The same argument holds for v. This
proves that the solution has nontrivial components. a
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