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ON QUASI-POSITIVE DEFINITE FUNCTIONS
AND REPRESENTATIONS OF
HYPERGROUPS IN QF, SPACES

LILIANA PAVEL

ABSTRACT. The purpose of this paper is to transfer the
results about the relation between quasi-positive definite func-
tions on groups and semigroups and their representations in
spaces with an indefinite metric to the case of hypergroups.
This work may be considered to continue the studies con-
cerning the generalizations of Godement’s theory about cyclic
unitary representations of locally compact groups in Hilbert
spaces and positive definite functions [3].

0. Introduction. The relation between cyclic unitary representa-
tions of a topological group G in Pontryagin spaces and quasi-positive
definite functions on G has been thoroughly investigated by K. Sakai
[7]. In [1], C. Berg and Z. Sasvdari have studied indefinite functions
on semigroups and their relation to representations in spaces with an
indefinite metric. The present paper starts from these two articles,
which suggested that the same problem can be transferred to the case
of hypergroups. The main difficulty of this program consists in defin-
ing quasi-positive functions on hypergroups such that this definition
becomes compatible with the ones for groups and semigroups. In ad-
dition, one should be able to relate them to representations of hy-
pergroups in indefinite spaces. In Section 1 we define quasi-positive
functions on hypergroups and we construct the indefinite space (and
finally the Pontryagin space) associated with a quasi-positive function.
In Section 2 we relate such functions to representations in indefinite
spaces. In the last section we give examples of quasi-positive functions
by starting with the study of functions of finite rank.

Hypergroups are locally compact Hausdorff spaces whose regular
complex-valued Borel measures form an algebra, which has similar
properties as the convolution algebra (M(G), ) of a topological group
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G. For basic references, one can consult [5] or [8]. Hypergroups
naturally arise as double coset spaces of locally compact groups by
compact subgroups. Our notation concerning hypergroups will in
general agree with Jewett’s in [5]. In particular, K always stands
for a hypergroup (same as convo in [5]). However, we shall denote
by C(K) the bounded continuous complex-valued functions on K and
by M(K) the bounded regular complex-valued Borel measures on K.
Throughout this paper M*(K) (the nonnegative elements of M(K))
is endowed with the cone topology, see [5, 2.2]. It is known [5, Lemma
2.2A and 2.2B] that the mapping « — p, (the unit point mass at z) is
a homeomorphism of K onto a closed subset of M*(K) and that the
set of measures in M*(K) with finite support is dense in M1 (K). If
p is a measure and f is a p-integrable function we denote by || o fap
or u(f) the integral of f with respect to p. If f is a Borel function on
K and z,y € K, we define

f@) = flzwy) = /K fd(pa * p,)

if this integral exists. By [5, Lemma 6.1F], if p and v are in M(K)
and f is a bounded Borel function

| sawsn) = [ [ s dut avt)

From Theorem 1.3.4 of [8], we conclude that, if f is in C(K) and p in
M(K), then the function on K, z — (u * f)(x), defined by

(s 1)(e) = [ $u™ 2 duy)
K
is also in C(K). Moreover, for any u,v € M(K)

(pxv)*f=px=f)
The involution on K is denoted by x ~ z~. For u € M(K), the adjoint
w* of p is defined by p* = p—.

Now recall some definitions and basic facts about quasi-positive
(indefinite) spaces which can be found in [2] and [4]. Let n be a
nonnegative integer. A quasi-positive space with negative rank n,
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denoted by QPF, space, is a complex vector space V together with
a nondegenerate Hermitian form (-, ) from V' x V to C such that:

1. there is an n-dimensional subspace N C V which is negative, i.e.,
(&,€) < 0 for any nonzero £ € N;

2. there is no negative subspace of V' of dimension greater than n.

It is known that (V, (+,-)) is a quasi-positive space with negative rank
n if and only if there exists a finite subset {£?, ... ,£2} of V for which the
number of negative eigenvalues of the Hermitian matrix (£?, {?)Z =1,k
is n and for any proper subset {{1,. .. , &} of V, the number of negative
eigenvalues of the Hermitian matrix (&;,&;)i j=1,.. r is less than n.

Let (V, (-,-)) be a nondegenerate QP,, space, n > 0, and let N be an
n-dimensional negative subspace of V. Then N* is positive definite,
ie., (£,€) >0 for all £ € N1, and V is the orthogonal direct sum of
N and N*. So we have a fundamental decomposition V = N @& N+,
and any £ € V is given in the form £ = £_ + &, where {_ € N and
€. € N*. To this fundamental decomposition corresponds a positive
definite inner product [-,-] on V defined by

['5,77] :7(5—577—)+(£+577+)7 VfaUEV

Thus V can also be regarded as an ordinary pre-Hilbert space with the
scalar product [, -] and with the norm

1€l = V1€, €.

For any &,7 € V we have

(& mI < [IEN- lInll-
It is also known [2] that if V' becomes a Hilbert space under the inner
product [+, -], then any norm topologies corresponding to fundamental

decompositions of V' are mutually equivalent. A nondegenerate QP,
space (V,(-,-)) is called a Pontryagin space with negative rank n,
denoted by m,-space if V becomes a Hilbert space under the inner
product [-, -] corresponding to a fundamental decomposition of V.

If (V, (-,-)) is a quasi-positive space, we denote by End (V') the algebra
of all linear operators on V and by B(V') the subalgebra of End (V') of
all continuous operators on the normed space (V, || - ||)-
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Finally, in accordance with [1] and [7], respectively [5], we define
w-continuous, respectively continuous, representations of hypergroups
in quasi-positive spaces. By an w-continuous representation of the
hypergroup K in the quasi-positive space V, we mean a mapping
p+— Uy of M(K) into End (V') such that:

1. Upysps = Up Uy, for all g, po € M(K);

2. Up, =1

3. (Uu&,m) = (& Uy+n) for all p € M(K), {,n e V;

4. If &,» € V, then the mapping p — (U,&,n) is continuous on
MT(K).

A continuous representation of the hypergroup K in the space V is
an w-continuous representation with values in B(V') which satisfies

5. Ul < | for all p € M(K).

A vector ¢ € V is called cyclic for the (w-) continuous representation
U if the linear span of {U,{ | p € M(K)} is dense in V. The continuous
representations U' and U? of K in the spaces Vi, respectively V5, are
called isometric equivalent (and denoted U' = U?) if there exists an
isometric intertwining operator 7 of V; into V3, that is,

U, =U)r, VpeM(K).
If U',U? are cyclic representations we say that U',U? are isometric

equivalent if there are cyclic vectors &; of U' and & of U? and an
isometric intertwining operator 7 with 7&; = &;.

1. Quasi-positive definite functions and indefinite spaces
associated with them.

Definition. A function ¢ € C(K) is called Hermitian if p(z~) = p(x)
holds for all z in K.

It is a straightforward calculation to prove the following.

Lemma. Let ¢ be in C(K). The following statements are equivalent:

(1) ¢ is Hermitian.
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(2) p(z™ *y) = oy~ xx) for all z,y € K.
(3) Jx e@)d(p *v)(z) = [ p(@)d(v* x p)(z) for all p,v € M(K).

According to the above lemma, for any Hermitian function ¢ and
finite sequence py, ... ,px in M(K), the matrix ® = ([, ¢(2)d(p; *
1i)(2))ij=1,.. k is Hermitian.

Definition. A Hermitian function ¢ : K — C is said to have n
negative squares if, for any choice of k and py,...,ur € M(K), the
Hermitian matrix

o= ([ e w)(z))iw

is a complex matrix which has at most n negative eigenvalues (counted
with multiplicity) and, for some choice of k¥ and p1,...,ur € M(K),
the matrix ® has exactly n negative eigenvalues.

We denote by P, (K) the space of all complex valued functions on K
with n negative squares. A Hermitian function ¢ on K is said to be
quasi-positive definite if p € US° P, (K).

We remark that the definitions are compatible with the ones for
groups and semigroups. Moreover, if we consider the restrictions of
the elements of P, (K) to the maximal subgroup of K, G(K), these are
quasi-positive definite functions (with n negative squares) on the group
(semigroup) G(K) in the sense of [7] (or [1]). The elements of Py(K)
are just the bounded positive-definite functions on the hypergroup K
[5]-

Now we shall construct the quasi-positive space with negative rank n
associated with a function ¢ € P, (K). First we introduce in C(K) the
translation operator E,, u € M(K), by the formula

E.g=p"*g, g€C(K).
We denote by A the complex linear space {E,, : C(K) — C(K) | p €
M(K)}. Since E,.9 = E,(E,(g)) for any g in C(K), it follows that
A is an algebra. For an arbitrary function f € C(K) the subspace of
C(K)
T(f)={Af|Ac A}



894 L. PAVEL

is invariant under each operator A € A. The restriction of A to T'(f)
will also be denoted by A.

Let now ¢ be a quasi-positive definite function. We consider an inner
product (+,+), := (+,+) on T'(¢) by the formula

@mzﬁwmmwww

where g = E,,¢ and h = E, ¢, u,v € M(K).
We observe that

@mzémmwazémaww.

Indeed, we have

Similarly, we obtain the second equality. These identities imply that
the inner product is independent of the particular representations of g
and h.

The function ¢ being Hermitian, it follows from the lemma that

(9,h) = (h,9).

It results that the vector space T'(¢) equipped with the inner product
(*,*)¢ := (+,-) is an inner product space in the sense of [2]. Accordingly,
in view of the definition of P, (K), when ¢ € P,(K), T(y¢) is a QP,
space.

Proposition. Let g be an element of T'(p). Then

g(x):(gaEpzS@), Vz € K.
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Proof. As g is in T'(p), g has a representation of the form g = E,¢.
Then we have for z in K,

(9, Fpo) = /K o(2)d(u* * pa)(2)
- /K (4" * ) (2) dpa(2)
— [ Buple)dra(2)

=Eup(z)=g(z). D

Remark . Let ¢ € P,(K), and let T(p) be the QP, space constructed
above. Let T(¢) = P @& N be an orthogonal decomposition of T'(¢),
where P is a pre-Hilbert space and IV is an n-dimensional negative
subspace. If g € P, then g_ = 0 and, by the preceding proposition, we
have

l9(2)* = (g, Ep. o)l < (9,9) - | Bp, ¢ll-

From this we see that, if (g,),, is a Cauchy sequence in P, then (g, (z)),,
is a complex Cauchy sequence for all z in K. It follows that there exists
a function g : K — C defined by

g(z) = lim g, (z).

Let 7, (¢) be the completion of P constructed by means of functions
on K. Setting

Tn(9) + 71 (0) @ 7, (),

where 7 (¢) = N, m,(¢) becomes a 7, space. Since g — (g9,E,, ¢)
is continuous on 7,(¢) and T'(p) is dense in m,(p), g(z) = (9, Ep, ¥)
holds for every g € m, ().

In conclusion, it results that, for ¢ € P, (K), there exists a Pontryagin
space 7, () of functions on K such that T(p) is dense in 7,(p) and
g9(xz) = (9, Ep,,p) for all z € K, g € m, ().

2. Relation between functions with n negative squares and
representations in ()P, spaces.
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Theorem 1. Let U be a continuous representation of the hypergroup
K in the QP, space (V,(-,-)). Then, for every & € V, the function
p: K —C,

() = (&, Up.€)
has at most n negative squares and it has n negative squares if £ is
cyclic. Moreover, in this case ¢ € P,(K).

Proof. Since U is a continuous representation, it is clear that
¢ € C(K). Next, let {p;}i=1,2,.  be a finite sequence in M(K). Then,
for all i,5 € {1,2,...,k}, we have

/K (=)} * ) (2) = /K 6,V €)d(ust * 1) (2)
= (faUuI*wf) = (Umf, quf)-

Since (V, (+,-)) is a QP,, space and {Uy, () }i=1,2,... k C V, it follows that
the matrix ((Uy, €, Uy, €))1<i,j<r has at most n negative eigenvalues, so
for any choice of k and p1, ... ,ur € M(K) the matrix ([, ¢(2)d(p; *
1i)(2))1<i,j<k has at most n negative eigenvalues.

If ¢ is cyclic, the linear span of {U,€ | p € M(K)} is dense in the
QP, space V, and it is known [4] that it contains a negative subspace
of dimension n.

Let ¢; = l 1 cl U (@)5, 1 =1,2,...,n, be an orthonormal basis of

this subspace, i.e.,
ezaeJ ch g ‘(1] U Ei)fangj)g)
= Sl [ el e
K
= —6”-, i,j €{1,2,...,n}.

It results that the matrix ([, ga(z)d(p,l( ) u((lj))(z)) of order 1 +ry +
-+ 4+ r, has n negative eigenvalues, so ¢ € P,(K).

Theorem 2. Let ¢ be in P,(K). Then there exist a QP, space
(V,(,-)), an w-continuous representation U of the hypergroup K in the
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space V' and a cyclic vector € such that

QO(I) = (Ea Upzf)a Vo € K.

Proof. If ¢ € P,(K), we can construct the inner product space 1'(¢)
as in Section 1. Since ¢ has n negative squares, it results that T'(p) is
a QP, space. We take V := T'(¢) and we define U : M(K) — End (V)
by

pr— U, =E,.

A short computation shows that

(Epfag):(faE,u*g)a VNEM(K)a f,gET(g&)-

So it is clear that the mapping U has properties 1, 2 and 3 of the
definition of w-continuous representation. It remains to prove only 4,
i.e., for any f,g € T(¢p) the function p — (U,f,g) is continuous. Let
f, g be two elements in T'(yp), i.e.,

f=E,p, g = Egp.

Then
(Uufrg) = (Bufg) = /K o(2)d(" % i+ 6).

If (1B)pep is a net in MT(K') converging to p, then, by the continuity
of the convolution and definition of the cone topology, it results that
the net ([, ¢(2)d(v* * pg * 0)(z))p converges to [, @(z)d(v* * p * 6).
This shows that the map p — (U,f,g) is continuous for every f,g in
V. Tt is also clear that ¢ € V is a cyclic vector for U. By taking £ = ¢
and using the proposition of Section 1, the proof is complete. a

For U : K — B(V) a cyclic continuous representation of the hyper-
group K in the QP, space V, with a cyclic vector &, the function ¢ of
P(K), defined as follows,

p(@) = Up8), zeK

is called the characteristic function of the representation U.
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Theorem 3. Fori=1,2, let U’ : K — B(V;) be a cyclic continuous
representation of K in a QP,, space V; with characteristic function ;.
Then

U'=U? ifand only if @1 = po.

Proof. Suppose that U! = U2, and let 7 be an intertwining isometric
operator. Then

o1(x) = (61, U) &) = (161,70, &) = (&2, U, &) = pa().

Conversely, let 7 be defined on the linear span of {U} & |z € K} by

p p
T(IZ biU,,, §1> = ZZ bU,, Eo.
=1 =1

Since 1 = ¢g, it results that, for any element u = Y ), blUI}wlfl,
v=73"_,¢cU,, & of the linear span {U, & | x € K}, we have
Eq x

P T
(’LL,U) = (ZblUI}zlgl’ZchI}zq 1>
=1 q=1

= Z blg(&la Up;l *pwqfl)

l,q
= Zblﬁ/K(fl,UI}wﬁl)d(P;l * Pz, ) (2)
l,q

= Z bl@/K(&, U;ifz)d(p;, * Da, ) (2)
l,q

= (Tu, 1),

which shows that 7 is an isometric linear map on the span {UI}E &lze
K}. Since (Sp{Up & |z € K})* = (Sp{U2.& | z € K})* = {0}, it
follows that 7 is an isometric isomorphism of Sp{U, & | z € K} onto
Sp{U2 & | « € K}. By the density of these spaces, it follows that T
can be extended continuously to an isometric isomorphism of V; onto
V5 with

7€ =¢& and TU; = Uﬁr.
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3. Examples of quasi-positive functions. For a function
f € C(K) we define the rank of f by rk (f) = dimT(f).

Remark 1. Tt is obvious to see that rk (f) = 0 if and only if f = 0.

Remark 2. A function f has the rank 1 if and only if it is proportional
to a multiplicative bounded function. (We recall that a complex valued
function X on K is said to be a multiplicative function if X is continuous
and not identically zero and has the property X(z *y) = X(z) - X(y) for
all z,y € K.)

Indeed, let f € C(K') be with rk (f) = 1. It follows that {E,}, u # 0,
is a basis for T'(f). Then, for every z,y in K, we have

f(@xy) = c(@) ("« f)(y).
If we put here y = e and then x = e, we obtain
f(@) =c()(u”" * f)(e), VaeK,

and, respectively,

fly) =cle)(w"* f)(y), VyeK.

By taking into account these three equalities, we obtain

fl@xy) = c(x)e(e) ™ f(y) = F(@)[(u" * f)(e)] " ele) ™ f(y)
= (" * f)e)e(e)] 7 f(2) f(y).

Now it is enough to define x : K — C

X(z) = [(1" * F)(e)e(e)] ™ f(2)-

With the previous calculation, it is clear that X is a multiplicative
function proportional to f.

Conversely, let f = cx where X is a multiplicative bounded function
and ¢ € C. For every Af in T(f), there exists p € M(K) such that
Af =E,f.
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Then, for arbitrary = in K, we have

Af(z) = (p" * f)(z) = (p" * ex)(z)
= C/KX(y‘ * ) dp” (y)

= cX() /K X(y) du(y)

— (e[ X autw) )xta).

Proposition. Let pn — U, be a continuous representation of K on
a finite dimensional QP,, space (V,(-,-)). Then, for any {,m € V, the
function

f(g) - (f,U m77)

s of finite rank.

Proof. First, we observe that if p is in M(K), we have

E.f(z) = /Kf(y‘ * ) dp” (y)

:/K </Kf(z)d(py *pz)(Z)> dp* (y)

~ [ ([ €t o)) ')
— /K (&, Up, sp.1) dp*(y)

= /K(Upyf, Up,n) du* (y)-

Let now ey, es,...,e, be a basis for the finite m-dimensional QP,
space V. For every y in K and £ € V, we have

Upyf = Z a; (y)ei-
=1
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Then, using the surjectivity of U we obtain for every p € M(K) and
reK,

E,f(x) Z/K(Upy&Uﬂ) du* (y)

=> (Z ai(y) du*(y)> (e, Up, 1)
=1 K
= ) dp* S
; (/Ka (y) du (y)>(UM,£ Up.n)
=3 ([ dw) s,
where Uy:§ =¢;,i=1,... ,m.
Therefore, T'(f) is a finite dimensional space. o

Theorem (Examples of quasi-positive definite functions). Let ¢ be
in Po(K) with rank n. Then, for any 6 in Py(K), the difference

p=0-9

s a quasi-positive definite function, having at most n negative squares.

Proof. The proof is adapted from the group case [7]. First, it is
clear that ¢ is in Py(K) and has rank n, then —¢ is in P, (K). Let
6 € Po(K) be arbitrary and ¢ = 6 —1 € C(K). Therefore, ¢ is the sum
of two functions of Py (K), respectively P, (K). By virtue of Theorem 2
(Section 2), there exist w-continuous representations U', U? of K in the
quasi-positive V; (pre-Hilbert), V2 (QP, space) and & € Vi, & € Vs
such that 8 and — are given in the form

O(m):(fl,Upzfl), Vl‘GK,
and, respectively,

—Y(x) = (&2,Up, &), Ve K.
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If U is the product representation of K in the QFP, space Vi X V5, a
short computation shows

(10(3;.) = (’Y)Upm’y)le‘/z) VZ’ E K7

where 7 = (£1,&) € V1 x Va.

As in the proof of Theorem 1 (Section 2), it follows that ¢ has at
most n negative squares. O

REFERENCES

1. C. Berg and Z. Sasvéari, Functions with a finite number of negative squares,
Monatsh. Math. 107 (1989), 9-34.

2. J. Bognar, Indefinite inner product spaces, Springer, New York, 1974.

3. R. Godement, Les fonctions de type positif et la théorie des groupes, Trans.
Amer. Math. Soc. 63 (1948), 1-84.

4. 1.S. Iohvidov, M.G. Krein and H. Langer, Introduction to the spectral theory
of operators in spaces with an indefinite metric, Akademie-Verlag, Berlin, 1982.

5. R. Jewett, Spaces with an abstract convolution of measures, Adv. Math. 18
(1975), 1-101.

6. M.A. Naimark, On commuting unitary operators in spaces with indefinite
metric, Acta Sci. Math. 24 (1963), 177-189.

7. K. Sakai, On quasi-positive functions and unitary representations of groups in
Pontrjagin spaces, J. Math. Kyoto Univ. 19 (1979), 71-90.

8. R. Spector, Aper¢u de la théorie des hypergroupes, Analyse Harmonique sur
les groupes de Lie, Springer Verlag, New York, 1975.

9. M. Thill, Ezponentially bounded indefinite functions, Math. Ann. 285-2
(1989), 297-307.

UNIVERSITY OF BUCHAREST, FACULTY OF MATHEMATICS, ACADEMIEI 14, 70109
BUCHAREST, ROMANIA
E-mail address: epavel@roimar.imar.ro



