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A SIMPLE PROOF OF FIEDLER’S CONJECTURE
CONCERNING ORTHOGONAL MATRICES

BRYAN L. SHADER

ABSTRACT. We give a simple proof that an n×n orthog-
onal matrix with n ≥ 2 which cannot be written as a direct
sum has at least 4n − 4 nonzero entries.

1. The result. What is the least number of nonzero entries in a real
orthogonal matrix of order n? Since the identity matrix In is orthogonal
the answer is clearly n. A more interesting question is: what is the least
number of nonzero entries in a real orthogonal matrix which, no matter
how its rows and columns are permuted, cannot be written as a direct
sum of (orthogonal) matrices? Examples of orthogonal matrices of each
order n ≥ 2 which cannot be written as a direct sum and which have
4n− 4 nonzero entries are given in [1]. M. Fiedler conjectured that an
orthogonal matrix of order n ≥ 2 which cannot be written as a direct
sum has at least 4n − 4 nonzero entries.

Using a combinatorial property of orthogonal matrices, Fiedler’s con-
jecture was proven in [1]. A (0, 1)-matrix A of order n is combinatorially
orthogonal provided no pair of rows of A has inner product 1 and no
pair of columns of A has inner product 1. Clearly, if Q is an orthogonal
matrix of order n, then the (0, 1)-matrix obtained from Q by replac-
ing each of its nonzero entries by a 1 is combinatorially orthogonal.
A quite lengthy and complex combinatorial argument is used in [1] to
show that if A is a combinatorially orthogonal matrix of order n ≥ 2
and A cannot be written as a direct sum, then A has at least 4n − 4
nonzero entries. Clearly this result implies Fiedler’s conjecture. In this
note we give a simple matrix theoretic proof of Fiedler’s conjecture.
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Theorem 1.1. Let Q be an orthogonal matrix of order n of the form

Q =
[

U O
V W

]

where U is a k× k + l matrix, and W is an m + l×m matrix for some
positive integers k and m and nonnegative integer l with k+ l+m = n.
Then the rank, r(V ), of V equals l.

Proof. Since the rows of U are linearly independent r(U) = k.
Similarly, r(W ) = m. Since the rank of a sum of matrices is less
than or equal to the sum of the ranks of the matrices,

r(Q) ≤ r(U) + r(W ) + r(V ).

Thus l ≤ r(V ), since r(Q) = k + l + m. Because Q is orthogonal, the
rows of V belong to the orthogonal complement in Rk+l of the space
spanned by the rows of U . Since r(U) = k, this implies that r(V ) ≤ l.
Therefore r(V ) = l.

We note that, by taking l = 0 in Theorem 1.2, we have V = O; and
hence an orthogonal matrix Q of order n can be written as a direct
sum of matrices (after possibly permuting its rows and columns) if and
only if Q contains a zero submatrix whose dimensions sum to n.

Corollary 1.2. Let

Q =
[

U O
V W

]

be an n×n orthogonal matrix where U is k × k + 1 and W is l + 1× l,
k + l = n − 1 and k, l ≥ 1. Then there exist nonzero vectors x and y
such that V = xyT , and both

(1) U ′ =
[

U
yT

]
and W ′ = [ x W ]

are orthogonal matrices.

Proof. By Theorem 1.1, V has rank one. Hence, there exist vectors x
and y such that V = xyT . Since Q is orthogonal, the sum of the squares
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of the entries in its first k rows equals k, and the sum of the squares of
the entries in its first k+1 columns equals k+1. Hence, the sum of the
squares of the entries in V equals 1. It follows that (xT x)(yT y) = 1.
Thus, by replacing x by (1/

√
xT x)x and y by

√
xT xy, we may assume

that xT x = 1 and yT y = 1. Since Q is orthogonal, yT is orthogonal to
each row of U , and x is orthogonal to each column of W . The corollary
now follows.

We now prove Fiedler’s conjecture. We let #(A) denote the number
of nonzero entries in the matrix A.

Theorem 1.3. Let Q be an orthogonal matrix of order n ≥ 2 which
cannot be written as a direct sum of matrices (no matter how its rows
and columns are permuted). Then Q has at least 4n−4 nonzero entries.

Proof. The proof is by induction on n. First suppose that Q contains
a k×l zero submatrix for some positive integers k and l with k+l = n−1.
Without loss of generality we may assume that

Q =
[

U O
V W

]

where U is k × k + 1, and W is l + 1 × l. By Corollary 1.2, there exist
x and y such that V = xyT and the matrices U ′ and W ′ in (1) are
orthogonal matrices.

Suppose that U ′ can be written as a direct sum of two matrices. Then
U ′ contains an r × s zero submatrix which does not intersect the last
row of U ′ for some positive integers r and s with r + s = k + 1. It
follows that Q contains an r × s + (n − k − 1) zero submatrix. Hence,
by the observation immediately after Theorem 1.1, Q can be written
as a direct sum of matrices. This contradicts our assumptions. Thus,
U ′ cannot be written as a direct sum of matrices. A similar argument
shows that W ′ cannot be written as a direct sum of matrices.

Clearly,

#(Q) = #(U ′) + #(W ′) − 1 + (#(y) − 1)(#(x) − 1).
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By induction U ′ has at least k nonzero entries, and W ′ has at least 4l
nonzero entries. Thus,

#(Q) ≥ 4k + 4l − 1 + (#(y) − 1)(#(x) − 1)
= (4n − 4) − 1 + (#(y) − 1)(#(x) − 1).

Since Q has no r × s zero submatrix with r + s ≥ n, #(y) ≥ 2 and
#(x) ≥ 2. Therefore, #(Q) ≥ 4n − 4.

Now suppose that Q does not contain a k × l zero submatrix for any
positive integers k and l with k + l = n − 1. If n = 2, then each entry
of Q is nonzero and hence #(Q) ≥ 4(n − 1). Assume that n ≥ 3.
Then each row and column of Q has at least 3 nonzero entries. Thus,
if n = 3, then #(Q) > 4(n − 1).

Assume that n ≥ 4. If each row and column of Q has at least 4
nonzero entries, then #(Q) ≥ 4n > 4(n − 1). Suppose that some row
or column of Q has exactly 3 nonzero entries. We may assume without
loss of generality that row 1 of Q has exactly 3 nonzero entries, and
that these occur in columns 1, 2 and 3. Let

Q =
[

q11 q12 q13 0 · · · 0
u v w X

]
,

where X is n − 1 × n − 3.

By Theorem 1.1, the rank of [u v w] is 2. Without loss of generality
we may assume that u and v are linearly independent.

Since each of u, v and w is orthogonal to each column of X,

Q′ = [ u′ v′ X ]

is an orthogonal matrix of order n− 1, where u′ and v′ are the vectors
obtained from u and v by applying the Gram-Schmidt process.

Suppose that Q′ can be written as a direct sum of two matrices. Then
there exist positive integers r and s with r + s ≥ n − 2 such that X
contains an r×s zero submatrix. It follows that Q contains an r+1×s
zero submatrix, which contradicts our assumptions. Hence Q′ cannot
be written as a direct sum of matrices.

By the induction hypothesis, #(Q′) ≥ 4n−8. Clearly #(u′) = #(u),
and

#(Q) = #(Q′) − #(v′) + 3 + #(v) + #(w).
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Thus it follows that

#(Q) ≥ 4n − 5 + #(v) + #(w) − #(v′).

Since rows 2, 3, . . . , n of Q are orthogonal to the first row of Q, no row
of [u v w] contains exactly one nonzero entry. Thus, each row of [v w]
contains at least as many nonzero entries as the corresponding row of
v′. Since the second and third columns of Q are orthogonal, some row
of [v w] has no zero entries. Thus, for some i, row i of [v w] has more
nonzero entries than row i of v′. It follows that #(Q) ≥ 4n − 4.

The techniques used in the proof of Theorem 1.3 can be used to
classify, as was done in [1], the orthogonal matrices of order n which
cannot be written as a direct sum and which have exactly 4n−4 nonzero
entries.
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