A SIMPLE PROOF OF FIEDLER'S CONJECTURE CONCERNING ORTHOGONAL MATRICES

BRYAN L. SHADER

Abstract

We give a simple proof that an $n \times n$ orthogonal matrix with $n \geq 2$ which cannot be written as a direct sum has at least $4 n-4$ nonzero entries.

1. The result. What is the least number of nonzero entries in a real orthogonal matrix of order n ? Since the identity matrix I_{n} is orthogonal the answer is clearly n. A more interesting question is: what is the least number of nonzero entries in a real orthogonal matrix which, no matter how its rows and columns are permuted, cannot be written as a direct sum of (orthogonal) matrices? Examples of orthogonal matrices of each order $n \geq 2$ which cannot be written as a direct sum and which have $4 n-4$ nonzero entries are given in [1]. M. Fiedler conjectured that an orthogonal matrix of order $n \geq 2$ which cannot be written as a direct sum has at least $4 n-4$ nonzero entries.

Using a combinatorial property of orthogonal matrices, Fiedler's conjecture was proven in $[\mathbf{1}]$. A $(0,1)$-matrix A of order n is combinatorially orthogonal provided no pair of rows of A has inner product 1 and no pair of columns of A has inner product 1. Clearly, if Q is an orthogonal matrix of order n, then the $(0,1)$-matrix obtained from Q by replacing each of its nonzero entries by a 1 is combinatorially orthogonal. A quite lengthy and complex combinatorial argument is used in [1] to show that if A is a combinatorially orthogonal matrix of order $n \geq 2$ and A cannot be written as a direct sum, then A has at least $4 n-4$ nonzero entries. Clearly this result implies Fiedler's conjecture. In this note we give a simple matrix theoretic proof of Fiedler's conjecture.

[^0]Theorem 1.1. Let Q be an orthogonal matrix of order n of the form

$$
Q=\left[\begin{array}{cc}
U & O \\
V & W
\end{array}\right]
$$

where U is a $k \times k+l$ matrix, and W is an $m+l \times m$ matrix for some positive integers k and m and nonnegative integer l with $k+l+m=n$. Then the rank, $r(V)$, of V equals l.

Proof. Since the rows of U are linearly independent $r(U)=k$. Similarly, $r(W)=m$. Since the rank of a sum of matrices is less than or equal to the sum of the ranks of the matrices,

$$
r(Q) \leq r(U)+r(W)+r(V)
$$

Thus $l \leq r(V)$, since $r(Q)=k+l+m$. Because Q is orthogonal, the rows of V belong to the orthogonal complement in R^{k+l} of the space spanned by the rows of U. Since $r(U)=k$, this implies that $r(V) \leq l$. Therefore $r(V)=l$.

We note that, by taking $l=0$ in Theorem 1.2 , we have $V=O$; and hence an orthogonal matrix Q of order n can be written as a direct sum of matrices (after possibly permuting its rows and columns) if and only if Q contains a zero submatrix whose dimensions sum to n.

Corollary 1.2. Let

$$
Q=\left[\begin{array}{cc}
U & O \\
V & W
\end{array}\right]
$$

be an $n \times n$ orthogonal matrix where U is $k \times k+1$ and W is $l+1 \times l$, $k+l=n-1$ and $k, l \geq 1$. Then there exist nonzero vectors x and y such that $V=x y^{T}$, and both

$$
U^{\prime}=\left[\begin{array}{c}
U \tag{1}\\
y^{T}
\end{array}\right] \quad \text { and } \quad W^{\prime}=\left[\begin{array}{ll}
x & W
\end{array}\right]
$$

are orthogonal matrices.

Proof. By Theorem 1.1, V has rank one. Hence, there exist vectors x and y such that $V=x y^{T}$. Since Q is orthogonal, the sum of the squares
of the entries in its first k rows equals k, and the sum of the squares of the entries in its first $k+1$ columns equals $k+1$. Hence, the sum of the squares of the entries in V equals 1. It follows that $\left(x^{T} x\right)\left(y^{T} y\right)=1$. Thus, by replacing x by $\left(1 / \sqrt{x^{T} x}\right) x$ and y by $\sqrt{x^{T} x} y$, we may assume that $x^{T} x=1$ and $y^{T} y=1$. Since Q is orthogonal, y^{T} is orthogonal to each row of U, and x is orthogonal to each column of W. The corollary now follows.

We now prove Fiedler's conjecture. We let $\#(A)$ denote the number of nonzero entries in the matrix A.

Theorem 1.3. Let Q be an orthogonal matrix of order $n \geq 2$ which cannot be written as a direct sum of matrices (no matter how its rows and columns are permuted). Then Q has at least $4 n-4$ nonzero entries.

Proof. The proof is by induction on n. First suppose that Q contains a $k \times l$ zero submatrix for some positive integers k and l with $k+l=n-1$. Without loss of generality we may assume that

$$
Q=\left[\begin{array}{cc}
U & O \\
V & W
\end{array}\right]
$$

where U is $k \times k+1$, and W is $l+1 \times l$. By Corollary 1.2 , there exist x and y such that $V=x y^{T}$ and the matrices U^{\prime} and W^{\prime} in (1) are orthogonal matrices.
Suppose that U^{\prime} can be written as a direct sum of two matrices. Then U^{\prime} contains an $r \times s$ zero submatrix which does not intersect the last row of U^{\prime} for some positive integers r and s with $r+s=k+1$. It follows that Q contains an $r \times s+(n-k-1)$ zero submatrix. Hence, by the observation immediately after Theorem $1.1, Q$ can be written as a direct sum of matrices. This contradicts our assumptions. Thus, U^{\prime} cannot be written as a direct sum of matrices. A similar argument shows that W^{\prime} cannot be written as a direct sum of matrices.

Clearly,

$$
\#(Q)=\#\left(U^{\prime}\right)+\#\left(W^{\prime}\right)-1+(\#(y)-1)(\#(x)-1)
$$

By induction U^{\prime} has at least k nonzero entries, and W^{\prime} has at least $4 l$ nonzero entries. Thus,

$$
\begin{aligned}
\#(Q) & \geq 4 k+4 l-1+(\#(y)-1)(\#(x)-1) \\
& =(4 n-4)-1+(\#(y)-1)(\#(x)-1)
\end{aligned}
$$

Since Q has no $r \times s$ zero submatrix with $r+s \geq n, \#(y) \geq 2$ and $\#(x) \geq 2$. Therefore, $\#(Q) \geq 4 n-4$.
Now suppose that Q does not contain a $k \times l$ zero submatrix for any positive integers k and l with $k+l=n-1$. If $n=2$, then each entry of Q is nonzero and hence $\#(Q) \geq 4(n-1)$. Assume that $n \geq 3$. Then each row and column of Q has at least 3 nonzero entries. Thus, if $n=3$, then $\#(Q)>4(n-1)$.

Assume that $n \geq 4$. If each row and column of Q has at least 4 nonzero entries, then $\#(Q) \geq 4 n>4(n-1)$. Suppose that some row or column of Q has exactly 3 nonzero entries. We may assume without loss of generality that row 1 of Q has exactly 3 nonzero entries, and that these occur in columns 1,2 and 3 . Let

$$
Q=\left[\begin{array}{cccccc}
q_{11} & q_{12} & q_{13} & 0 & \cdots & 0 \\
u & v & w & & X &
\end{array}\right]
$$

where X is $n-1 \times n-3$.
By Theorem 1.1, the rank of $[u v w]$ is 2 . Without loss of generality we may assume that u and v are linearly independent.
Since each of u, v and w is orthogonal to each column of X,

$$
Q^{\prime}=\left[\begin{array}{lll}
u^{\prime} & v^{\prime} & X
\end{array}\right]
$$

is an orthogonal matrix of order $n-1$, where u^{\prime} and v^{\prime} are the vectors obtained from u and v by applying the Gram-Schmidt process.
Suppose that Q^{\prime} can be written as a direct sum of two matrices. Then there exist positive integers r and s with $r+s \geq n-2$ such that X contains an $r \times s$ zero submatrix. It follows that Q contains an $r+1 \times s$ zero submatrix, which contradicts our assumptions. Hence Q^{\prime} cannot be written as a direct sum of matrices.
By the induction hypothesis, $\#\left(Q^{\prime}\right) \geq 4 n-8$. Clearly $\#\left(u^{\prime}\right)=\#(u)$, and

$$
\#(Q)=\#\left(Q^{\prime}\right)-\#\left(v^{\prime}\right)+3+\#(v)+\#(w)
$$

Thus it follows that

$$
\#(Q) \geq 4 n-5+\#(v)+\#(w)-\#\left(v^{\prime}\right)
$$

Since rows $2,3, \ldots, n$ of Q are orthogonal to the first row of Q, no row of $[u v w]$ contains exactly one nonzero entry. Thus, each row of $[v w]$ contains at least as many nonzero entries as the corresponding row of v^{\prime}. Since the second and third columns of Q are orthogonal, some row of $[v w]$ has no zero entries. Thus, for some i, row i of $[v w]$ has more nonzero entries than row i of v^{\prime}. It follows that $\#(Q) \geq 4 n-4$.

The techniques used in the proof of Theorem 1.3 can be used to classify, as was done in [1], the orthogonal matrices of order n which cannot be written as a direct sum and which have exactly $4 n-4$ nonzero entries.

REFERENCES

1. L.B. Beasley, R.A. Brualdi and B.L. Shader, Combinatorial orthogonality, in Combinatorial and graph-theoretical problems in linear algebra (R.A. Brunaldi, S. Friedland and V. Klee, eds.), Springer-Verlag, New York, 1993.
2. R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985.

[^0]: Received by the editors on November 10, 1994, and in revised form on November 7, 1995.

 This research is supported in part by the National Security Agency under grant MDA904-94-H-2051.

