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ON THE STRUCTURE OF ROSENTHAL’S SPACE Xϕ

IN ORLICZ FUNCTION SPACES

CÉSAR RUIZ

ABSTRACT. Several kinds of complemented subspaces of
Orlicz function spaces Lϕ[0, 1] are studied. In particular Xϕ,
a natural generalization of Rosenthal’s spaces Xp, 1 ≤ p ≤ ∞,
is analyzed. Several isomorphic and structural properties of
these spaces Xϕ are given.

0. Introduction. Given an Orlicz function space Lϕ[0, 1], what
do the complemented subspaces look like? In the particular case of
Lp[0, 1] spaces, 1 < p < ∞, Lindenstrauss and Rosenthal [10] have
given a characterization of their complemented subspaces in terms of
Lp-spaces. But later it was shown that there exist at least uncountable
many mutually nonisomorphic Lp-spaces, 1 < p �= 2 <∞ [3].

In view of the above, it appears improbable that a complete classifica-
tion of complemented subspaces of Lϕ[0, 1] spaces will be obtained. For
this reason, we limit ourselves to study here of several remarkable kinds
of complemented subspaces of reflexive Lϕ[0, 1] spaces. Such spaces will
be defined in Section 2, the spaces Xϕ and lϕ(w)(l2). The space Xϕ

was introduced in [18] as a generalization of Rosenthal’s space Xp. The
space Xp, 1 < p < ∞, was the first example of a complemented sub-
space of Lp[0, 1] nonisomorphic to the trivial subspaces l2, lp, l2 ⊕ lp,
Lp[0, 1] or (l2 ⊕ l2 ⊕ · · · )p. The space Xp has interesting properties
which have been studied in [17, 9, 1].

In [18], the space Xϕ has been studied in relation with the structure
of Lϕ[0, 1], proving that every sequence of independent symmetric
random variables in Lϕ[0, 1] spans a subspace of Lϕ[0, 1] isomorphically
embedded in Xϕ. Nevertheless, here, the structure of these kinds of
complemented subspaces of Lϕ[0, 1], their isomorphic properties, and
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the relationship between them can be studied using the weight Orlicz
sequence spaces lϕ(w) (they have already been used in [5, 7, 16]).

Section 3 is dedicated to investigating the spaces lp(w), in particular
when the weight sequence w verifies that wn →

n→∞ 0 and
∑∞
n=1 wn = ∞.

These spaces lϕ(w) are all mutually isomorphic, Theorem 3.5; and they
have an unconditional basis. But, in general, they do not have any
symmetric basis as we prove in Proposition 3.4. Afterward, isomorphic
properties of these spaces lϕ(w) are also given. It is remarkable that
some of these properties are always verified for every Banach space with
a symmetric basis.

Finally, in Section 4 we show that the complemented subspaces
lϕ(w)(l2) of Lϕ[0, 1],

∑∞
n=1 wn < ∞, are not isomorphic to any sub-

space of Xϕ when α∞
ϕ > 2, being α∞

ϕ the lower index of ϕ at ∞.

1. Preliminaries. An Orlicz function ϕ is a convex nondecreasing
continuous function defined for x ≥ 0 so that ϕ(0) = 0, ϕ(1) = 1
and ϕ(x) →

x→∞ ∞. We always assume that ϕ ∈ ∆2, by which we
mean ϕ verifies the ∆2-condition, i.e., there exists a K > 0 such that
ϕ(2x) ≤ Kϕ(x) for each x > 0. Let (Ω,Σ, µ) be a positive measure
space. The Orlicz space Lϕ(µ) is defined as the set of equivalence
classes of µ-measurable scalar functions f on Ω such that

Iϕ(f) =
∫
ϕ(|f(t)|) dµ(t) <∞.

The space Lϕ(µ), endowed with Luxemburg norm

‖f‖ϕ = inf {r > 0 : Iϕ(f/r) ≤ 1},
is a separable Banach space. For Ω = [0, 1] or (0,∞) and µ the Lebesgue
measure, we denote Lϕ(µ) by Lϕ[0, 1] or Lϕ(0,∞), respectively.

For Ω = N and w = (wn = µ(n))∞n=1 we get the weighted Orlicz
sequence spaces lϕ(w). The unit vector sequence (en)∞n=1 is an un-
conditional basis in lϕ(w). When wn = 1 for each n ∈ N, then we
denote by lϕ the usual Orlicz sequence space. Moreover, in this case
the basis (en) is symmetric. Two Orlicz functions ϕ and ψ are said
to be equivalent, ϕ ∼ ψ if there exists a constant K > 0 such that
K−1ϕ(x) ≤ ψ(x) ≤ Kϕ(x) for every x ≥ 0; in the same way, it defines
the equivalence at 0 or at ∞.
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Recall that an Orlicz function ϕ is p-convex, respectively q-concave, if
ϕ(x)/xp is nondecreasing on R+, respectively ϕ(x)/xq is nonincreasing.

For other properties on Orlicz functions, as the associated indices,
as well as our terminology, we refer to the books of Lindenstrauss and
Tzafriri [12, 13], see also [11, 14, 15, 20].

2. Complemented subspaces of Lϕ[0, 1]. Let I be the inter-
val [0, 1] or (0,∞), and {An}∞n=1 be a sequence of mutually disjoint
measurable subsets of I. The averaging projection P , defined by

(1) P (f) =
∞∑
n=1

∫
An

f(t) dµ(t)

µ(An)
χAn

from Lϕ(I) onto [χAn
], shows that [χAn

] is complemented in Lϕ(I) [13,
Theorem 2.a.4]. Moreover, it is obvious that [χAn

] is isometric to the
space lϕ(w) where w = (wn = µ(An))∞n=1.

For our purposes we need to consider two representations of a reflexive
and separable Orlicz function space Lϕ[0, 1]:

A) Lϕ[0, 1] ≈ Lϕ̄(0,∞) [8, Theorem 8.6], where ϕ̄(x) = x2 if x ∈ [0, 1]
and ϕ̄(x) = ϕ(x) if x > 1.

B) Lϕ[0, 1] ≈ Lϕ(l2), where Lϕ(l2) is the completion of the space of
all sequences (f1, f2, . . . ) of functions of Lϕ[0, 1] which are eventually
zero, with respect to the norm

‖(f1, f2, . . . )‖Lϕ(l2) =
∥∥∥∥
( ∞∑
n=1

|fn|2
)1/2∥∥∥∥

ϕ

(cf. [13, Theorem 2.d.4]). Of course, Lϕ(l2) is isometric to the Bochner
space Lϕ(([0, 1],Σ, µ), l2).

The above representation A) together with (1) yields that the
weighted Orlicz sequence spaces lϕ̄(w) are isomorphic to complemented
subspaces of Lϕ[0, 1], for every weight sequence w. It is not hard to
recognize the following four cases:

i) If infnwn > 0, then lϕ̄(w) = l2.

ii) If
∑∞
n=1 wn <∞, then lϕ̄(w) = lϕ(w).
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iii) If infnwn = 0,
∑∞
n=1 wn = ∞ and for every subsequence (wnk

)
with wnk

→
k→∞

0 it holds that
∑∞
k=1 wnk

< ∞, then a subsequence

(wnk
) with

∑∞
k=1wnk

<∞ can be found so that lϕ̄(w) = l2 ⊕ lϕ(wnk
).

iv) If w ∈ Λ, we mean that there exists a subsequence (wnk
)∞k=1 such

that

(∗) wnk
−→
k→∞

0 and
∞∑
k=1

wnk
= ∞,

we obtain the class of spaces lϕ̄(w) which are mutually isomorphic as
we will prove in the next section, Theorem 3.5.

In this paper, if w ∈ Λ, we may and will assume, without loss of
generality, that the whole sequence verifies (∗).

Definition 2.1. Let Xϕ be the class of spaces lϕ̄(w), where w ∈ Λ.

This definition can be found in [18], where it is proved that Xϕ = Xp

when ϕ(x) = xp, since Xp is Rosenthal’s space. Also in [18, 16] there
can be found a proof of the following theorem.

Theorem 2.2. Each subspace of a separable Orlicz function space
Lϕ[0, 1] spanned either by a sequence of mutually disjoint functions or
by a sequence of independent symmetric random variables is isomorphic
to a subspace of Xϕ.

We now introduce other complemented subspaces, with unconditional
basis, of Lϕ[0, 1], which have the property that they are not isomorphic
to a subspace of Xϕ, as we will see in Section 4.

Using the representation B) and considering the spaces

lϕ(w)(l2) =
{

((xn,k)k)n ∈ lN2 :
∞∑
n=1

ϕ

(( ∞∑
k=1

|xn,k|2
)1/2)

wn <∞
}

equipped with the norm

‖(xn,k)‖lϕ(w)(l2) = ‖(‖(xn,k)k‖2)n‖ϕ
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we have the following result:

Proposition 2.3. Let Lϕ[0, 1] be a reflexive Orlicz function space.
For every weight sequence w with finite sum, the space lϕ(w)(l2) is
isomorphic to a subspace of Lϕ[0, 1]. Furthermore, when 2 < α∞

ϕ

or β∞
ϕ < 2, lϕ(w)(l2) is isomorphic to a complemented subspace of

Lϕ[0, 1].

Proof. Without loss of generality, we may assume that
∑∞
n=1 wn ≤ 1.

Let (An)n be a sequence of mutually disjoint intervals of [0, 1] such that
µ(An) = wn for each n. Consider the elements (rn,k) of Lϕ(l2) defined
by

rn,k = (0, 0, . . . , χ
k
�
An
, 0, . . . ).

Then [rn,k] is isometric to lϕ(w)(l2).

In addition, if α∞
ϕ > 2, we can assume that ϕ(x1/2) is a convex

function, then [rn,k] is complemented in Lϕ(l2). To see this we define
the projection

P ((fk)k) =
∞∑
k=1

∞∑
n=1

( ∫
An

fk(s) ds
/
µ(An)

)
rn,k.

Set g(x) = x1/2, so we have
∫ 1

0

ϕ ◦ g
( ∞∑
k=1

∣∣∣∣
∞∑
n=1

(∫
An

fk(s) ds
/
µ(An)

)
χAn

(t)
∣∣∣∣
2)

dt

=
∞∑
n=1

∫
An

ϕ ◦ g
( ∞∑
k=1

∣∣∣∣
∫
An

fk(s) ds
/
µ(An)

∣∣∣∣
2)

dt,

applying the Jensen inequality twice,

≤
∞∑
n=1

∫
An

( ∫
An

ϕ ◦ g
( ∞∑
k=1

|fk(s)|2
)
ds

/
µ(An)

)
dt

=
∞∑
n=1

∫
An

ϕ ◦ g
( ∞∑
k=1

|fk(s)|2
)
ds

=
∫ 1

0

ϕ

(( ∞∑
k=1

|fk(s)|2
)1/2)

ds.
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Hence ‖P ((fk))‖Lϕ(l2) ≤ ‖(fk)‖Lϕ(l2).

Now the case β∞
ϕ < 2 follows by duality.

3. Weighted Orlicz sequence spaces. In this section weighted
Orlicz sequence spaces lϕ(w), whose weight w belongs to the class Λ,
are considered. First, some structural results on lϕ(w) spaces are given.
Afterwards, we will state some isomorphic properties of these spaces.

Drewnowski proved in [4] that, given w ∈ Λ, then for every weight
sequence v = (vn) the unit vector basis of lϕ(v) is equivalent to a block
basic sequence with constant coefficients of the unit vector basis of
lϕ(w). Using this, the next result can be deduced from Theorems 1.1,
1.5 and 1.6 of Nielsen [15] (as was done in [16]). Consider α0

ϕ, α
∞
ϕ , β0

ϕ

and β∞
ϕ , the Matuszewka indices and

Cϕ(0,∞) = co
{
ϕ(sx)
ϕ(x)

: s > 0
}
.

Proposition 3.1. Let lϕ(w) be a weighted Orlicz sequence space with
w ∈ Λ and X be a Banach space with a symmetric basis (en)n.

a) X⊂
∼
lϕ(w) if and only if X ≈ lψ for some Orlicz function ψ ∈

Cϕ(0,∞) and (en) is equivalent to the unit vector basis of lψ.

b) If X ≈ lp, then the statement a) is equivalent to either p ∈
[α0
ϕ, β

0
ϕ]∪ [α∞

ϕ , β
∞
ϕ ] or p ∈ [α∞

ϕ , β
0
ϕ]; the last case holds when β∞

ϕ ≤ α0
ϕ.

Under some restricted conditions we can give further information on
the subspaces of lϕ(w), which will be useful in Section 4.

Proposition 3.2. Let ϕ be an Orlicz function such that ϕ(x) = x2

for every x ∈ [0, 1] and 1 ≤ α∞
ϕ ≤ β∞

ϕ ≤ 2. Then for every q-convex
and 2-concave Orlicz function ψ, with β∞

ϕ < q, there exists another
Orlicz function φ ∈ Cϕ(0,∞) so that ψ◦∼φ. Therefore, lψ⊂

∼
lϕ(w) for

every w ∈ Λ.
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Proof. We may assume that

ϕ(x) ≤ Cx2 for every x ∈ [0, 1]
ϕ(x) ≤ Cxr for every x ≥ 1

for some constant C > 0 and for some β∞
ϕ ≤ r < q < 2. According to

Corollary 2.2 in [20] we may also assume that ψ has continuous second
derivative. So, we have

(2) r < q ≤ xψ′(x)/ψ(x) for every x > 0

and ψ is not equivalent to either of the functions xr or x2. Of course,
x2 ∈ Cϕ(0,∞).

Consider N(x) = ψ(x1/2−r)/xr/2−r for every x ∈ [0, 1]. The increas-
ing function N satisfies

i) N(x)/x is a decreasing function, N(x)/x →
x→0

∞, and N(x) ≥
N ′(x)x for every x ∈ [0, 1],

ii) N(x) →
x→0

0,

iii) there exists s > 0 such that xN ′(x)/N(x) ≥ s for every x ∈ (0, 1]
(this follows from (2)).

Let
K =

∫ ∞

1

(r − 2)tr−5N ′′(tr−2)ϕ(t) dt

and
φ(x) =

1
K

∫ ∞

1

(r − 2)tr−5N ′′(tr−2)ϕ(xt) dt

for every x ∈ [0, 1]. φ is an Orlicz function such that φ◦∼ψ and

φ ∈ Cϕ(0,∞). Namely,

φ(x) ≤ Cxr

K

∫ ∞

1/x

(r − 2)t2r−4−1N ′′(tr−2) dt

+
Cx2

K

∫ 1/x

1

(r − 2)tr−3N ′′(tr−2) dt

=
Cxr

K

∫ 0

(1/x)r−2
uN ′′(u) du

+
Cx2

K

∫ (1/x)r−2

1

N ′′(u) du



1230 C. RUIZ

integrating, and using i) and ii) we have

=
Cxr

K
N

((
1
x

)r−2)
− Cx2

K
N ′(1)

≤ Cxr

K
N

((
1
x

)r−2)
=
C

K
ψ(x)

for every x ∈ [0, 1].

On the other hand,

φ(x) ≥ 1
K

∫ 1/x

1

(r − 2)tr−5N ′′(tr−2)x2t2 dt

=
x2

K

∫ (1/x)r−2

1

N ′′(u) du

=
x2

K

(
N ′

((
1
x

)r−2)
−N ′(1)

)

≥ x2

K

(
s

(
1
x

)2−r
N

((
1
x

)r−2)
−N ′(1)

)
(3)

where the last inequality holds by iii). In view of i) there exists δ > 0
such that (s/2)(1/x)2−rN((1/x)r−2) − N ′(1) > 0 for every x ∈ (0, δ).
Hence, we can deduce that

(3) ≥ x2

K

s

2

(
1
x

)2−r
N

((
1
x

)r−2)
=

s

2K
ψ(x)

for every x ∈ (0, δ). Therefore, it holds φ◦∼ψ.

To see that φ ∈ Cϕ(0,∞), define

F (t) = (1/K)(r − 2)tr−5N ′′(tr−2)ϕ(t) for each t ≥ 1.

So
∫ ∞
1
F (t) dt = φ(1) = 1. Take the measure λ(A) =

∫
A
F (t) dt on

∑
the σ-algebra of measurable sets of [1,∞). Let λ̄ be the probability
measure defined on E∞

ϕ,1 = {ϕ(sx)/ϕ(x) : s ≥ 1} by λ̄(∩λ>0E
∞
ϕ,λ) = 0,

and let

λ̄

({
ϕ(sx)
ϕ(s)

∈ E∞
ϕ,1 : s ∈ A

})
= λ(A)
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for every measurable set A ⊂ [1,∞). Since

φ(x) =
∫
E∞

ϕ,1

ϕ(sx)
ϕ(s)

dλ̄(s),

using the Krein-Milman theorem, we conclude that

φ ∈ C∞
ϕ,1 = co (E∞

ϕ,1) ⊂ Cϕ(0,∞).

Corollary 3.3. Let ϕ be an Orlicz function with 1 ≤ α∞
ϕ ≤ β∞

ϕ < 2.
For every Orlicz function ψ with β∞

ϕ < α0
ψ and two-concave at 0, it

holds that lψ⊂
∼
Xϕ. In particular, lp⊂∼Xϕ for every p ∈ [α∞

ϕ , 2].

Remark. The theorem above also holds for p > 1 instead of 2.

Now, our aim is to prove some isomorphic properties of the lϕ(w)
spaces where w ∈ Λ, which hold for Banach spaces with a symmetric
basis. Nevertheless, lϕ(w) spaces do not have in general such bases, as
we prove in the following.

Proposition 3.4. Let ϕ be an Orlicz function such that min{α0
ϕ, α

∞
ϕ }

> 1 and [α0
ϕ, β

0
ϕ]∩ [α∞

ϕ , β
∞
ϕ ] = ∅, and w be a weight sequence belonging

to Λ. Then lϕ(w) does not have a symmetric basis.

Proof. By Proposition 3.9, in [19], it is enough to prove that lϕ(w)
is not isomorphic to any Orlicz sequence space lψ.

In the case β0
ϕ < α∞

ϕ , by Proposition 3.1, we know that lp⊂
∼
lϕ(w) if

and only if p ∈ [α0
ϕ, β

0
ϕ] ∪ [α∞

ϕ , β
∞
ϕ ]. On the other hand, by Theorem 1

in [11] if lϕ(w) ≈ lψ, then p ∈ [α0
ψ, β

0
ψ], which is a contradiction.

The case β∞
ϕ < α0

ϕ follows by duality.

In spite of the fact that there are spaces lϕ(w) without symmetric
basis, it holds that every weighted Orlicz sequence space lϕ(w) has the
following property: every block basic sequence with constant coefficients
of the unit vector basis (en) spans a complemented subspace of lϕ(w).
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Indeed, let ui =
∑
n∈σi

en, i ∈ N be a block basic sequence with
constant coefficients of (en). If si =

∑
n∈σi

wn for each i ∈ N, then the
averaging projection

P

( ∞∑
n=1

xnen

)
=

∞∑
i=1

( ∑
n∈σi

xnwn
si

)
ui

is a bounded linear projection from lϕ(w) onto [ui].

So, given w, w′ ∈ Λ, it follows that lϕ(w)c⊂∼ l
ϕ(w′) and lϕ(w′)c⊂∼ l

ϕ(w).

The next result answers a natural question:

Theorem 3.5. Let w and w′ be two weight sequences belonging to
the class Λ, and let ϕ be an Orlicz function. Then lϕ(w) ≈ lϕ(w′).

In order to prove this theorem and another below, we need some
previous results on representations of the spaces lϕ(w).

Fix a weighted Orlicz sequence space lϕ(w) and consider the vector
space

lϕ(w)∞ = {x = ((xn,k)k)n ∈ lϕ(w)N}
and the functional

ρ : lϕ(w)∞ −→ [0,∞]

ρ((xn,k)) =
∞∑
n=1

∞∑
k=1

ϕ(|xn,k|)wk.

It is clear that ρ is a convex functional such that ρ(0) = 0 and
ρ(−x) = ρ(x) for each x ∈ lϕ(w)∞. Thus, ρ is a modular functional in
the sense of [14] and, from Theorem 1.5 in [14] the vector subspace

lϕ(w)∞ρ = {x ∈ lϕ(w)∞ : lim
λ→0

ρ(λx) = 0}

can be endowed with the norm

‖x‖ρ = inf {r > 0 : ρ(x/r) ≤ 1}.

Of course, the space lϕ(w)∞ρ is isometric to the weighted Orlicz sequence
space lϕ(v) with v = {w1, w1, w2, w1, w2, w3, w1, . . . }.
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Now it is straightforward that lϕ(w)∞ρ is a symmetric sum of lϕ(w)
in the sense given by Rosenthal in [17, p. 294]. Hence, in view of
Proposition 11 in [17], we have

lϕ(w)∞ρ ≈ lϕ(w)∞ρ ⊕ lϕ(w)∞ρ ≈ lϕ(w)∞ρ ⊕ lϕ(w).

Proposition 3.6. Let w be a weight sequence belonging to Λ. Then
lϕ(w) ≈ lϕ(w)∞ρ . In particular, lϕ(w) is isomorphic to its own square.

Proof. By Proposition 11 in [17] it is enough to observe that
lϕ(w)∞ρ c⊂∼ l

ϕ(w).

Proof of Theorem 3.5. We have already shown that the spaces
lϕ(w) and lϕ(w′) are each isomorphic to their own square. Hence,
using the well-known Pe�lczynski decomposition method, we deduce that
lϕ(w) ≈ lϕ(w′).

Theorem 3.7. Let w ∈ Λ and ϕ(x) be an Orlicz function nonequiv-
alent to x at 0. If lϕ(w) = H ⊕ Y , then either H or Y contains a
complemented subspace isomorphic to lϕ(w).

Proof. It will be enough to prove the theorem for lϕ(w)∞ρ . We

consider the sequence (en,k)n,k where en,k = (0, 0, e
n
�
k , 0, . . . ). Setting

dn,k = ϕ−1(1/wk)en,k, we get an unconditional normalized basis of
lϕ(w)∞ρ . We point out that the sequence (en,k)k is the unit vector
basis of lϕ(w) for each n ∈ N.

Let PY be the projection onto Y with kernel H (PH is defined
similarly).

Consider (d∗n,k)n,k the biorthogonal functionals of (dn,k)n,k. For each
k ∈ N, set

Ak = {n : d∗n,k(PY (dn,k)) ≥ 1/2}

and

Bk = {n : d∗n,k(PH(dn,k)) ≥ 1/2}.
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Without loss of generality we may assume that there exists I ⊂ N such
that

∑
k∈I wk = ∞ and Ak is infinite for every k ∈ N. In other cases

the statement above can be held for the sets Bk. Thus, if k ∈ I and
n ∈ Ak, then

(4) ‖PY ‖ ≥ ‖PY (dn,k)‖ρ ≥ |d∗n,k(PY (dn,k))| ≥ 1/2.

Moreover, for every k ∈ I and d∗i,j , i, j ∈ N, we have

(5) d∗i,j(PY (dn,k)) n∈Ak−→
n→∞ 0.

In fact, if there exists k0 ∈ I, d∗i0,j0 , ε > 0 and a sequence (nm)m of
Ak0 such that d∗i0,j0(PY (dnm,k0)) ≥ ε for each m ∈ N, then we would
get ( ∞∑

m=1

|xm|
)
‖PY ‖ ≥

∥∥∥∥
∞∑
m=1

xmdnm,k0

∥∥∥∥
ρ

‖PY ‖

≥
∣∣∣∣

∞∑
m=1

|xm|d∗i0,j0(PY (dnm,k0))
∣∣∣∣

≥ ε
∞∑
m=1

|xm|;

therefore, the basic sequence (dnm,k0)∞m=1 of lϕ(w)∞ρ would be equiv-
alent to the unit vector basis of l1. So

∑∞
m=1 ϕ(|xm|ϕ−1(1/wk0))wk0

converges if and only if
∑∞
m=1 |xm| < ∞, hence ϕ(x)◦∼x, which is a

contradiction.

Now denote by QN the following linear operator

QN

( ∞∑
n=1

∞∑
k=1

xn,kdn,k

)
=

N∑
n=1

N∑
k=1

xn,kdn,k.

Since (4) and (5) hold, we may find a bijection σ : N → I, indices
nm ∈ Aσ(m), and an increasing sequence of positive integers N1 <
N2 < · · · < Nm < · · · such that

‖PY (dnm,σ(m)) −QNm
(PY (dnm,σ(m)))‖ρ ≤ 1/2m+12

and
‖QNm−1(PY (dnm,σ(m)))‖ρ ≤ 1/2m+12
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for every m ≥ 2.

Let (um)m be the sequence of lϕ(w)∞ρ defined by

u1 = QN1(PY (dn1,σ(1)))
um = QNm

(PY (dnm,σ(m))) −QNm−1(PY (dnm,σ(m)))

for every m ≥ 2. (um)m is an unconditional block basic sequence of
(dn,k), whose unconditional constant is equal to 1. Now, since

∞∑
m=1

‖PY (dnm,σ(m)) − um‖ρ < 1/2

by Proposition 1.a.9 in [12] we obtain that the sequence
(PY (dnm,σ(m)))∞m=1 is equivalent to the block basic sequence (um)m.

Note that if K is the basis constant of (PY (dnm,σ(m)))∞m=1, then there
exists N ∈ N such that

(6) ‖PY (dnm+N ,σ(m+N)) − um+N‖ρ < 1
2m8‖PY ‖4K

.

Now the following two statements about (um)∞m=1 hold

i) (um)m is equivalent to (dnm,σ(m))m.

ii) There exists a projection T from lϕ(w)∞ρ onto [um] such that
‖T‖ ≤ 4‖PY ‖.

According to i),
∑∞
m=1 xmum is convergent in lϕ(w)∞ρ if and only if

∞∑
m=1

ϕ(|xm|ϕ−1(1/wσ(m)))wσ(m)

=
∑
k∈I

ϕ(|xσ−1(k)|ϕ−1(1/wk))wk <∞.

Consider w′ = (wk)k∈I belonging to the class Λ. Then, by Theorem
2.6, we have

lϕ(w)∞ρ ≈ lϕ(w) ≈ lϕ(w′) ≈ [dnm,σ(m)] ≈ [um] ≈ [PY (dnm,σ(m))].



1236 C. RUIZ

Now, from ii), Proposition 1.a.9 in [12] and (6) we obtain

lϕ(w)∞ρ ≈ [PY (dkm,σ(m))]c⊂∼ Y

as we wanted to show.

This property is verified for every Orlicz sequence space lϕ, because
lϕ has a symmetric basis. But, it is actually unknown whether the
spaces lϕ and lϕ(w) are primary, for w ∈ Λ and ϕ arbitrary.

4. Relationship between complemented subspaces of Lϕ[0, 1].
Our goal now is to prove that the spaces Xϕ and lϕ(w)(l2) are rather
different, as subspaces of Lϕ[0, 1].

Proposition 4.1. Let Lϕ[0, 1] be a reflexive Orlicz function space
with either α∞

ϕ > 2 or β∞
ϕ < 2. Then lϕ(w)(l2) is not isomorphic to

Lϕ[0, 1] for every weight sequence w with finite sum.

Proof. Consider 1 < α∞
ϕ ≤ β∞

ϕ < 2. It holds that lp⊂∼ l
ϕ(w)(l2) if and

only if p = 2 or lp⊂∼ l
ϕ(w) (see Proposition 3 in [6]). Therefore, either

p = 2 or p ∈ [α∞
ϕ , β

∞
ϕ ]. Since Xϕc⊂∼ L

ϕ[0, 1], from Proposition 3.2, we

have that lp⊂∼ L
ϕ[0, 1], for each p ∈ (β∞

ϕ , 2). Therefore Lϕ[0, 1] is not

isomorphic to lϕ(w)(l2).

The remaining case holds now by duality.

Remark. If β∞
ϕ < 2, then Xϕ is not isomorphic to any subspace of

lϕ(w)(l2), for every weight sequence w with finite sum.

Next we will prove that, if α∞
ϕ > 2, then Xϕ is not isomorphic to

any lϕ(w)(l2). For that, we need a lemma which is a straightforward
extension of Corollary 2 in [11].

Lemma 4.2. Let lϕ(w) be a weighted Orlicz sequence space such that
min{α0

ϕ, α
∞
ϕ } = s > 1. Let ψ be an Orlicz function with β0

ψ < s. Then
every bonded linear operator from lϕ(w) into lψ is compact.
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Proposition 4.3. Let ϕ be an Orlicz function with α∞
ϕ > 2. Then

lϕ(w)(l2) is not isomorphic to any subspace of Xϕ, for every weight
sequence w with finite sum.

Proof. We may suppose that ϕ is a 2-convex function. Let v be a
weight sequence with v ∈ Λ. From Proposition 4 in [18], it will be
sufficient to prove that lϕ(w)(l2) is not isomorphic to any subspace of
lϕ(v) ⊕ l2.

Now the proof follows as in [17, p. 298], considering Lemma 4.2 and
the fact that no subspace of lϕ(v) or of lϕ(w) is isomorphic to l2 (see
Proposition 3.1 and [11] Proposition 4).

Under the same hypothesis of the proposition above, the next corol-
lary points out the different nature of the complemented subspaces
lϕ(w)(l2) of Lϕ[0, 1].

Corollary 4.4. The complemented subspaces lϕ(w)(l2) of Lϕ[0, 1],
where w has a finite sum, cannot be spanned either by a sequence of
mutually disjoint functions of Lϕ[0, 1] or by a sequence of independent
symmetric random variables of Lϕ[0, 1].

Proof. This follows from Theorem 2.2 and Proposition 4.3.
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REFERENCES

1. D.E. Alspach, On the complemented subspaces of Xp, Israel J. Math. 74 (1991),
33 45.

2. D.E. Alspach, P. Enflo and E. Odell, On the structure of separable Lp spaces
(1 < p < ∞), Studia Math. 60 (1977), 79 90.

3. J. Bourgain, H.P. Rosenthal and G. Schechtman, An ordinal Lp-index for
Banach spaces, with application to complemented subspaces of Lp, Ann. Math. 114
(1981), 193 228.

4. L. Drewnowski, F -spaces with a basis which is shrinking but not hiper-
shrinking, Studia Math. 64 (1979), 97 104.



1238 C. RUIZ

5. F. Fuentes and F.L. Hernández, On weighted Orlicz sequence spaces and their
subspaces, Rocky Mountain J. Math. 18 (1988), 585 599.

6. F.L. Hernández and V. Peirats, A remark on sequence F -spaces λ(E) contain-
ing a copy of lp, Bull. Pol. Acad. Scien. 34 (1986), 295 299.

7. F.L. Hernández and B. Rodriguez-Salinas, On lp-complemented copies in
Orlicz spaces, Israel J. Math. 62 (1988), 37 55.

8. W.B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric struc-
tures in Banach spaces, Memoirs Amer. Math. Soc. 217 (1979).

9. W.B. Johnson and E. Odell, Subspaces and quotients of lp ⊕ l2 and Xp, Acta
Math. 147 (1981), 117 147.

10. J. Lindenstrauss and H.P. Rosenthal, The Lp spaces, Israel J. Math. 7 (1969),
325 349.

11. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces III, Israel J.
Math. 14 (1973), 368 389.

12. , Classical Banach spaces I, Springer-Verlag, New York, 1977.

13. , Classical Banach spaces II, Springer-Verlag, New York, 1978.

14. J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034
(1983).

15. N.J. Nielsen, On the Orlicz function spaces LM (0,∞), Israel J. Math. 20
(1975), 237 259.

16. V. Peirats and C. Ruiz, On lp-copies in Musielak-Orlicz sequence spaces,
Arch. Math. 58 (1992), 164 173.

17. H. Rosenthal, On the subspaces of Lp, (p > 2), spanned by a sequence of
independent random variables, Israel J. Math. 8 (1970), 273 303.

18. C. Ruiz, On subspaces of Orlicz function spaces spanned by sequences of
independent symmetric random variables, Proc. of Second International Conference
Function Spaces, Poznan 1989, Teubner-Texte, 120 1991, 41 48.

19. J.Y.T. Woo, On modular sequence spaces, Studia Math. 48 (1973), 271 289.

20. , On a class of universal modular sequence spaces, Israel J. Math. 20
(1975), 193 215.
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