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SOME GENERALIZATIONS OF UNIVERSAL MAPPINGS

M.M. MARSH

ABSTRACT. A mapping f : X → Y is universal if, for each
mapping g : X → Y , there is a point x in X such that f(x) =
g(x). We define several classes of mappings which properly
contain the universal mappings and we establish relationships
between these mappings, the fixed point property, the span of
continua and the Borsuk-Ulam theorem.

1. Introduction, definitions and observations. In 1967, W. Hol-
sztyński [8] defined universal mappings between topological spaces. A
mapping f : X → Y is universal if, for each mapping g : X → Y , there
is a point x in X such that f(x) = g(x). Holsztyński used this property
of mappings to obtain several fixed point theorems. Others have also
used this property to obtain fixed point results, e.g., see [19, 18, 4, 15
and 16].

In this paper we offer several generalizations of the universal property.
We show that each of these properties has some utility in obtaining
fixed point theorems. Furthermore, several of these properties have nice
relationships to the notion of span of continua which was introduced by
A. Lelek [13] in 1964. In Sections 2 through 4 we study these classes
of mappings. We consider spaces which admit only certain of these
mappings onto themselves, relationships to span and relationships to
the fixed point property.

By a continuum we will mean a compact connected metric space.
A continuous function will be referred to as a map or mapping. The
following definitions are made for mappings between topological spaces
although our interest will be primarily in mappings between continua.
The definition of universal is given above.

A mapping f : X → Y is weakly universal if for each mapping
g : X → X there is a point x in X such that f(x) = fg(x). A
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mapping f : X → Y is weakly universal with respect to a class F of
self mappings on X if, for each g ∈ F , there is a point x in X such
that f(x) = fg(x). From an historical point of view, the notion of
weakly universal mappings is not an entirely new idea. H. Hopf, see
[6, 7], defined free mappings in 1937; a mapping f : X → Y is free
if and only if it is not weakly universal. Most of his results involving
free mappings were concerned with mappings on spheres or manifolds.
In [7], he obtained a generalization of the Borsuk-Ulam theorem. The
following restatement of the Borsuk-Ulam theorem shows its connection
to weakly universal maps.

Theorem (Borsuk-Ulam). Each mapping f from the n-sphere Sn

into Euclidean k-space Ek, where k ≤ n, is weakly universal with respect
to the antipodal mapping on Sn.

There have been many generalizations of the Borsuk-Ulam theorem.
Some can be found in [1, 2, 12, 22 and 25].

A mapping f : X → Y is semi-universal if whenever K is a
subcontinuum of X such that f(K) = f(X) and g : K → X is a
mapping, then there is a point x in K such that f(x) = fg(x). A
mapping f : X → Y is pseudo-universal if f is weakly universal with
respect to each mapping g : X → X that has a periodic point of period
two.

The following diagram is easy to establish.

u

⇓
s− u =⇒ w.u. =⇒ p − u

We list below a few observations, each of which is easy to verify.

(1) [8]. If f : X → Y is universal, then f is surjective and Y has the
fixed point property.

(2) If X has the fixed point property, then each mapping from X is
weakly universal.

(3) If id : X → X is weakly universal, then X has the fixed point
property.
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(4) If f : X → Y is a weakly universal homeomorphism, then f is
universal.

We will say that a continuum Y is in class (U), respectively class (SU),
class (WU) and class (PU), provided that whenever X is a continuum
and f is a mapping from X onto Y , f must be universal, respectively,
semi-universal, weakly universal and pseudo-universal. In [21], Nadler
has defined a continuum Y to be in class (Û) if for every mapping f of
a continuum X onto Y , f̂ : C(X) → C(Y ) is universal.

For a continuum X, let d denote a metric on X, and let π1 and π2

denote the first and second projections of X × X onto X. For Z a
subcontinuum of X ×X, let Z−1 = {(x, y) | (y, x) ∈ Z}. The span of
X is zero, respectively the semispan of X is zero, the symmetric span
of X is zero, denoted by σ(X) = 0, respectively, σ0(X) = 0, s(X) = 0,
if whenever Z is a continuum in X × X such that π1(Z) = π2(Z),
respectively π2(Z) ⊆ π1(Z), Z = Z−1, then Z intersects the diagonal
in X × X. The three types of span zero become surjective span zero
if we require that π1(Z) = X in the definitions above. The notations
are, respectively, σ∗(X) = 0, σ∗

0(X) = 0 and s∗(X) = 0. For more
information regarding the span of continua, see [13] and [3].

There are many results in the literature concerning universal map-
pings. Three that are of particular interest in this paper are listed
below.

Let Bn denote the closed unit ball in Euclidean n-space En. A
mapping f : X → Bn from a continuum onto Bn is AH-essential
if f |f−1(Sn−1) : f−1(Sn−1) → Sn−1 cannot be extended to a mapping
F : X → Sn−1.

Theorem 1 [14, Lemma and 10, Proposition 1.1]. A mapping
f : X → Bn is universal if and only if it is AH-essential.

Theorem 2 [8, Theorem 3]. Each mapping of a continuum onto an
arc-like continuum is universal.

Theorem 3 [8, Corollary 1.]. If X is an inverse limit of ANRs and
all bonding mappings are universal, then X has the fixed point property.
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With regard to the fixed point property, universal mappings have
been useful in a number of ways. In light of Theorem 3, one might ask
what properties of mappings between specific ANRs would imply the
mappings are universal. Indeed, the fixed point theorems for inverse
limits in [4, 15, 16, 18 and 19] are of this nature.

In [20], S. Nadler uses results about the universality of induced
mappings in hyperspaces to show that certain hyperspaces have the
fixed point property.

2. Semi-universal mappings.

Theorem 4. If f1 : X → Y is semi-universal and f2 : Y → Z is a
mapping, then f2 ◦ f1 is semi-universal.

Theorem 5. Let X be a continuum. The following statements are
equivalent.

(1) X ∈ class (U).

(2) X ∈ class (SU).

(3) σ∗
0(X) = 0.

Proof. That (1) and (3) are equivalent is well-known. So, we show
the equivalence of (1) and (2).

Suppose Y ∈ class (U). Let f : X → Y be a surjective mapping, and
let K be a subcontinuum of X such that f(K) = Y . Let g : K → X
be any mapping. Now f |K : K → Y is a mapping onto Y and by
assumption is universal. Thus, f |K and fg have a coincidence point,
i.e., there is a point x ∈ K such that f(x) = fg(x). Hence, f is
semi-universal.

Suppose Y ∈ class (SU). Let f : X → Y be a surjective mapping and
g : X → Y any mapping. By assumption, the projection π1 : Y × Y
is semi-universal. Let K = {(f(x), g(x)) | x ∈ X}. Now K is a
subcontinuum of Y × Y and π1(K) = Y . Let h : K → Y × Y be
defined by h(x, y) = (y, x). There must be a point (f(x), g(x)) in K
such that π1(f(x), g(x)) = π1h(f(x), g(x)). Hence, f(x) = g(x). It
follows that f is universal.
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James F. Davis [3] has shown that σ(X) = 0 if and only if σ0(X) = 0,
and σ0(X) = 0 implies that σ∗

0(X) = 0. Hence, we get the following
corollary.

Corollary 1. If σ(X) = 0, then X ∈ class (U).

Theorem 6. If f : X → S1 is unessential, then f is semi-universal.

Proof. Since f is unessential, there is a mapping ψ : X → E1 such
that f(x) = eiψ(x) for all x ∈ X. Now ψ(X) is an arc or a point, and it
follows from Theorems 2 and 5 that ψ : X → ψ(X) is semi-universal.
By Theorem 4, f is semi-universal.

Let X be a connected topological space with closed subsets H, A
and B; and suppose that A and B are disjoint. We say that H weakly
cuts A from B in X if each closed connected set in X that intersects
both A and B must also intersect H. The connected topological space
X is s-connected between the closed disjoint subsets A and B provided
that whenever H is a closed set in X that weakly cuts A from B, then
some component of H weakly cuts A from B. The connected space
X is s-connected provided that whenever A and B are disjoint closed
connected subsets of X, then X is s-connected between A and B, see
[17].

The mapping f : X → Y is semi-universal with respect to the class
H of subcontinua of X if whenever K is in H with f(K) = f(X) and
g : K → X is a mapping, then there is a point x ∈ K such that
f(x) = fg(x).

Theorem 7. Let X be a continuum, and let Y be the cone over X
with vertex v. If Y is s-connected and the projection mapping π1 of
Y −{v} onto X is semi-universal with respect to subcontinua of Y that
weakly cut {v} from X×{0} in Y , then Y has the fixed point property.

Proof. Let π2 : Y → [0, 1] be the projection of Y onto [0, 1]. Suppose
f : Y → Y is a fixed point free mapping. Let H = {y ∈ Y | π2f(y) =
π2(y)}. Since π2 is universal, it follows that H is not empty. It is
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easy to see that H weakly cuts X × {0} from {v} in Y . Since Y is s-
connected, some subcontinuum K of H weakly cuts X ×{0} from {v}.
Since f is fixed point free, v /∈ H ∪ f(H). It follows that π1(K) = X.

Since π1 is semi-universal with respect to K, there is a point x ∈ K
such that π1(x) = π1f(x). Furthermore, since x ∈ K ⊆ H, π2(x) =
π2f(x). So, f(x) = x, a contradiction.

Corollary 2. Suppose X is an inverse limit of absolute neighborhood
retracts and Y is the cone over X. If the projection mapping π1 of
Y −{v} onto X is semi-universal with respect to subcontinua of Y that
weakly cut {v} from X×{0} in Y , then Y has the fixed point property.

Proof. Since the cone over X is homeomorphic to the inverse limit of
cones over absolute neighborhood retracts, which are absolute retracts,
and inverse limits of absolute retracts are s-connected [18, Theorem 3],
this result follows immediately from Theorem 7.

Theorem 8. Let X be a continuum, and let Y = X×[0, 1]. If Y is s-
connected and the projection mapping from Y onto X is semi-universal
with respect to continua that weakly cut X × {0} from X × {1} in Y ,
then Y has the fixed point property.

Proof. The proof is similar to the proof of Theorem 7.

In light of Corollary 2 and Theorem 8, an answer to the question
below would be of interest.

Question 1. For what continua X is the projection mapping of
X × [0, 1] onto X semi-universal with respect to continua that weakly
cut X × {0} from X × {1} in X × [0, 1]?

3. Weakly universal mappings.

Theorem 9. If f1 : X → Y is weakly universal and f2 : Y → Z is a
mapping, then f2 ◦ f1 is weakly universal.



SOME GENERALIZATIONS OF UNIVERSAL MAPPINGS 1193

Note. It follows from observation (3) in Section 1 that each continuum
in class (WU) must have the fixed point property.

Question 2. Is class (U) = class (WU)?

Question 3. Is each mapping f : X → T from an acyclic continuum
onto a simple triod weakly universal?

A mapping f : X → Y is weakly confluent if whenever K is a
subcontinuum of Y , there is a component H of f−1(K) such that
f(H) = K.

Question 4. Is each weakly confluent mapping f : X → T from a
continuum onto a tree weakly universal?

Question 5. Is each weakly confluent mapping f : X → Bn from an
acyclic continuum onto the closed n-ball weakly universal?

The assumption that X is acyclic in Question 5 is necessary. The
mapping from an annulus to a disk which shrinks the inner circle to a
point is monotone but not weakly universal.

Question 6. If Y ∈ class (WU) and K is a retract of Y , is K ∈
class (WU)?

Theorem 10. Suppose f : X → X is a self map on a continuum
X. Then f has a fixed point if and only if, for each ε > 0, there is an
ε-map of X onto a continuum Yε that is weakly universal with respect
to f .

Proof. Suppose f has a fixed point. Then, for ε > 0, the identity
map on X is an ε-map that is weakly universal with respect to f .

For the opposite implication, suppose f : X → X is fixed point free,
and let ε be a positive number such that d(x, f(x)) ≥ ε for each x ∈ X.
By assumption there is a continuum Yε and an ε-map g : X → Yε that



1194 M.M. MARSH

is weakly universal with respect to f . Hence, there is a point x ∈ X
such that g(x) = gf(x). But since g is an ε-map, d(x, f(x)) < ε, which
is a contradiction.

Corollary 3. A continuum X has the fixed point property if and
only if for each ε > 0 there is a weakly universal ε-map from X onto a
continuum Yε.

Corollary 4. Suppose X is H-like for some class of continua H.
Then the mapping f : X → X has a fixed point if and only if each of
the ε-maps is weakly universal with respect to f .

Corollary 5. Suppose X is H-like. Then X has the fixed point
property if and only if each of the ε-maps is weakly universal.

If the answer to Question 3 is yes, it follows from Corollary 3 that
inverse limits on simple triods have the fixed point property.

In the next theorem we apply a generalization of the Borsuk-Ulam
theorem to obtain a partial solution to a question of J.B. Fugate (Univ.
of Houston Prob. Book, #112).

Theorem 11. Suppose X is a contractible continuum and j : X →
En is an embedding of X into Euclidean n-space. If h : X → X is a
periodic homeomorphism of period p, then there is a divisor k of p with
1 ≤ k < p such that hk : X → X has a fixed point.

Proof. If h has a fixed point, then we are done. So assume that h
is fixed point free. Then h generates a free Zp-action on X. Since X
is contractible, X is m-connected for all m ≥ 0, see [24, page 51]. In
particular, X is (n− 1)(p− 1)-connected. By Theorem 1 in [1], there
is a point x in X and a 1 ≤ k < p such that j(x) = j(hk(x)). Hence,
x = hk(x). Suppose, without loss of generality, that k is the least such
integer for x. Now there are integers m and 0 ≤ r < k such that
p = km+ r. So

x = hp(x) = hkm+r(x) = hr((hk)m(x)) = hr(x).

By choice of k, this implies that r = 0. So k is a divisor of p and x is
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a fixed point of hk.

Corollary 6. If X is contractible, j : X → En is an embedding,
and h : X → X is a periodic homeomorphism of period p, where p is a
prime number, then h has a fixed point.

Question 7. If f : X → B2 is a surjective mapping and H1(X) ≈ 0,
is f weakly universal with respect to periodic homeomorphisms on X?

If the answer to Question 7 is yes, then one can apply Corollary 4 to
show that periodic homeomorphisms on disk-like continua have fixed
points, which would answer a question of Fugate and McLean (Univ.
of Houston Prob. Book, #110).

4. Pseudo universal mappings.

Theorem 12. If f1 : X → Y is pseudo universal and f2 : Y → Z is
a mapping, then f2 ◦ f1 is pseudo universal.

Theorem 13. Let X be a continuum. The following statements are
equivalent.

(1) X ∈ class (PU).

(2) Each mapping of a continuum onto X is weakly universal with
respect to involutions.

(3) s∗(X) = 0.

Proof. (1) ⇒ (2). This implication is obvious.

(2) ⇒ (3). Let Z be a subcontinuum of X ×X such that π1(Z) = X
and Z∩Z−1 is not empty. Then Ẑ = Z∪Z−1 is also a subcontinuum of
X ×X and π1(Ẑ) = X. Let α : Ẑ → Ẑ be defined by α(x, y) = (y, x).
We point out that α2 is the identity map on Ẑ and π1 ◦ α = π2|Ẑ . By
assumption, π1 : Ẑ → X is pseudo universal with respect to α. So
there is a z ∈ Ẑ such that π1(z) = π1α(z) = π2(z). Thus Ẑ intersects
the diagonal in X×X, as does Z. Therefore, it follows from Theorem 2
in [3] that s∗(X) = 0.
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(3) ⇒ (1). Suppose s∗(X) = 0. Let f : M → X be a mapping
from a continuum M onto X and let g : M → M be a mapping
with a point of period two. Let Z = {(f(x), fg(x)) | x ∈ M}.
Now Z is a subcontinuum of X × X and π1(Z) = X. Let p be
a point of M such that g2(p) = p. Then (fg(p), f(p)) ∈ Z−1 and
(fg(p), f(p)) = (f(g(p)), fg(g(p))) ∈ Z. Hence Z ∩ Z−1 is nonempty.
It follows that Z meets the diagonal in X ×X. Thus there is a point
x ∈M such that f(x) = fg(x). Therefore, X ∈ class (PU).

Theorem 14. class (WU) is a proper subclass of class (PU).

Proof. It is clear that class (WU) ⊆ class (PU).

Let Σ2 be the dyadic solenoid. Now s∗(Σ2) = 0, so Σ2 ∈ class (PU).
However, since Σ2 admits a fixed point free mapping, it follows from
the note in Section 3 that Σ2 is not in class (WU).

Note 3. W.T. Ingram’s example M in [11] is not in class (PU) since
s∗(M) > 0.

A mapping f : X → Y is pseudo confluent if, whenever K is an
irreducible continuum in Y , there is a component H of f−1(K) such
that f(H) = K. A continuum Y is in class (P ) if each mapping from a
continuum onto Y is pseudo confluent.

Theorem 15. If M ∈ class (PU), then M is unicoherent, M is not
a triod and M is irreducible.

Proof. Since s∗(M) = 0 we may use the proof of Theorem 3 in [3] to
get that M is unicoherent and not a triod. It follows from Theorem 3.2
in [23] that M is irreducible.

Question 8. If M ∈ class (PU), is M hereditarily unicoherent? Is M
atriodic?

Theorem 16. If M ∈ class (PU), then M ∈ class (P ).



SOME GENERALIZATIONS OF UNIVERSAL MAPPINGS 1197

Proof. Suppose M is not in class (P ). Let X be a continuum and
f : X → M a mapping that is not pseudo confluent. Then there is an
irreducible subcontinuum C of M such that no component of f−1(C)
is mapped by f onto C. The remainder of the proof follows the proof
of Theorem 4 in [3] with the observation that π1(Y ) = X and thus
π1(Z) = M .

A continuum is in class (W ) if each mapping from a continuum onto
X is weakly confluent. Grispolakis and Tymchatyn [5, Theorem 5.3]
have shown that, for atriodic continua, class (W ) = class (P ). Thus we
get the following corollary to Theorem 16.

Corollary 7. If M is atriodic and M ∈ class (PU), then M ∈
class (W ).

See Nadler [21], particularly 1.12 through 1.15, for results concerning
class (Û) and relationships to class (W ).
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