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LOCALIZED SOLUTIONS OF SUBLINEAR
ELLIPTIC EQUATIONS: LOITERING

AT THE HILLTOP

JOSEPH A. IAIA, HENRY A. WARCHALL AND FRED B. WEISSLER

ABSTRACT. We establish existence of infinitely many
localized twice-differentiable radial solutions to the equation
∆v+f(v) = 0 in RN , where f is linearly bounded above. Such
equations govern the spatial profiles of solitary-wave solutions
to nonlinear wave equations with global regularity of solutions.
We use constructive methods to show that there are localized
solutions with any prescribed number of nodes.

1. Introduction. We consider the semilinear wave equation

(1.1) utt − ∆u = g(u),

where solutions u are complex-valued functions on spacetime RN+1,
with spatial dimension N ≥ 2, and where the nonlinearity g : C → C
has the property that g(seiψ) = g(s)eiψ for all real s and ψ. Such
a function g is determined by its restriction to the real axis, which
is necessarily odd, and which we assume to be real. Let G(s) ≡∫ s
0
g(s′) ds′ be the primitive of g. If G(s) ≤ 0 for all real s, then

conservation of the energy E [u, ut] ≡ ∫
RN {(1/2)|ut|2 + (1/2)|∇u|2 −

G(|u|)} dNx implies, under growth conditions on g, that solutions to
(1.1) with finite-energy initial data are bounded in bounded regions of
spacetime [8, 10]. If, on the other hand, the primitive is positive at
some amplitudes, then it is possible for singularities to develop. Here
we will consider the well-behaved case in which G(s) ≤ 0 for all s,
consistent with global regularity of solutions.

We are interested in standing-wave solutions of the nonlinear wave
equation, of the form u(x, t) = eiωtv(x), where ω is a real constant.
For such a solution, the standing-wave profile v : RN → C satisfies the
associated nonlinear elliptic equation

(1.2) ∆v + fω(v) = 0
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where the nonlinearity fω : C → C is related to g by fω(z) ≡ g(z)+ω2z.
Under appropriate conditions on fω (roughly, that f ′ω(0) < 0 and
Fω(s) ≡ ∫ s

0
fω(s′) ds′ > 0 for some value of s), there are twice-

differentiable solutions to (1.2) that are localized in the sense that
v(x) → 0 as |x| → ∞. Such localized classical solutions are of interest in
various contexts, and the set of spherically-symmetric (radial) solutions
has been extensively studied [1 7, 9].

We note that if fω results from a nonlinearity g having G(s) ≤
0 for all s, then Fω(s) = G(s) + (1/2)ω2s2 must be quadratically
bounded above. To date, work that establishes the existence of localized
spherical solutions either has been variational in character, or has been
constructive but applicable only to nonlinearities fω with superlinear
growth, for which Fω is not quadratically bounded. In this paper, we
use constructive methods to prove the existence of localized solutions
to (1.2), for functions fω that engender global regularity of solutions
to the associated nonlinear wave equation.

We assume that the nonlinearity f ≡ fω in (1.2) is an odd locally
Lipschitz-continuous function with −∞ < −σ2 ≡ lims→0 f(s)/s ≤ 0,
and in case σ = 0 we require that f(s) < 0 for small positive s.
We furthermore assume that the primitive F (s) ≡ ∫ s

0
f(s′) ds′ has a

positive zero γ, with f(γ) > 0, and F (s) < 0 for all s in the interval
(0, γ). Under mild growth restrictions on f , these basic hypotheses
are sufficient to guarantee the existence of localized radial solutions to
(1.2). (See [1, 2, 4, 9].)

Constructive methods, which furnish additional information about
nodal structure, require additional hypotheses. In this paper, we treat
two distinct types of behavior of f for large amplitudes. The first type
is linear or sublinear growth, in which f(s) = κsp + h(s), where κ is
a positive constant, 0 < p ≤ 1, and h(s)/sp → 0 as s → ∞. This
discussion, in Appendix A, forms a footnote to [6].

Our main results concern a second type of behavior, in which F (s)
has a positive local (one-sided) maximum at a value of s larger than γ.
Section 2 presents general hypotheses on the shape of F under which the
conclusions of the main theorem (below) hold. In Appendix B we show
that those hypotheses follow from various more natural assumptions.
For example, the conditions of Section 2 are true if f satisfies the
following two hypotheses:
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FIGURE 1.

I. There exist β and δ with 0 < β < γ < δ such that f(β) = f(δ) = 0
and f(s) > 0 for all s in the interval (β, δ). (Thus F is positive and
increasing on (γ, δ), with zero derivative at δ.)

II. F is concave downward near the hilltop at δ, that is, there exists
ε > 0 such that F (t) ≤ F (s) + f(s)(t− s) for all s and t in the interval
[δ − ε, δ].

See Figure 1. We remark that in this case we make no hypotheses on
f(s) for arguments with |s| > δ. The behavior of f outside [−δ, δ]
is irrelevant to our discussion and does not affect the solutions we
construct.

The hypotheses of Section 2 are also satisfied in cases where F has
a “hilltop at infinity,” that is, where F is positive, strictly increasing,
and bounded on (γ,∞), so that F (∞) ≡ lims→∞ F (s) is finite. If, for
example, F additionally satisfies 0 < M1(f(s))2 ≤ F (∞) − F (s) ≤
M2f(s) for all s in (γ,∞), where M1 and M2 are constants, then the
hypotheses of Section 2 hold.

Our main result is the following:

Main theorem. Let f satisfy the hypotheses stated in Section 2.
Then, for each nonnegative integer n, there is a C2 real-valued solution
v(x) to (1.2), spherically symmetric with respect to the origin, such
that v(x) → 0 as |x| → ∞, and such that v(x) vanishes on exactly n
spherical hypersurfaces.

Because we consider only spherically symmetric solutions v(x) =
w(|x|), the main theorem is equivalent to the existence of solutions
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of the ODE boundary-value problem

w′′ +
N − 1
r

w′ + f(w) = 0 for r > 0(1.3)

w′(0) = 0,(1.4)
lim
r→∞w(r) = 0,(1.5)

where r = |x|. We use a shooting argument to establish existence.
We consider the initial-value problem consisting of (1.3) with initial
conditions

(1.6) w(0) = d, w′(0) = 0,

and we vary the parameter d to achieve (1.5).

A crucial step is the demonstration that the solution to the initial-
value problem can be given an arbitrarily large number of zeros by
choosing d appropriately. Previous work [6] relies on comparison with
a scaled version of the differential equation in which the (superlinear)
large-|w| behavior of f(w) predominates when d is extremely large.
In case f has the behavior illustrated in Figure 1, a quite different
mechanism is responsible for the existence of solutions to the initial-
value problem with large numbers of zeros.

To discuss this distinction, we interpret (1.3) as an equation of motion
for a point with position w(r) at time r, moving in the potential well
F (w), subject to the influence of the time-dependent damping force
−((N−1)/r)w′. According to (1.6) the system is released from rest with
initial displacement d, and a solution to the boundary-value problem
(1.3) (1.5) is one that comes to rest at the local maximum of F at the
origin, after an infinite time.

Let
E(r) ≡ E[w,w′](r) ≡ (1/2)(w′(r))2 + F (w(r))

be the usual energy of the system. If w(r) is a solution to (1.3) then

E′(r) = −N − 1
r

(w′(r))2,

so E(r) is nonincreasing. It follows that if E[w,w′](r) becomes negative
at some time r0, then the solution w(r) has no zeros larger than r0.
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Thus, in order to have many zeros, a solution to the initial-value
problem must maintain positive energy a sufficiently long time.

In the situation addressed by previous work, where lims→∞ f(s)/sp

is a positive constant and 1 < p < (N + 2)/(N − 2), solutions with
large numbers of zeros are obtained as d→ ∞. For such solutions, the
initial energy E(0) = F (d) becomes large enough to offset the energy
decrease due to damping.

For nonlinearities of the type shown in Figure 1, solutions with large
numbers of zeros are obtained as d → δ−. The initial energy is no
larger than F (δ), and solutions employ a different mechanism to offset
the initial energy decrease due to damping: they are initially essentially
constant, and begin to develop non-negligible values of |w′(r)| only
after a relatively long time interval. The effect of the damping force
−((N −1)/r)w′ is thereby mitigated, since |w′| becomes non-negligible
only when r is large. This phenomenon of “waiting near the hilltop”
allows solutions to retain sufficient energy for large numbers of zero-
crossing excursions.

The difference between the two types of behavior is illustrated in
Figure 2, which shows numerical solutions of the initial-value problem
(1.3) with (1.6) in dimension N = 3.

The lower lefthand plot (Figure 2a) shows three solutions in a case
illustrative of earlier work, the function f(w) = −w(1 − w2), which is
superlinear at large amplitudes. The solutions have, respectively, no
zeros (d = 3), one zero (d = 6), and two zeros (d = 15). Note that, as d
increases: the location of the first zero moves inward; solutions initially
decrease more rapidly; energy loss is compensated by greatly increased
initial energy.

The lower righthand plot (Figure 2b) shows three solutions for a
nonlinearity illustrative of the hilltop case of our analysis here, the
function f(w) = −w(1−w2)(4−w2). This function has β = 1, γ ≈ 1.52,
and δ = 2. The solutions have, respectively, no zeros (d = δ − 10−4),
one zero (d = δ − 10−9), and two zeros (d = δ − 10−18). Note that,
as d increases: the location of the first zero moves outward; solutions
initially decrease more slowly; energy loss is minimized by waiting near
the hilltop of F (w) at amplitude w = 2 until the coefficient (N − 1)/r
of the damping term in (1.3) is fairly small.
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FIGURE 2.

The distinction between these two behaviors is also suggested, albeit
less dramatically, by the fact that solutions of (1.3) with (1.6) satisfy

w(0) = d, w′(0) = 0, w′′(0) = (−1/N)f(d).

Thus, in the superlinear case, as d → ∞, w′′(0) → −∞, and the
function w(r) initially curves downward very sharply. In contrast,
in the hilltop case analyzed here, as d → δ−, w′′(0) → 0−, and the
function w(r) is initially quite flat.

In Section 2, we spell out the (hilltop) hypotheses on the nonlinearity
f under which we prove the main theorem. Section 3 establishes
some elementary properties of solutions to the initial value problem.
Section 4 contains the proof of Theorem 1, which establishes that there
are solutions of the initial value problem with arbitrarily many zeros.
In Section 5 we sketch the proof of the main theorem, which proceeds,
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given Theorem 1, by the method employed in [6]. In Appendix B,
we show that the conditions on f indicated in this section imply the
hypotheses of Section 2. As mentioned, Appendix A contains the
addendum to [6] which establishes there are solutions of the initial
value problem with arbitrarily many zeros, in the (non-hilltop) case of
linear or sublinear growth of f .

2. Hypotheses for the hilltop. The assertions of the main
theorem are a consequence of the following hypotheses.

Let f be an odd locally Lipschitz-continuous function with −∞ <
−σ2 ≡ lims→0 f(s)/s ≤ 0. If σ = 0, we require that f(s) < 0 for small
positive s. Let F (s) ≡ ∫ s

0
f(s′)ds′ be the primitive of f .

We assume that there exist numbers β, γ, and δ with 0 < β < γ < δ
(possibly δ = ∞) such that:

f(β) = 0, f(s) > 0 for all s ∈ (β, δ),
F (γ) = 0, F (s) < 0 for all s ∈ (0, γ).

If δ = ∞, we furthermore assume that F (∞) ≡ lims→∞ F (s) is finite.

We define the following two quantities associated with f :

(2.1) T (y; d) ≡
∫ d

y

dz√
2
√
F (d) − F (z)

for γ ≤ y < d < δ;

(2.2)
∆(γ; d) ≡

√
2(N − 1)

∫ d

γ

1
T (z; d)

√
F (d) − F (z) dz

for γ ≤ d < δ.

Our central hypotheses, used in Sections 3, 4 and 5, are that these
quantities are well-defined and satisfy:

(2.3) lim
d→δ−

T (γ; d) = ∞

and

(2.4) lim
d→δ−

∆(γ; d) = 0.
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We show in Appendix B that these hypotheses hold under a variety
of more natural conditions on f that correspond to (one side of) a local
maximum of F (s) at s = δ. We will see in the following sections that
T is a lower bound on a time delay, and that ∆ is an upper bound on
initial energy loss.

We will make use of an immediate consequence of these hypotheses.
Define

(2.5)
Γ(d) ≡

√
2(N − 1)

∫ d

−d

√
F (δ) − F (y) dy

for γ ≤ d < δ.

Lemma 2.1.

(2.6) lim
d→δ−

Γ(d)
T (γ; d)

= 0.

Proof of Lemma 2.1. In the case when δ is finite, the assertion fol-
lows immediately, since then Γ(d) ≤ √

2(N − 1)
∫ δ
−δ

√
F (δ) − F (y) dy,

independent of d, and by hypothesis T (γ; d) → ∞ as d→ δ−.

In the case δ = ∞, we have, since F is even, Γ(d) = 2
√

2(N −
1)

∫ d
0

√
F (∞) − F (y) dy. Thus, for d ≥ γ,

(2.7)

0 <
Γ(d)
T (γ; d)

=
2
√

2(N − 1)
T (γ; d)

∫ γ

0

√
F (∞) − F (y) dy

+ 4(N − 1)

∫ d
γ

√
F (∞) − F (y) dy∫ d

γ
[F (d) − F (z)]−1/2 dz

.

The first term goes to zero as d → ∞, by hypothesis (2.3). Because
F is monotonically increasing on (γ,∞), the second term in (2.7) is
bounded by

4(N − 1)

∫ d
γ

√
F (∞) − F (y) dy∫ d

γ
[F (∞) − F (z)]−1/2 dz

≤ 4(N − 1)
√
F (∞) (d− γ)∫ d

(γ+d)/2
[F (∞) − F (z)]−1/2 dz

.



LOITERING AT THE HILLTOP 1139

Applying the mean value theorem to the integral in the denomi-
nator, we see that the second term in (2.7) is bounded by 8(N −
1)

√
F (∞)

√
F (∞) − F (zd), where zd is some number in the interval

((γ + d)/2, d). This upper bound tends to zero as d → ∞. Thus
limd→∞ Γ(d)/T (γ; d) = 0, as claimed. This completes the proof of
Lemma 2.1.

3. Properties of solutions to the initial value problem.

Lemma 3.1. If w is a solution of the initial value problem (1.3) with
(1.6) on some interval [0, R) with R ≤ ∞ and β < d < δ, then |w| < d
on (0, R).

Proof of Lemma 3.1. Suppose by way of contradiction that there
is some r0 > 0 such that |w(r0)| = d. Multiplying (1.3) by w′(r),
integrating on (0, r0), and using (1.6) gives

(3.1)
1
2
w′2(r0) +

∫ r0

0

N − 1
r

w′2(r) dr + F (w(r0)) = F (d).

Since F (w(r0)) = F (d), it follows from the nonnegativity of the other
terms that ∫ r0

0

N − 1
r

w′2(r) dr = 0.

This implies w′(r) ≡ 0 on (0, r0) and thus w(r) = d for all r ≥ 0. On
the other hand, taking limits in (1.3) gives

(3.2) w′′(0) = −f(d)
N

< 0 since β < d < δ,

showing that w(r) is not constant, a contradiction. Hence, no such r0
can exist. Thus, we must have |w| < d on (0, R), as claimed.

The existence for small r > 0 of unique solutions to (1.3) with
(1.6) can be established by an application of the contraction mapping
principle to the map

G(w) = d−
∫ r

0

1
tN−1

∫ t

0

sN−1f(w) ds dt,
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whose fixed points are solutions. To establish existence for all r > 0,
we recall that on any interval of existence of w, |w| is a priori bounded
by d < δ. Thus |F (w(r))| is bounded, since F is continuous. Because
the energy (1/2)(w′(r))2+F (w(r)) is bounded above by its initial value
F (d), it follows that |w′(r)| is also bounded. Thus the small-r solution
may be continued to all r > 0.

Lemma 3.2. Let w be a solution of (1.3) with (1.6) where γ < d < δ.
Then w is decreasing on a nonempty open interval (0, Rd), where either:

(a) Rd = ∞, limr→∞w′(r) = 0, limr→∞w(r) = L where |L| < d and
f(L) = 0, and E(Rd) ≡ limr→∞E(r) = F (L),

or

(b) Rd is finite, w′(Rd) = 0, f(w(Rd)) ≤ 0, and E(Rd) = F (w(Rd)).

In either case, there exists a unique (finite) number τd ∈ (0, Rd) such
that w(τd) = γ and such that w is decreasing on (0, τd].

Proof of Lemma 3.2. Since w′(0) = 0 and w′′(0) = −f(d)/N < 0, we
have that w is decreasing for small r.

If w is not everywhere decreasing, then w has a first local minimum
at r = Rd, with w′(Rd) = 0 and w′′(Rd) ≥ 0. It follows from (1.3)
that f(w(Rd)) ≤ 0, and therefore w(Rd) ≤ β < γ. Thus, there exists
τd ∈ (0, Rd) with the stated properties.

On the other hand, suppose that w(r) is decreasing for all r > 0. We
showed in Lemma 3.1 that |w(r)| < d for r > 0. Thus limr→∞w(r) =
L with |L| < d. We also know that w′ is bounded. Therefore,
limr→∞w′/r = 0, so from (1.3) we have limr→∞w′′(r) = −f(L).

If f(L) is nonzero, then w′′(r) is bounded away from zero for r in the
interval (r0,∞) for some r0, which implies that w′(r) is unbounded as
r → ∞, contradicting the fact that w′ is bounded. Thus f(L) = 0, and
so L ≤ β. Thus there exists a finite τd with the stated properties.

The fact that limr→∞w′(r) = 0 can be seen as follows. The energy
E(r) ≡ (1/2)(w′(r))2 +F (w(r)) is decreasing and bounded below, and
so has a limit as r → ∞. Since w(r) has a limit, the term F (w(r)) also
has a limit as r → ∞. Thus limr→∞(1/2)(w′(r))2 exists, so w′(r) has
a limit, which must be zero because w is bounded. This completes the
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proof of Lemma 3.2.

4. Solutions with many zeros. Let wd be the solution of (1.3)
with (1.6) where γ < d < δ, and let τd be, as in Lemma 3.2, the smallest
value of r for which wd(r) = γ. Since wd is decreasing on (0, τd], the
inverse of wd is well-defined on [γ, d) and w−1

d : [γ, d) → (0, τd]. In
addition, we have the following estimate.

Lemma 4.1. For y ∈ [γ, d),

(4.1) w−1
d (y) ≥ T (y; d),

where T (y; d) is defined by equation (2.1).

Proof of Lemma 4.1. Since the energy E(r) is nonincreasing, the
solution w = wd satisfies

1
2
w′2 + F (w) ≤ F (d).

Since w is decreasing on [0, τd], we have

(4.2) −w′ ≤
√

2
√
F (d) − F (w) for r ∈ [0, τd].

Hence, ∫ d

w(r)

dz√
F (d) − F (z)

=
∫ r

0

−w′(t) dt√
F (d) − F (w(t))

≤ r
√

2

for r ∈ [0, τd].

Letting r = w−1(y) gives

w−1(y) ≥
∫ d

y

dz√
2
√
F (d) − F (z)

= T (y; d),

for y ∈ [γ, d), as claimed.

Remark. We note that T (y; d) is the time at which the solution to
the (undamped) initial value problem

(4.3) u′′ + f(u) = 0, u(0) = d, u′(0) = 0
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first reaches position y, that is, u(T (y; d)) = y.

Lemma 4.2.
lim
d→δ−

τd = ∞.

Proof of Lemma 4.2. Since τd = w−1(γ), setting y = γ in equation
(4.1) gives

τd ≥ T (γ; d).

By the hypotheses of Section 2, limd→δ− T (γ; d) = ∞. Thus limd→δ− τd =
∞, as claimed.

Lemma 4.3.
lim
d→δ−

[E(0) − E(τd)] = 0.

Proof of Lemma 4.3. Since (d/dr)E(r) = (−(N − 1)/r)(w′(r))2, we
have

0 ≤ E(0) − E(τd) = (N − 1)
∫ τd

0

1
r
(w′(r))2 dr.

As in Lemma 4.1, we have

(4.4) 0 ≤ −w′(r) = |w′(r)| ≤
√

2
√
F (d) − F (w(r))

for r ∈ [0, τd]. Making the change of variables z = w(r), and using
Lemma 4.1, we obtain

0 ≤ E(0) − E(τd) ≤
√

2(N − 1)
∫ d

γ

1
w−1(z)

√
F (d) − F (z) dz

≤
√

2(N − 1)
∫ d

γ

1
T (z; d)

√
F (d) − F (z) dz = ∆(γ; d).

By hypothesis, the quantity ∆(γ; d) defined by equation (2.2) has limit
zero as d→ δ−. Thus limd→δ− [E(0) − E(τd)] = 0, as claimed.

Remark. We note that ∆(y; d) is the energy lost during the excursion
from w(0) = d to w(r) = y, but computed by replacing w with the
solution u to the undamped initial value problem (4.3).
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Lemma 4.4. Let w be the solution of the initial value problem (1.3)
with (1.6), where |d| < δ. Suppose that w(r) is monotonic on the
interval (R1, R2), where R1 > τd. Then the energy loss E(R1)−E(R2)
on that interval satisfies the upper bound

0 ≤ E(R1) − E(R2) ≤ Γ(d)
R1

,

where Γ(d) is defined by equation (2.5).

Furthermore,
Γ(d)
τd

−→ 0 as d −→ δ−,

so that
[E(R1) − E(R2)] → 0 as d→ δ−.

Proof of Lemma 4.4. Since (d/dr)E(r) = (−(N − 1)/r)(w′(r))2, we
have

0 ≤ E(R1) − E(R2) = (N − 1)
∫ R2

R1

1
r
(w′(r))2 dr

≤ N − 1
R1

∫ R2

R1

|w′(r)||w′(r)| dr.

Using the fact that

|w′(r)| =
√

2
√
E(r) − F (w(r)) ≤

√
2
√
F (d) − F (w(r))

≤
√

2
√
F (δ) − F (w(r)),

and making the change of variable y = w(r), we have

E(R1) − E(R2) ≤
√

2(N − 1)
R1

∣∣∣∣
∫ w(R2)

w(R1)

√
F (δ) − F (y) dy

∣∣∣∣.
Since |w(r)| < d for all r > 0, we have

E(R1) − E(R2) ≤
√

2(N − 1)
R1

∫ d

−d

√
F (δ) − F (y) dy =

Γ(d)
R1

,

as claimed.
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To show that Γ(d)/τd → 0 as d → δ−, we recall that τd ≥ T (γ; d),
see Lemma 4.2. Thus Γ(d)/τd ≤ Γ(d)/T (γ; d) and, by Lemma 2.1,
Γ(d)/T (γ; d) → 0 as d → δ−. This concludes the proof of Lemma 4.4.

Lemma 4.5. Let wd(r) be the solution of (1.3) with (1.6). If
d ∈ (γ, δ) is sufficiently close to δ, then wd has a first turning point
at r = R1(d) > 0 with −d < wd(R1(d)) < −γ (and w′

d(R1(d)) = 0).
Furthermore, limd→δ− R1(d) = ∞ and limd→δ− E(R1(d)) = F (δ).

Proof of Lemma 4.5. Let (0, Rd) be the maximal interval of (initial)
monotonicity of wd that is established by Lemma 3.2. (If Rd = ∞, then
the statements below refer to the appropriate limiting values.) We have

F (δ) − E(Rd) = E(0) − E(Rd)
= (E(0)− E(τd)) + (E(τd) − E(Rd))

≤ [E(0) − E(τd)] +
Γ(d)
τd

,

by Lemma 4.4. As d → δ−, the term in square brackets vanishes by
virtue of Lemma 4.3, and the last term vanishes by virtue of Lemma 4.4.
Thus limd→δ− E(Rd) = F (δ). Therefore, for d sufficiently close to δ,
E(Rd) > 0, so that |wd(Rd)| > γ. This implies Rd is finite, because,
by Lemma 3.2, if Rd = ∞ then w(Rd) = L where L is a zero of f with
|L| < δ, and the only such zeros have |L| < γ.

Thus, again by Lemma 3.2, wd has a local minimum at r = R1(d) ≡
Rd > 0, and wd is decreasing on (0, R1(d)), and f(wd(R1(d))) ≤ 0.
Thus wd(R1(d)) ≤ β and |wd(R1(d))| > γ, which implies −d <
wd(R1(d)) < −γ.

Finally, R1(d) ≡ Rd > τd by Lemma 3.2, so that limd→δ− R1(d) = ∞
by virtue of Lemma 4.2. This concludes the proof of Lemma 4.5.

Theorem 4.1. Suppose f satisfies the hypotheses given in Section 2.
Let integer m ≥ 1 be given. There is a number dm with γ < dm < δ
such that for all d between dm and δ, the solution of the initial value
problem (1.3) with (1.6) has at least m positive zeros.
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Proof of Theorem 4.1. From Lemma 4.5 we know that for d ∈ (γ, δ)
sufficiently close to δ, the solution wd(r) to (1.3) with (1.6) has a first
turning point at r = R1(d), with −d < wd(R1(d)) < −γ. Thus wd has
a zero in (0, R1(d)), and the assertion of the theorem is established in
the case when m = 1. We henceforth assume that m ≥ 2.

Lemma 4.5 shows that limd→δ− E(R1(d)) = F (δ). Let d∗ ∈ (γ, δ) be
such that E(R1(d)) > (1/2)F (δ) for all d ∈ (d∗, δ). Since R1(d) > τd,
Lemma 4.4 shows that limd→δ− Γ(d)/R1(d) = 0. Given m ≥ 2,
choose dm ∈ (d∗, δ) so close to δ that Γ(d)/R1(d) ≤ F (δ)/(4m) for
all d ∈ (dm, δ).

Consider an interval (R1(d), R2) on which wd(r) is monotonic. By
Lemma 4.4, we have

E(R2) = E(R1(d)) − [E(R1(d)) − E(R2)]

≥ E(R1(d)) − Γ(d)
R1(d)

>
1
2
F (δ) − 1

4m
F (δ)

=
1
2

(
1 − 1

2m

)
F (δ) > 0.

Since E(R2) is thus positive and bounded away from zero, it follows
that wd(r) has a turning point at r = R2(d) > R1(d) with wd
monotonically increasing on (R1(d), R2(d)) and γ < |wd(R2(d))| < δ.
(Here wd cannot be monotonic on (R1(d),∞) since, if it were, then
(as in the proof of Lemma 3.2) its limit value L would be a zero of
f with |L| < δ, and then E(r) → F (L) < 0 as r → ∞.) Since the
differential equation (1.3) gives f(wd(R2(d))) = −w′′

d (R2(d)) > 0 at
the local maximum R2(d), we see that wd(R2(d)) > γ, so wd has a
second zero in (R1(d), R2(d)).

Next (if m ≥ 3), consider an interval (R2(d), R3) on which wd is
monotonic. We have

E(R3) = E(R2(d)) − [E(R2(d)) − E(R3)]

≥ E(R2(d)) − Γ(d)
R2(d)

≥ E(R2(d)) − Γ(d)
R1(d)
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>
1
2

(
1 − 1

2m

)
F (δ) − 1

4m
F (δ)

=
1
2

(
1 − 2

2m

)
F (δ) > 0.

Thus again wd(r) has a turning point at r = R3(d) > R2(d) with
wd monotonically decreasing on (R2(d), R3(d)) and wd(R3(d)) < −γ.
Therefore, wd has a third zero in (R2(d), R3(d)).

We may continue in this way to find m successive turning points of
wd(r), at r = Rj(d), j = 1, 2, . . . ,m, with E(Rj(d)) ≥ (1/2)(1 − (j −
1)/(2m))F (δ) ≥ (1/4)F (δ) > 0. Therefore, for all d ∈ (dm, δ), the
solution wd(r) has at least m zeros.

This concludes the proof of Theorem 1.

5. Proof of the main theorem. The main theorem can now be proven
by the method employed in [6], which we sketch here. Exactly as in
that paper, we can establish the following:

Lemma 5.1. Suppose wd∗(r) is a solution to the initial value problem
(1.3) with (1.6), where d = d∗ ∈ (β, δ), such that wd∗ has exactly m
zeros, and such that limr→∞wd∗(r) = 0. If d is sufficiently close to d∗,
then the solution wd(r) has at most (m+ 1) zeros.

To prove the main theorem, we define

Aj ≡ {d ∈ (β, δ) | wd(r)has exactly j positive zeros}

and we set dj ≡ supAj for j = 0, 1, 2, . . . .

Concerning A0, we note that A0 is nonempty because (β, γ) ⊂ A0

(since negative initial energy precludes zeros). Also, d0 < δ, since for
d sufficiently near δ, wd has arbitrarily many zeros, as established by
Theorem 1. As in [6], we can use the continuous dependence of solutions
on initial conditions to establish that wd0(r) > 0 and w′

d0
(r) ≤ 0 for all

r ≥ 0, and wd0(r) → 0 as r → ∞. Thus v(x) = wd0(|x|) is the nodeless
localized solution whose existence is asserted in the main theorem.

Concerning A1, Lemma 5.1 establishes that A1 is nonempty and, by
Theorem 1, d1 < δ. We can again use the continuous dependence of
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solutions on initial conditions to establish that wd1 has exactly one zero
and wd1(r) → 0 as r → ∞, so that v(x) = wd1(|x|) is the single-node
localized solution whose existence is asserted in the main theorem.

The proof for larger numbers of nodes proceeds in the same way.

Acknowledgments. H. Warchall is grateful for the hospitality and
support extended to him by the Institut Galilée of the Université Paris
XIII during his visit there. We thank Robert Pego for encouraging us
to eliminate the need for a technical hypothesis in an early draft.

Appendix

A. Linear and sublinear growth. This is an addendum to the
work of McLeod, Troy, and Weissler [6] on localized radial solutions
in RN of (1.2). That paper assumed superlinear growth of the non-
linearity: f(w) = κ2|w|p−1w + g(w) where κ2 is a positive constant,
limw→∞ |g(w)|/|w|p = 0, and 1 < p < (N + 2)/(N − 2). Under this
assumption the authors proved the existence of an infinite number of
localized radial solutions of (1.2). An important lemma in their paper
established that the solution of (1.3) with (1.6) has arbitrarily many
zeros for sufficiently large values of d. Their method, a rescaling argu-
ment in which the large-|w| behavior of f(w) predominates, does not
apply if f grows linearly or sublinearly.

In this appendix, we extend their work to the case where the non-
linearity either grows linearly or sublinearly. That is, we assume the
hypotheses of [6], with the exception of their hypothesis (f4), which we
replace with the assumption that

(A.1)

f(w) = κ2|w|p−1w + g(w),

where 0 < p ≤ 1 and lim
w→∞

|g(w)|
|w|p = 0

for some positive constant κ2. Here we establish that also in this case,
the initial value problem (1.3) with (1.6) has arbitrarily large numbers
of zeros for sufficiently large values of d. The rest of the theorems in
their paper hold without modification.
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Case I. Linear growth. Assume (A.1) with p = 1. Suppose wd(r) is a
solution to (1.3) with (1.6). Let zd(r) ≡ (1/d)wd(r). Then zd satisfies

(A.2) z′′d +
N − 1
r

z′d +
f(dzd)
d

= 0

and

(A.3) zd(0) = 1, z′d(0) = 0.

It then follows, as in [6], that |zd| and |z′d| are bounded independently
of d, and hence that (a subsequence of) zd converges uniformly on
compact sets to the function z that solves

(A.4) z′′ +
N − 1
r

z′ + κ2z = 0

subject to (A.3). Setting y(r) ≡ r(1/2)(N−2)z(r) yields Bessel’s equation

y′′ +
1
r
y′ +

(
κ2 − ((1/2)(N − 2))2

r2

)
y = 0,

whose solutions have infinitely many positive zeros. Thus the solution
z to (A.4) with (A.3) has an infinite number of positive zeros. Since
zd → z uniformly on compact sets, we see that zd will have as many
zeros as desired for large enough values of d.

Case II. Sublinear growth.

Assume (A.1) with 0 < p < 1. Now suppose wλ is a solution to (1.3)
with wλ(0) = λ2/(1−p) and w′

λ(0) = 0. Let zλ(r) = λ−2/(1−p)w(λr).
(Note that the scaling of the argument is inverse to that in [6].) Then
zλ satisfies:

z′′λ +
N − 1
r

z′λ + λ−2p/(1−p)f(λ2/(1−p)zλ) = 0(A.5)

zλ(0) = 1, z′λ(0) = 0.(A.6)

It then follows, as in [6], that |zλ| and |z′λ| are uniformly bounded, and
hence that (a subsequence of) zλ converges uniformly on compact sets
to a function z that satisfies

z′′ +
N − 1
r

z′ + κ2|z|p−1z = 0(A.7)

z(0) = 1, z′(0) = 0.(A.8)
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Remark. It is known that solutions of this initial value problem
exist for all r > 0. Existence for small r follows by the contraction
mapping principle. Existence for all r > 0 follows from the fact that
the decreasing energy bounds z and z′.

Lemma A.1. Suppose z satisfies (A.7) with (A.8), where 0 < p < 1.
Then z has an infinite number of isolated zeros.

Proof of Lemma A.1. We assume for purposes of contradiction that
z > 0 for all r > 0. Multiplying equation (A.7) by rN−1 and integrating
on (0, r) gives

(A.9) −rN−1z′ = κ2

∫ r

0

sN−1|z|p−1z ds.

Since z > 0 by assumption, the righthand side of (A.9) is positive.
Hence z′ < 0 and so z is a decreasing function. Thus we can estimate
the righthand side of (A.9) as follows:

−rN−1z′ = κ2

∫ r

0

sN−1zp ds ≥ κ2zp
∫ r

0

sN−1 ds =
κ2rN

N
zp.

Thus,

(A.10) −z−pz′ ≥ κ2rN.

Integrating (A.10) on (0, r) gives

(A.11) z1−p ≤ 1 − (1 − p)κ2

2N
r2.

By assumption z > 0 and so the righthand side of (A.11) is positive.
On the other hand, 0 < p < 1 and the righthand side goes to −∞ as
r → ∞ and so we obtain a contradiction. Thus z must have a first
zero.

Denote by q1 the first zero of z. We have z > 0 on [0, q1). Hence, the
righthand side of (A.9) with r = q1 is positive, and therefore z′(q1) < 0.
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We next show that z has a negative minimum. Again we prove this
by contradiction. Suppose that z is decreasing for all r > q1. From
above we know that z is bounded for all r > 0, hence we must have
that

lim
r→∞ z(r) = L.

Further, L < 0 since z(q1) = 0 and z′(q1) < 0. We also know that z′ is
bounded, so taking limits in the differential equation gives

lim
r→∞ z′′(r) = −κ2|L|p−1L.

Since z′ is bounded, the only possible limit is L = 0. But we have L < 0
and so we have a contradiction. Thus, z must have a first minimum
which we denote m1.

Next, we will show that z has a second zero q2 with q2 > m1. So we
assume for purposes of contradiction that z < 0 for r > m1. Letting
w = −z, we have that w > 0 for r > m1 and that

w′′ +
N − 1
r

w′ + κ2wp = 0(A.12)

w(m1) > 0, w′(m1) = 0.(A.13)

Arguing as above gives

(A.14) −rN−1w′ =
∫ r

m1

κ2sN−1wp ds.

The righthand side of (A.14) is positive. Therefore, w is decreasing.
Thus, for all r > m1,

−rN−1w′ ≥ κ2wp
(rN −mN

1 )
N

.

Choose r large enough so that rN −mN
1 ≥ (1/2)rN , that is, r ≥ r0 ≡

21/Nm1. Then for r > r0 we have

(A.15) −w−pw′ ≥ κ2r

2N
.
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Therefore,

(A.16) w−p+1 ≤ w−p+1(r0) − (1 − p)κ2

4N
(r2 − r20).

The lefthand side of (A.16) is positive and the righthand side ap-
proaches −∞ as r → ∞, and so we obtain a contradiction. Thus,
w and hence z must have a zero q2 with q2 > m1 > q1. Further,

(A.17) −qN−1
2 z′(q2) =

∫ q2

m1

κ2sN−1|z|p−1z ds.

As above, z < 0 on [m1, q2) hence the righthand side of (A.17) is
negative. Hence, z′(q2) > 0.

As before, it can be shown that z has a local maximum m2 > q2 and
a subsequent zero q3 > m2. Similarly, it can be shown that z has an
infinite number of isolated zeros on (0,∞). This completes the proof of
the lemma.

B. Verification of Hilltop time-delay and energy-loss limits.
In this appendix, we show that the general (hilltop) hypotheses on f
given in Section 2 are consequences of some more special assumptions
that are easily verified.

We always assume that f is an odd locally Lipschitz function, with
primitive F . We assume that there are numbers β, γ, and δ with
0 < β < γ < δ ≤ ∞ such that:

f(β) = 0, f(s) > 0 for all s ∈ (β, δ),
F (γ) = 0, F (s) < 0 for all s ∈ (0, γ).

If δ = ∞, we furthermore assume that F (∞) ≡ lims→∞ F (s) is finite.

We begin by showing that the bounds

(B.1) 0 <
F (δ) − F (s)

f(s)
≤M2 <∞

and

(B.2) 0 < M1 ≤
√
F (δ) − F (s)
f(s)
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for all s ∈ [γ, δ), where M1 and M2 are (finite, positive) constants, are
sufficient to guarantee that the conditions

lim
d→δ−

T (γ; d) = ∞(2.3)

and

lim
d→δ−

∆(γ; d) = 0(2.4)

hold.

For brevity in the following, we define the auxiliary quantities

(B.3) ρ(y; d) ≡
[
F (δ) − F (y)
F (δ) − F (d)

]1/2

,

and

(B.4) Φ(r) ≡
∫ r

1

dφ√
φ2 − 1

= log(r +
√
r2 − 1).

Recall that T (y; d) is defined for γ ≤ y < d < δ by

(2.1) T (y; d) ≡
∫ d

y

dz√
2
√
F (d) − F (z)

.

Lemma B.1. Suppose f satisfies the bound (B.2). Then for
γ ≤ y < d < δ,

(B.5) T (y; d) ≥
√

2M1Φ(ρ(y; d)).

Proof of Lemma B.1. We may rewrite (2.1) to obtain

T (y; d) =
1√

2
√
F (δ) − F (d)

∫ d

y

dz√
(F (δ) − F (z))/(F (δ) − F (d)) − 1

.
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Changing from integration variable z to variable φ = ρ(z; d), we
compute

dz = −2[F (δ) − F (d)]1/2
[F (δ) − F (z)]1/2

f(z)
dφ,

and we have

T (y; d) =
√

2
∫ ρ(y;d)

1

{
[F (δ) − F (z(φ))]1/2/f(z(φ))

}
dφ√
φ2 − 1

≥
√

2M1Φ(ρ(y; d)),

upon using (B.2), as was to be shown.

Corollary B.2. If f satisfies (B.2), then limd→δ− T (γ; d) = ∞.

Proof of Corollary B.2. Note that ρ(γ; d) → ∞ as d → δ−. Since
Φ(r) diverges as r → ∞, the assertion follows from Lemma (B.1).

This shows that hypothesis (2.3) about T (y; d) follows from condition
(B.2).

We now investigate hypothesis (2.4) about the quantity ∆(γ; d),
defined for γ ≤ d < δ by

(2.2) ∆(γ; d) ≡
√

2(N − 1)
∫ d

γ

1
T (z; d)

√
F (d) − F (z) dz.

Lemma B.3. Suppose f satisfies the bounds (B.1) and (B.2). Then
for γ ≤ d < δ,

(B.6) ∆(γ; d) ≤ 2(N − 1)
M2

M1

√
F (δ) − F (d)

∫ ρ(γ;d)

1

√
φ2 − 1
φΦ(φ)

dφ.

Proof of Lemma B.3. We may rewrite (2.2) as

∆(γ; d) =
√

2(N − 1)
√
F (δ) − F (d)

·
∫ d

γ

1
T (z; d)

√
F (δ) − F (z)
F (δ) − F (d)

− 1 dz.
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Using the lower bound (B.5) for T (y; d), we obtain

∆(γ; d) ≤ (N − 1)
M1

√
F (δ) − F (d)

∫ d

γ

√
ρ2(z; d) − 1
Φ(ρ(z; d))

dz.

We now introduce integration variable φ = ρ(z; d) as before, to get

∆(γ; d) ≤ 2(N − 1)
M1

√
F (δ) − F (d)

·
∫ ρ(γ;d)

1

{
F (δ) − F (z(φ))

f(z(φ))

}√
φ2 − 1
φΦ(φ)

dφ.

Finally, using the inequality (B.1), we obtain

∆(γ; d) ≤ 2(N − 1)
M2

M1

√
F (δ) − F (d)

∫ ρ(γ;d)

1

√
φ2 − 1
φΦ(φ)

dφ,

as claimed.

Lemma B.4. If f satisfies (B.1) and (B.2) then

lim
d→δ−

∆(γ; d) = 0.

Proof of Lemma B.4. We estimate the expressions in the upper bound
(B.6) for ∆(γ; d):

Using (B.3) and (B.4) in the right side of (B.6), we obtain

∆(γ; d) ≤ 2(N − 1)
M2

M1

√
F (δ)

1
ρ(γ; d)

∫ ρ(γ;d)

1

√
φ2 − 1

φ log(φ+
√
φ2 − 1)

dφ.

Since ρ(γ; d) → ∞ as d→ δ−, it suffices to compute

lim
r→∞

∫ r
1
(
√
φ2 − 1/(φ log(φ+

√
φ2 − 1))) dφ

r
.

Using L’Hopital’s Rule we see that this last limit is zero. Thus,

lim
d→δ−

∆(γ; d) = 0,
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as claimed.

This shows that hypothesis (2.4) about ∆(γ; d) follows from condi-
tions (B.1) and (B.2).

We now present specific conditions on f that guarantee that the
conditions (2.3) and (2.4) hold. We discuss separately the cases of
hilltops at finite and infinite values of δ.

I. Hilltop at finite δ. Suppose that δ is finite, and f(δ) = 0.
Assume also that F is concave downward near the hilltop, that is,
there is ε > 0 such that F (t) ≤ F (s) + f(s)(t− s) for all s and t in the
interval [δ − ε, δ].

Under these assumptions it is straightforward to show that the bound
(B.1) holds. To see this, note first that, because f(s) > 0 for all
s ∈ [γ, δ), the function f is bounded away from 0 on the interval
[γ, δ − ε], so the inequality F (δ) − F (s) ≤ M3f(s) clearly holds for
s ∈ [γ, δ − ε] with some finite constant M3. On the other hand, for s
in the interval [δ − ε, δ], the concavity of F implies

F (δ) − F (s) ≤ (δ − s)f(s) ≤ εf(s).

Thus F (δ)−F (s) ≤M2f(s) for all s ∈ [γ, δ], where M2 ≡ max{M3, ε},
and this establishes (B.1).

The Lipschitz continuity of f yields the other bound (B.2). This fact
is a consequence of the following lemma:

Lemma B.5. Suppose f is Lipschitz on [γ, δ] and such that f(s) > 0
for all s ∈ (γ, δ), and f(δ) = 0. Then there is a positive constant C
such that

F (δ) − F (s) ≥ C(f(s))2

for all s ∈ [γ, δ], where F is any antiderivative of f .

Proof of Lemma B.5. Let K ∈ (0,∞) be the Lipschitz constant for
f : |f(s)− f(t)| ≤ K|s− t| for all s and t in [γ, δ]. Extend f to all of R
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by defining

f̃(s) ≡
⎧⎨
⎩
f(γ) if s < γ

f(s) if s ∈ [γ, δ]
f(δ) if s > δ

We note that f̃ is also Lipschitz with constant K, on all of R. Let
φ ∈ C∞

0 (R) be nonnegative and such that
∫ ∞
−∞ φ(s) ds = 1, and define

φε(t) ≡ (1/ε)φ(t/ε) for ε �= 0. Define the C∞ function fε by fε ≡ φε∗f̃ .
Then, as ε→ 0, fε converges uniformly on [γ, δ] to f .

Let Fε be any antiderivative of fε. It follows that Fε(δ) − Fε(s)
converges uniformly to F (δ) − F (s) for s ∈ [γ, δ], as ε→ 0.

Now,

|fε(s) − fε(t)| ≤
∫ ∞

−∞
|f̃(s− r) − f̃(t− r)|φε(r) dr

≤
∫ ∞

−∞
K|s− t|φε(r) dr = K|s− t|,

so we see that |f ′ε(t)| ≤ K, independent of ε and of t. In particular,
−(1/K)f ′ε(t) ≤ 1, so that (since fε is nonnegative)

− 2
2K

fε(t)f ′ε(t) ≤ fε(t)

=⇒ − 1
2K

∫ δ

s

d

dt
(fε(t))2 dt ≤

∫ δ

s

fε(t) dt

=⇒ 1
2K

[(fε(s))2 − (fε(δ))2] ≤ Fε(δ) − Fε(s),

for all s ∈ [γ, δ], and all ε �= 0. Taking the limit as ε→ 0, we conclude
that

F (δ) − F (s) ≥ 1
2K

(f(s))2

for all s ∈ [γ, δ], as claimed.

We have thus established that bounds (B.1) and (B.2) hold for the
case of a hilltop at finite δ. Lemma B.2 and Lemma B.4 hence show
that, for this case, the hypotheses of Section 2 hold.
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II. Hilltop at infinity. Suppose δ = ∞. If f(s) has exponential
decay for large s, then the bounds (B.1) and (B.2) hold, and Lemmas
B.2 and B.4 establish the hypotheses of Section 2.

If, on the other hand, f(s) is asymptotic to a multiple of s−p for some
constant p > 1, the bounds (B.1) and (B.2) do not hold. Nevertheless,
straightforward computation of T (γ; d) and ∆(γ; d) shows that the
hypotheses of Section 2 hold in this case as well.
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