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DANIELL-LOOMIS INTEGRALS

M. DÍAZ CARRILLO AND H. GÜNZLER

ABSTRACT. In [2] and [3] for arbitrary nonnegative linear
functionals on functions vector lattices an integral extension
of Lebesgue power has been discussed. Here we generalize
this extension process, prove convergence theorems using a
suitable “local convergence in measure,” discuss measurabil-
ity and give characterizations by equality of upper and lower
integrals. Riemann-µ, abstract Riemann-Loomis and Bour-
baki integrals are subsumed.

0. Introduction. For a semi-ring Ω of sets from an arbitrary set X
and µ : Ω → [0,∞[, only finitely additive, an analogue R1(µ,R) to the
space L1(µ,R) of Lebesgue-µ-integrable functions was introduced by
Loomis [11]; this has been extended to Banach space-valued functions
by Dunford-Schwartz [4], and in more general form in [6, 7]. Analogues
to the Daniell extension process, but without or with weaker continuity
assumptions on the elementary integral, have been treated by Aumann
[1], Loomis [11] and Gould [5].

The Daniell-Bourbaki integral extension has been generalized with
the integral I : B → R introduced in [2], starting with any nonnegative
linear functional I on a vector lattice B of real-valued functions on X.
If Ω is a δ-ring, µ σ-additive, I =

∫
.dµ on B = step functions over Ω,

then R1, L1 and B coincide modulo null functions [3, 9].

In Sections 2 and 3 we generalize the extension I|B → I|B to
I|B → J |L by “localization,” using an appropriate local convergence
in measure, which is very useful to obtain convergence theorems in a
form analogous to the classical ones (some of which are not true for
B). In Section 4 we give various descriptions of the set L of integrable
functions, in particular a Darboux-type characterization on L is proved.
Always R1 ⊂ L (not true for B), in general B has infinite codimension
in L, even modulo null functions.

We recall that the abstract space of integrable functions L is con-
structed similar to the Daniell L1 and which coincides with L1 in the
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classical case, but contrary to the L1 case, no continuity conditions on
the starting elementary integral I/B, e.g., of Daniell type or starke inte-
gral norm of [13], are needed; so that, our results subsume most known
situations of integration with respect to finitely additive measures.

Finally, in Section 5, all this is specialized to proper and abstract
Riemann, Loomis, Daniell and Bourbaki integrals.

1. Notations and earlier results. As in [1, 13], we extend the
usual + in R := R ∪ {−∞,∞} to R × R by

(1)
a + b := 0, a � b := ∞ if a = −b ∈ {−∞,∞};

a − b := a + (−b), etc.

Life would be easier using only the associative “�,” but convergence
theorems with “+” are stronger.

We denote a∨ b := max(a, b), a∧ b = min(a, b), a∩ b := (a∧ b)∨ (−b)
if b ≥ 0, a+ := a ∨ 0, a− := (−a)+.

For a, b, c, d, e ∈ R, t, s ∈ R+ := [0,∞], one has

(2)
|a ∩ t − b ∩ t| ≤ 2(|a − b| ∧ t),

|(a + b) − (c + d)| ≤ |a − e| + |b − d|,
|a ∩ t − a ∩ s| ≤ |t − s|.

In the following, X is an arbitrary nonempty set and we always
assume B is a vector lattice ⊂ RX , I : B → R is linear, I(f) ≥ 0
if 0 ≤ f ∈ B.

For such I|B we need the following results of [2], in somewhat
modified notation:
(3)

Bτ := sup{M, ∅ �= M ⊂ B}, where the sup is pointwise on X,

I∗(f) := sup{I(h); h ∈ B, h ≤ f} for f ∈ R
X

, with sup ∅ = −∞,

Bτ := {g ∈ Bτ ; I∗(f + g) = I∗(f) + I∗(g) for all f ∈ Bτ},
I(f) := inf {I∗(g); f ≤ g ∈ Bτ}, I(f) := −I(−f) for f ∈ R

X
.

The elements of B := {f ∈ R
X

; I(f) = I(f) ∈ R} are called I-
summable functions.
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The Bτ and Bτ are + and ∨ closed, Bτ is also ∧ closed. I is �
subadditive on R

X
, I and I∗ are R+-homogeneous and monotone on

R
X

.

For any f ∈ R
X

one has

I∗(f) ≤ I(f) ≤ I(f) ≤ −I∗(−f) := I∗(f).

B is closed under +, �, α,∧,∨, | |; B is the closure of B in R
X

with
respect to the integral seminorm I, I|B is the unique I-continuous
extension of I|B to B and is “linear” on B, Aumann [1].

2. Integral extension with local convergence. For arbitrary
net (fi)i∈S with fi ∈ R

X
, i ∈ S = directed set, we use a special type

of convergence that will play an important role in what follows.

Definition 1. fi → f(I) means I(|fi − f | ∧ h) → 0 for each fixed
0 ≤ h ∈ B, where f ∈ R

X
and, e.g., ∞−∞ = 0 by (1). (fi) ⊂ R

X
is

called an I-Cauchy net if I(|fi − fj |) → 0.

Theorem 1 of [8] yields

(4) If fi, f ∈ R
X

with |fi − f | ≤ g ∈ B, then fi → f(I) if and only
if I(|fi − f |) → 0.

The following result is to prepare the basic definition.

Lemma 1. If (fi) ⊂ B is an I-Cauchy net with fi → 0(I−), then
I(|f |) → 0.

Proof. To ε > 0 choose j ∈ S with I(|fi − fj |) < ε if i ≥ j. By
Definition 1 there is 0 ≤ h ∈ B with I(||fi| − h|) < ε; now with (2) we
have |fi| ≤ |fi − fj | + |fi ∩ |fj | − fj ∩ h| + |fj ∩ h− fi ∩ h| + |fi ∩ h| ≤
|fi − fj | + ||fj | − h| + 2|fj − fi| + |fi ∩ h|, so that I(|fi|) ≤ 5ε if i ≥
some k ∈ S.

This shows that if f ∈ R
X

, (fi) and (gi) ⊂ B are I-Cauchy
nets with fi → f(I) and gi → f(I). Then the limits exist and
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lim I(fi) = lim I(gi) ∈ R.

Definition 2. The set L := L(B, I) of I-integrable functions is
defined as the set of all those f ∈ R

X
for which there exists an I-

Cauchy net (hi) ⊂ B with hi → f(I). Then J(f) := lim I(hi), (hi) is
called a defining net for f .

A function f ∈ R
X

is called L-null if f ∈ L and J(|f |) = 0.

By the above the J(f) is well defined, independent of the particular
choice of the (hi).

Simple consequences of Definition 2 are, see [2],

If f ∈ R
X

, g ∈ L and f(x) = g(x) where |g(x)| < ∞, then f ∈ L and
J(f) = J(g); especially ge ∈ L, where ge(x) := g(x) if g(x) ∈ R, else
ge(x) := 0 and g − ge is an L-null function.

L contains B and is closed with respect to +, �, α, α ∈ R,∧,∨, | |.
Also, J(αf) = αJ(f), J(f+g) = J(f�g) = J(f)+J(g), |J(f)| ≤ J(|f |)
if f, g ∈ L, and J(f) ≤ J(g) if f ≤ g.

Next ‖f‖ := J(|f |) defines a seminorm on L, and it is easy to prove
that B is ‖ ‖-dense in L, i.e., for any I-Cauchy net (hi) ⊂ B with
hi → f(I) one has ‖hi − f‖ → 0, (so, note that sequences suffice in
Definition 2).

Lemma 2. B ⊂ L(B, I) and I(f) = J(f) for any f ∈ B.

Proof. Since B is I-dense in B by Definition 1, there exists a defining
sequence (hn) for any f ∈ B by (2) so that f ∈ L. Now |I(f)−I(hn)| =
|I(f − hn)| ≤ I(|f − hn|) → 0 gives J(f) = lim I(hn) = I(f).

3. Convergence theorems.

Lemma 3. If 0 ≤ f ∈ L(B, I) and 0 ≤ g ∈ B, then f ∧ g ∈ B and
I(f ∧ g) ≤ J(f).

Proof. By Definition 2, there are hn ∈ B with 0 ≤ hn → f(I), (hn)I-
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Cauchy. Now with (2) one gets hn ∩ g → f ∩ g(I). It follows from (4)
that I(|hn∩g−f∩g|) → 0; by Definition 1, hn∩g = hn∧g ∈ B, so also
f ∧ g = f ∩ g ∈ B. Finally, Lemma 2 gives I(f ∧ g) = J(f ∧ g) ≤ J(f).

Corollary 1. If f ∈ L(B, I) and |f | ≤ g ∈ B, then f ∈ B.

As a substitute for the general missing completeness of L, one has
the following

Theorem 1. If fi ∈ L(B, I), f ∈ R
X

, (fi) is a ‖ ‖-Cauchy = J-
Cauchy net with fi → f(I), then f ∈ L(B, I), J(|fi − f |) → 0 and
J(fi) → J(f).

Proof. By Definition 2, given any i ∈ S and ε > 0, there exist hi,ε ∈ B
with J(|fi − hi,ε|) < ε.

Since |hi,ε − f | ≤ |hi,ε − fi| + |fi − f |, |a + b| ∧ t ≤ |a| ∧ t + |b| ∧ t,
a, b ∈ R, t ∈ R+, and Lemma 3 give hi,ε → f(I), where (hi,ε) is an
I-Cauchy net with index set Sx]0,∞[.

Therefore, f ∈ L and J(f) = lim I(hi,ε) = limJ(fi). This applied to
|fi − f | gives ‖fi − f‖ → 0.

In contrast to Theorem 1, by Example 2 below, the space B is not
closed in this sense; by the same example also the usual monotone
convergence theorem is false for B with “→ (I).” For L, however, one
has

Corollary 2 (Monotone convergence theorem). If fi ∈ L(B, I), f ∈
R

X
, (fi) is an increasing net such that fi → f(I) and sup J(fi) < ∞,

then f ∈ L(B, I) and J(fi) → J(f).

Proof. By Theorem 1 we have only to show that (fi) is J-Cauchy.
Observe that J(fi) ≤ J(fj) if i ≤ j implies J(fi) → sup J(fi), so
indeed J(|fi − fj |) = J(fj) − J(fi) → 0.
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Theorem 2 (Dominated convergence theorem). If fi ∈ L(B, I),
f ∈ R

X
, (fi) is a net with fi → f(I) and |fi| ≤ some g ∈ L(B, I) for

i ∈ S, then f ∈ L(B, I) and ‖fi − f‖ → 0, J(fi) → J(f).

Proof. By Theorem 1, it suffices to show that (fi) is J-Cauchy. If
not, there are ε0 > 0 and k ∈ S indices ik, jk ≥ k with J(gk) ≥ 2ε0 for
k ∈ S, with gk := |fik

− fjk
| ∈ L, gk → 0(I), gk ≤ ϕ := 2g ∈ L.

By Definition 2, there is a 0 ≤ h ∈ B with ‖ϕ − h‖ < ε0, hence
J(ϕ − ϕ ∧ h) ≤ J(|ϕ − h|)| < ε0.

Now (2) implies gk ≤ gk ∧ h + (ϕ−ϕ∧ h), with Lemmas 2 and 3 one
gets 2ε0 ≤ J(gk) ≤ J(gk ∧ h) + J(ϕ−ϕ∧ h) < I(gk ∧ h) + ε0 < 2ε0 for
some k ∈ S, the desired contradiction.

Even for sequences, with pointwise convergence the above results
are of course false in the general (finitely additive) situation treated
here; the applicability rests on verifying the assumption “fi → f(I)”;
nevertheless, in the measure space situation pointwise convergence
implies “→ (I)” (see Section 5.3).

4. Measurable and integrable functions.

Definition 3 (Stone). A function f ∈ R
X

is called I-measurable if
f ∩ h ∈ L(B, I) for all 0 ≤ h ∈ B.

M∩ := M∩(B, I) denotes the set of all the I-measurable functions.

Obviously B ⊂ B ⊂ L ⊂ M∩. Also, by Corollary 1, f ∩ h ∈ B in
Definition 3.

Lemma 4. M∩(B, I) is closed with respect to ∧,∨, | |, α, α ∈ R,→
(I). If f, g ∈ M∩, l ∈ L, then f ∩ |g|, f + l ∈ M∩f ∈ M∩ if and only if
f+ and f− belong to M∩.

We show only the closedness with respect to → (I): If fi ∈ M∩,
f ∈ R

X
and fi → f(I), with (2) one gets, for 0 ≤ h ∈ B, I(|fi ∩ h −

f ∩ h|) ≤ 2I(|fi − f | ∧ h) → 0. Hence, fi ∩ h ∈ B by Corollary 1 and
since L is a lattice. Therefore, f ∩h ∈ B ⊂ L, since B is I-closed.
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In general, however, M∩ is not +-closed by Example 3 below.

Using f∩hn with J(|g−hn|) → 0, (2) and the dominated convergence
theorem we obtain

(5) f is I-measurable, |f | ≤ some I-integrable g implies f is I-
integrable.

Definition 4. For any f ∈ R
X

we define lower and upper (Darboux)
integrals by
(6)

J∗(f) := sup{J(g); g ≤ f, g ∈ L(B, I)} and J∗(f) := −J∗(−f).

A functional q : R
X

+ → R+ is called an integral metric (see, for
example, [1, 13]) if q(0) = 0 and q(f) ≤ q(g) + q(h) if f ≤ g + h,
f, g, h ∈ R

X

+ .

For f, g, h, k ∈ R
X

with 0 ≤ h ≤ k, one gets

(7) |q(|f |) − q(|g|)| ≤ q(|f − g|) and q(h) ≤ q(k).

For any T : D → R with D = R
X

or R
X

+ we define the localization

(8) TB(f) := sup{T (f ∧ h); 0 ≤ h ∈ B} for all f ∈ D.

This is a simplified version of Schäfke’s definition [13, p. 120].

If T = q = integral metric, qB is also an integral metric.

From these definitions and our results above, one gets

(9) I∗ ≤ IB = I ≤ J∗B = J∗ ≤ J∗
B = IB ≤ J∗ ≤ I ≤ I∗ on R

X
.

Only under additional assumptions the “≤” can be improved, e.g.,
J∗ = J∗ on L, J∗ = J∗

B on M∩, IB = I if I < ∞, we omit the details.

As in the proof of Theorem 1.5 of Schäfke [13], one shows

(10) L(B, I) = IB-closure of B in R
X

and J |L is the unique IB-
continuous extension on I|B. Especially is L(B, I)IB-closed.

With the above Darboux integrals, (5) can be generalized:
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Theorem 3. f ∈ L(B, I) if and only if f ∈ M∩(B, I) and
J∗(|f |) < ∞.

Then the same is true with J∗ replaced by J∗, or with J∗(|f |) < ∞;
J∗(f) < ∞ however is not sufficient.

Proof. Since J∗(f) ∈ R, there are gn ∈ L with gn ≤ gn+1 ≤ f and
J(gn) → J∗(f).

Now for any a, b ∈ R, 0 ≤ t < ∞, one has (a− b)∧ t ≤ a∧ (b + t)
·−b,

yielding |f − gn| ∧ h ≤ f ∧ (gn + h)
·−gn =: ln if 0 ≤ h ∈ B.

Because g1∧ (gn +h) ≤ f ∧ (gn +h) ≤ gn +h, Lemma 4 and (5) yield
f ∧ (gn + h) ∈ L.

Therefore, ln ∈ L and J(ln) = J(f∧(gn+h)
·−gn) ≤ J∗(f)−J(gn) → 0

with Definition 2.

Furthermore, |f − gn| ∧ h ≤ ln ∧ h ∈ B by Corollary 1, hence
I(|f − gn| ∧ h) ≤ I(ln ∧ h) ≤ J(ln) by Lemma 3. This implies
IB(|f − gn|) ≤ J∗(f) − J(gn) → 0, so that f ∈ L with (10).

I-integrability can be characterized as in the classical cases, without
any measurability assumptions:

Theorem 4. For any f ∈ R
X

the following conditions are equiva-
lent:

i) f ∈ L(B, I)

ii) J∗(f) = J∗(f) ∈ R

iii) J∗(f) = (J∗)B(f) ∈ R.

Proof. In view of (9) and the remarks after it, it is enough to show
iii) ⇒ i). For this, by Theorem 3, we only have to show that f ∩ h ∈ L
if 0 ≤ h ∈ B.

Now for ε > 0 there are g ∈ L, k ∈ B with g ≤ h, J∗(f) − ε < J(g),
J(g − g ∧ k) ≤ J(|g − k|) < ε.

Set 0 ≤ l := h + |k|, then −J(g ∧ l) ≤ −J(g ∧ k) < −J(g) + ε.
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There also is p ∈ L with f ∧ l ≤ p and J(p) < J∗(f) + ε.

Since f ∩h = (f ∧ l)∩h, one has |f ∩h−(g∧h)∩h| ≤ 2(f ∧ l−g∧ l) ≤
2(p− g ∧ l) =: q ∈ L, or, with J∗ = J∗ on L, IB(|f ∩ h− (g ∧ l)∩ h|) ≤
IB(q) = J(q) = 2[J(p) − J(g ∧ l)] < 2[J∗(f) + ε − J(g) + ε] <
2[J∗(f) + 2ε − J∗(g) + ε] = 6ε.

This proves that f ∩ h ∈ L by (10).

Using the above results, we proceed to add further properties of these
extensions of I/B.

Almost by definition, our I-measurable functions contain the inte-
grable functions of [2, p. 253].

The inclusion Bτ ∩ B ⊂ Bτ of [3, p. 261] here generalizes to

(11) Bτ ∩ L(B, I) ⊂ {g ∈ Bτ ; I∗(g) < ∞} ⊂ B.

Similarly as in the case of Riemann-µ-, Lebesgue- and B-integrals [7,
p. 262, 8, Theorem 3, p. 86] one shows that with Stone’s axiom, i.e.,
h ∧ 1 ∈ B if 0 ≤ h ∈ B, the following result holds:

(12) If 0 ≤ h ∈ B, then h ∧ 1 ∈ L(B, I), and J(h ∧ 1) → I(h) as
n → ∞.

Thus it remains to show that L(B, I) is closed with respect to
improper integration, i.e.,

(13) f ∈ L if and only if f ∩ n ∈ L for n = 1, 2, . . . and supn J(|f ∩
n|) < ∞.

Without (12) or with supn |J(f ∩n)| < ∞, (13) is false for Example 1
below.

Concerning iteration of the extension process I|B → J |L, one can
show

(14) L(B, I) = R1(B̃, Ĩ), with coinciding integrals,

where B̃ := L(B, I) ∩ RX , Ĩ := J |B̃, and R1 is defined in Section 5.2
so that every L-space (integral) is an R1-space (integral) of abstract
Riemann integrable functions.

(15) Since always R1 ⊂ L by (17) below, one has at least L(B, I) ⊂
L(B̃, Ĩ) (an analogous inclusion for B false).
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Let us finally remark that most of the above can be extended to
Banach space-valued functions, using a ∩ t := ‖a‖−1(‖a‖ ∧ t)a of
[7, p. 327] and a controlling I0 : B0 → R+, B0 ⊂ RX

+ , with
‖I(h)‖ ≤ I0(|h|), as in Schäfke [13].

5. Applications and examples.

1. If Ω is a semi-ring of sets in X and µ : Ω → [0,∞[ is additive,
B = BΩ := real valued step functions over Ω and I = Iµ :=

∫ ·dµ are
admissible.

Then the proper Riemann µ-integrable functions R1
prop (µ,R) are

defined as a I∗µ-closure of BΩ in RX , with integral metric I∗µ(f) :=
inf {Iµ(h); f ≤ h ∈ BΩ}.

For Ω = intervals ⊂ Rn and µ = Lebesgue measure µL, R1
prop =

classical Riemann integrable functions [1].

The space of abstract Riemann µ-integrable functions R1(µ,R) is
defined as in Definition 2, but with hi → f “µ-locally” [7, pp. 199,
70]. By Lemma 9 of [8], this convergence is equivalent to hi → f(I∗µ),
where in Definition 1 the I is replaced by I∗µ. Obviously Iµ ≤ I∗µ and
fi → f(I∗µ) implies fi → f(Iµ). So with L(X, Ω, µ,R) of Dunford-
Schwartz [4, p. 112], one has

(16) R1
prop (µ,R) ⊂ L(X, Ω, µ,R) ⊂ R1(µ,R) = (I∗µ)B-closure of

BΩ ⊂ L(BΩ, Iµ), with coinciding integrals; all ⊂ are in general strict,
see Example 4 below.

In Gould’s paper [5], Stone’s axiom is assumed, so by [6] his results
are already subsumed by the R1-theory, see [7, pp. 57, 268].

2. For I|B a “one-sided closure” U of B has been introduced by
Loomis in [11]. This can be seen as the (I∗)B-closure of B in R

X
, so,

in view of Definition 2, we define R1(B, I) as the I∗-closure of B in
R

X
. One has convergence theorems similar as in the R1(µ,R) case.

As in 1 (see also [3]), with B = BΩ, I = Iµ only, one gets

(17) R1(B, I) ⊂ B + R1-null functions ⊂ L(B, I) with coinciding
integrals.
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By the counterexamples in [8, 9], these are the only relations between
R1, B, L and their null functions.

3. If I|B satisfies Daniell’s continuity condition, i.e., I(hn) → 0, if
0 ≤ hn+1 ≤ hn ∈ B, n ∈ N, with hn(x) → 0 for each x ∈ X, then
B ⊂ L1 + B-null functions, by [9].

With R1 ⊂ L1 and (18) below, these are the only relations here,
see [9]. If, however, B = BΩ with Ω = δ-ring and I = Iµ with µ σ-
additive, then R1(µ,R) = L1(µ,R) ⊂ L(BΩ, Iµ), and fn → f µ-almost
everywhere implies fn → f (I∗µ) for µ-measurable fn, by [7, p. 265], so
the classical Lebesgue convergence theorems are subsumed by the R1

and therefore L(B, I) theory.

4. If I|B satisfies Daniell’s continuity condition and additionally

(18) lim hn ∈ L(B, I) if 0 ≤ hn ≤ hn+1 ∈ B and hn ≤ k ∈ B,

then Iσ(|f − fn|) → 0 implies fn → f(I) in R
X

; here Iσ(f) :=
inf {∑∞

1 I(hn); hn ∈ B, f ≤ ∑∞
1 hn} is the induced integral norm with

which Daniell’s L1 = Iσ-closure of B, see, for example, [1, 10]. Now,
since lim hn ∈ B by (11), we obtain

L1 + B-null functions = B, B + L-null functions = L(B, I).

If even limhn ∈ R1(B, I), e.g., hn ∈ BΩ, corresponding to Ω = δ-ring
in 3, then again R1(B, I) = L1 = L1-null functions ⊂ L(B, I).

5. If I|B satisfies Bourbaki’s condition, i.e., I/B is monotone-net-
continuous, then Bτ = Bτ , L1 ⊂ B = Bourbaki’s Lτ ⊂ L(B, I) =
Lτ = Lτ +{Lτ -null functions}, where Lτ is the localized version of Lτ .

Special cases include B = C0(X,R) with arbitrary topological X or
B = BΩ with Ω = intervals ⊂ Rn, µ = Lebesgue measure, see [2, 8
and 9].

6. Local integral metrics and corresponding integrals have been
introduced in Schäfke [13]; there also convergence theorems are proved.
For I they are subsumed by the convergence theorems here; we do not
need the restrictive condition 2 of [13], e.g., C0(X,R) does not satisfy
condition 2.
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For reference and the benefit of the reader, we collect some examples
mostly given in [7] and [8].

Example 1. X = N, B = {{xn}n∈N; lim(xn/n) exists ∈ R}, I =
this lim, k = {n2} k /∈ L, though X is an I-null set, I(χX) = 0; even
h ∧ 1 ∈ B if 0 ≤ h ∈ B.

Example 2. X = N0 × J , with N0 = {0, 1, 2, . . . }, J = [0, 1[⊂ R.
Ω = ring containing all M of the form {n} ∈ E, {n}× (J −E), F ×{y}
or (N0 − F ) × {y}, with 0 �= n ∈ N0, E finite ⊂ J , 0 /∈ F finite ⊂ N0,
y ∈ J .

µ : Ω → {0, 1} is defined by µ({n} × (J − E)) = 1, µ(M) = 0 for all
other M ∈ Ω.

Let T := {0} × J . One has hn := 0 → χT (µ), i.e., I(χT ) = 0, but
χT /∈ B.

Example 3. X infinite, Ω = {E or X − E; E finite ⊂ X}, µ = δ∞,
δ∞(E) = 0, δ∞(X − E) = 1, B = BΩ, I(f) =

∫
f dδ∞ on B (if X is

uncountable, δ∞ is σ-additive).

Let X = N, g(n) = n and f = g + χ2N. One has f ≥ g ≥ 0, f and g
I-measurable, but f − g not I-measurable.

Example 4. X = [0, 1], Ω = {[a, b[; 0 ≤ a ≤ b ≤ 1}, µ = Lebesgue
measure on Ω, Q = rationals ⊂ X, then fn := 0 → χQ(Iµ) but not
converging “µ-locally.”
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