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INTEGRALLY CLOSED IDEALS
AND TYPE SEQUENCES IN

ONE-DIMENSIONAL LOCAL RINGS

MARCO D’ANNA AND DONATELLA DELFINO

0. Introduction. Let (R, m) be a one-dimensional, local, Noethe-
rian domain. Let R be the integral closure of R in its quotient field. The
conductor of R in R will be denoted by C, and the length function on
R-modules by λ(−). We also assume that R is analytically irreducible,
that is, R̂ is a domain, or equivalently R is a DVR and is a finite R-
module. If n is the maximal ideal of R, we assume that R/m � R/n. To
any such ring we can associate a numerical semigroup as follows. Let
v denote the valuation of the quotient field K of R, v(K) = Z ∪ {∞},
with valuation ring R and set v(R) = {v(x) | x ∈ R, x �= 0}. As R is
a DVR and a finite R-module, C = rg+1R, where rR = n. Therefore,
v(R) is a numerical semigroup such that |N − v(R)| < ∞. We have
v(R) = {0 = s0, s1, . . . , Sn−1, sn = g + 1,→}, where 0 = s0 < s1 <
· · · < sn−1 < sn = g + 1, and the arrow indicates that any integer
strictly greater than g is in v(R). The integer g is the greatest integer
not in v(R) and is called the Frobenius number of R. Matsuoka [7]
defines a chain of ideals Ui as follows

Ui = {x ∈ R | v(x) ≥ si} if i ≤ n.

Clearly C = Un ⊂ Un−1 ⊂ · · · ⊂ U1 = m ⊂ R ⊂ U−1
1 ⊂ · · · ⊂ U−1

n−1 ⊂
U−1

n = R. Since λ(Ui−1/Ui) = |v(Ui−1) − v(Ui)| = 1 for all i, cf. [7],
n = |v(R) ∩ {0, 1, . . . , g}| = λ(R/C). U−1

i is a ring for all i. Moreover,
as R is local and finite over U−1

i , U−1
i is a local ring. The sequence

ti(R) = λ(U−1
i /U−1

i−1) is called the type sequence of R (this terminology
was first introduced in [2]). The name “type sequence” is related to
the fact that, if i = 1, then t1(R) = λ(m−1/R) is the Cohen-Macaulay
type of R.

One can start with a numerical semigroup and define the analog of
the notion of type sequence as follows. If S = {0 = s0, s1, . . . , sn,→}
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is a numerical semigroup, then we let g(S) denote the Frobenius
number of S, that is, the greatest integer not in S, and n(S) =
|S ∩ {0, 1, . . . , g(S)}|. We set

Si = {x ∈ S | x ≥ si},
S(i) = (S − Si) = {x ∈ Z | x + Si ⊆ S}.

We also set ti(S) = |S(i)− S(i − 1)|. The sequence {t1(S), . . . , tn(S)}
is called the type sequence of S, and t1(S) is called the type of S.
The properties of type sequences for numerical semigroups have been
investigated by D’Anna in [3]. The type sequence of a ring need not be
the same as the type sequence of the associated numerical semigroup.
An example is given by the ring k[[x4, x6+x7, x10]], where k is a field, cf.
[2, Example II, 1.19]: the type sequence of the ring is {2, 2, 1, 1}, while
the type sequence of the associated numerical semigroup is {3, 1, 1, 1}.
In Section 1 we characterize the integrally closed ideals of R as the ideals
of the form I = {x ∈ R | v(x) ≥ r} for some r ∈ S, cf. Proposition 1.1
and Corollary 1.3, and we give a criterion to check when the ideals Ui

are stable, cf. Proposition 1.13. In Section 2 we give an upper bound
for l∗(R) ≤ (t−1)[λ(R/C)−1], cf. Proposition 2.1, and we characterize
the rings for which l∗(R) = a ∈ N and t = e − 1 in terms of the type
sequence of the ring.

1. Integrally closed ideals and Arf rings.

Proposition 1.1. Let I be an ideal of R. Then there exists an
integer g(I) ∈ N− � (I) such that I ⊇ {x ∈ R | v(x) ≥ g(I) + 1}.

Proof. Let e1 = min{l | l ∈ v(I)}, and write v(R) = {0 =
s0, s1, . . . , sn,→}. Since v(R) contains all integers greater than sn,
we have that v(I) ⊇ {e1 + sn,→}. Let g(I) = max{l ∈ N |�/∈� (I)}.
Clearly g(I) ≥ g. Let x ∈ R be such that v(x) ≥ g(I) + 1. Assume
first that v(x) ≥ g(I) + 1 + e1. Let y ∈ I be such that v(y) = e1. Then
v(x/y) ≥ g(I) + 1 ≥ g + 1, therefore x/y ∈ R and x ∈ I. Assume now
that v(x) ≥ g(I)+1. Let z1 ∈ I be such that v(z1) = v(x). Then there
exists an invertible element u1 in R such that v(x − u1z1) > v(z1). If
v(x − u1z1) ≥ g(I) + 1 + e1, then we are done. Otherwise there exists
z2 ∈ I such that v(z2) = v(x − u1z1). Iterating the argument we get
x = u1z1 + · · · + uhzh + i, i ∈ I, zj ∈ I for all j, therefore x ∈ I.
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Remark 1.2. C = {x ∈ R | v(x) ≥ g + 1}, where g = g(S) = g(C).

Corollary 1.3. An ideal I is integrally closed if and only if I = {x ∈
R | v(x) ≥ r} for a fixed r ∈ S.

Corollary 1.3 has been proved independently by Barucci, Dobbs and
Fontana in [2].

Remark 1.4. Let I be a nonzero ideal of R and e1 = min{l, l ∈ v(I)}.
Then, for any x ∈ I with v(x) = e1, xR is a minimal reduction of I.

Proof. xR = IR (since R is a DVR) so xR is a minimal reduction of
I.

Definition 1.5. Let (R, m) be a one-dimensional, reduced ring.
The reduction number of an m-primary ideal I, r(I), is defined to be
min{l ≥ 0 | there exists x ∈ I such that xI l = I l+1}.

Corollary 1.6. If I is an integrally closed ideal, then r(I) ≤
max{r(Ui), i = 1, . . . , n}.

Proof. By Corollary 1.3 either I = Ui or I ⊆ C and I = {x ∈ R |
v(x) ≥ r} for a fixed r ∈ S. In the second case we have I2 = xI, where
x is a minimal reduction of I.

Definition 1.7 [6]. Let R be a one-dimensional Cohen-Macaulay
semi-local ring.

(i) An ideal I is said to be open if it contains a regular element of
R.

(ii) An element x ∈ I is I-transversal if In+1 = xIn for some integer
n ≥ 1.

(iii) R is an Arf ring if any integrally closed, open ideal has a
transversal element and if the following condition is satisfied: x, y, z ∈
R, x regular, y, z integral over xR ⇒ yz ∈ xR.
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Definition 1.8 [6, Definition 1.3]. Set RI = ∪(In : In). An open
ideal I of R is stable if RI = (I : I).

Lemma 1.9 [6, Lemma 1.11]. An open ideal of R is stable if and
only if one of the following equivalent conditions is satisfied:

(i) I2 = xI for some x ∈ I;

(ii) there exists x ∈ I such that x is regular and Ix−1 is a ring.

Moreover, if I is stable and x is any transversal element of I, then
I2 = xI.

Proposition 1.10 [6, Lemma 2.2]. Let R be a one-dimensional,
semi-local, Cohen-Macaulay Noetherian ring. The following are equiv-
alent:

(i) R is Arf;

(ii) every integrally closed open ideal is stable.

The following proposition shows that to see if a ring is Arf we only
need to check if the ideals Ui are stable.

Proposition 1.11. The following are equivalent:

(i) R is Arf;

(ii) r(Ui) = 1 for all i.

Proof. We only need to prove (ii) ⇒ (i). By Proposition 1.10
and Lemma 1.9, it suffices to show that if I is integrally closed,
then r(I) = 1. By Corollary 1.3 either I = Ui or I ⊆ C and
I = {x ∈ R | v(x) ≥ r for some r ∈ S}. In both cases r(I) = 1.

We have remarked earlier that U−1
i is a local ring for all i. Let Ci be its

conductor, g(U−1
i ) the Frobenius number and e(U−1

i ) the multiplicity.
Let xiR be a minimal reduction of Ui. Then v(xi) = si = min{v(x), x ∈
Ui}.
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Remark 1.12. C = xiCi for all i.

Proof. We first show that xiCi ⊆ C. Let u ∈ Ci and α in the integral
closure R of R. We need to show that αxiu ∈ R. Since u ∈ Ci and
α ∈ R, αu ∈ U−1

i . As xi ∈ U, αxiu ∈ R. Conversely, let z ∈ C. We need
to show that z/xi ∈ Ci. Let u ∈ R. We will show that uz/xi ∈ U−1

i . Let
w ∈ Ui. Then v(zuw/xi) = v(z)+v(u)+v(w)−v(x) ≥ (g+1)+si−si =
g + 1, therefore zuw/xi ∈ R.

Proposition 1.13. The following are equivalent:

(i) Ui is stable;

(ii) Ui = xiU
−1
i ;

(iii) λ(U−1
i /Ci) = λ(R/C) − i.

Proof. (i) ⇒ (ii). We have xiU
−1
i ⊆ Ui by definition of U−1

i . Let
y ∈ Ui. We need to show that y/xi ∈ U−1

i . Let z ∈ Ui. We have
yz/xi = xiw/xi = w ∈ Ui, therefore y/xi ∈ U−1

i .

(ii) ⇒ (i). We only need to show that U2
i ⊆ xiUi. Let x ∈ U2

i .
We want to show that w/xi ∈ Ui. It suffices to assume w = uz with
u, z ∈ Ui. w/xi = uz/xi and u/xi ∈ U−1

i , so uz/xi ∈ Ui.

(ii) ⇔ (iii). Computing lengths in the short exact sequence

0 −→ xiU
−1
i /xiCi −→ Ui/C −→ Ui/xiU

−1
i −→ 0,

we get: λ(U−1
i /Ci) + λ(Ui/xiU

−1
i ) = λ(xiU

−1
i /xiCi) + λ(Ui/xiU

−1
i ) =

λ(Ui/C) = λ(R/C)−i, where the last equality follows from the definition
of Ui.

Proposition 1.14 [1, Theorem 22]. The following are equivalent:

(i) R is Arf;

(ii) λ(U−1
i /Ci) = λ(R/C) − i and g(U−1

i ) = g(R) − ∑i−1
k=0 e(U−1

i ) for
all i.

We now show that the second condition in (ii) of Proposition 1.14 is
redundant.
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Proposition 1.15. The following are equivalent:

(i) R is Arf;

(ii) λ(U−1
i /Ci) = λ(R/C) − i for all i.

Proof. Apply Proposition 1.13.

2. Type sequences. In [4] it is shown that if R is a one-
dimensional, Noetherian, local, reduced, excellent ring with infinite
residue field, then the inequality λ(R/R) ≤ tλ(R/C) always holds. The
main ingredients of the proof are the fact that R has a canonical module
which is isomorphic to an m-primary ideal of R, and the existence of a
minimal reduction of the canonical module which is generated by one
element. If we assume R to be analytically irreducible, then it has a
canonical module which is isomorphic to an m-primary ideal, since R̂ is
reduced. By Remark 1.4 the canonical module has a minimal reduction
generated by one element, so the same proof as in [4, Proposition 2.1]
allows us to conclude that the inequality λ(R/R) ≤ tλ(R/C) holds. We
set l∗(R) = tλ(R/C) − λ(R/R), cf. [4].

Proposition 2.1. Let (R, m) be a one-dimensional, Noetherian,
local ring. Assume that R is either reduced and excellent, with infinite
residue field, or that it is an analytically irreducible domain with
R/m � R/n, where n is the maximal ideal of R. Then l∗(R) ≤
(t − 1)[λ(R/C) − 1].

Proof. Let zR be a minimal reduction of KR, the canonical module
of R. Then zC = CKR, as KR is integral over zR. Computing lengths
in the short, exact sequence,

0 −→ zR

zC
−→ KR/CKR −→ KR

zR
−→ 0,

we obtain: λ(R/R) = λ(KR/CKR) = λ(R/C) + λ(KR/zR). We have

l∗(R) = tλ(R/C) − λ(R/R) = tλ(R/C) − λ(KR/CKR)
= t[λ(R/C) − 1] − λ(KR/CKR) + t

= t[λ(R/C) − 1] − λ(R/C) − λ(KR/zR) + t.
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Now λ(KR/zR) ≥ t − 1 as µ(KR/zR) = t − 1. It follows that

l∗(R) = t[2(R/C) − 1] − λ(R/C) − λ(KR/zR) + t

≤ [λ(R/C) − 1] − λ(R/C) − t + 1 + t

= (t − 1)[λ(R/C) − 1].

Remark 2.2. Assume R is an analytically irreducible domain with
R/m � R/n, where n is the maximal ideal of R. The equality
l∗(R) = (t − 1)[λ(R/C) − 1] holds if and only if the type sequence
is {t, 1, . . . , 1}. Indeed, l∗(R) = tλ(R/C) − ∑n

i=1 ti(R) = t(λ(R/C) −
1) − ∑n

i=2(ti(R)). There is always a ring with a type sequence as
follows. It suffices to take R = k[[xs, s ∈ S]], where k is an infinite
field, S = {0, t + n − 1, t + n, . . . , t + 2n − 3, t + 2n − 1,→}, and n is
the number of elements in the type sequence.

Proposition 2.3 [4, Theorem 2.10 and Corollary 2.14]. Let a be a
nonnegative integer, t ≥ a, t = e− 1 and e ≥ 3. Then l∗(R) = a if and
only if

(i) if a = 0, then v{R} = {0, e, 2e, . . . , ne,→} with n ≥ 1;

(ii) if a > 0, then v{R} = {0, e, 2e, . . . , ne − a,→} with n ≥ 2.

Remark 2.4 cf. [3]. Numerical semigroups of the form S = {0, e, 2e, 3e,
. . . , (n− 1)e, ne− a,→} have type sequence {t = e− 1, t, . . . , t, t− a}.

Proof. We have that S(i) = {0, e, 2e, . . . , (n− i−1)e, (n− i)e−a,→}
for all i. Thus t1(S) = t2(S) = · · · = tn−1(S) = e − 1 and
tn(S) = e − 1 − a = t − a.

Lemma 2.5. We have

(i) v(U−1
i ) ⊆ S(i) for all i, and v(U−1

n−1) = S(n − 1) = {0, sn −
sn−1,→};

(ii) g(U−1
i ) = g − si.

Proof. i) Take any a ∈ U−1
i and r ∈ Ui (so that v(r) = l ≥ si).

Then ar ∈ R, so v(a) + l ∈ S. By definition of S(i), v(U−1
i ) ⊆ S(i)
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for all i. We now show that v(U−1
n−1) ⊇ S(n − 1). Take r ∈ R such

that v(r) ≥ sn − sn−1 (so that v(r) ∈ S(n − 1)). If x ∈ Un−1, then
v(rx) = v(r) + v(x) ≥ sn − sn−1 + sn−1 = sn, which implies that
rx ∈ R. It follows that r ∈ U−1

n−1. Moreover, 0 ∈ U−1
n−1.

(ii) As v(U−1
i ) ⊆ S(i), g(U−1

i ) ≥ g(S(i)) = g− si (the last equality is
proved in [3, Proposition 1.1]). We only need to show that {g−si+1,→
} ⊆ v(U−1

i ). Let y be an element of the quotient field of R such that
v(y) ≥ g − si + 1. Set z ∈ Ui. We have v(yz) = v(y) + v(z) ≥
g − si + 1 + si = g + 1. It follows that yz ∈ R, therefore y ∈ U−1

i .

Lemma 2.6. We have tn(R) = tn(S) = g − sn−1.

Proof. We have tn(R) = λ(R/U−1
n−1) = |v(R) − v(U−1

n−1)|, where the
second equality follows from [5] (here we need the fact that the residue
fields of R and R are isomorphic). By Lemma 2.5, v(U−1

n−1) = S(n−1),
therefore tn(R) = |N− S(n − 1)| = tn(S).

The following proposition generalizes [2, Theorem II5.3] and [4,
Theorem 2.10].

Proposition 2.7. Let a be a nonnegative integer and assume that
t ≥ a and e ≥ 3. The following conditions are equivalent:

1) l∗(R) = a;

2) for all reductions xR of m, m = C + xR and λ(C/xpR) = a, (here
p = min{i | xi ∈ C});

3) there exists a reduction xR of m such that m = C + xR and
λ(C/xpR) = a, where p = min{i | xi ∈ C}.

4) t = e− 1 and the type sequence of R is t1(R) = · · · = tn−1(R) = t,
tn(R) = t − a.

Proof. We only need to prove 1) ⇔ 4). Assume l∗(R) = a. We have

a = l∗(R) = tn − λ(R/R) = tn −
n∑

i=1

ti(R),

therefore
∑n

i=1 ti(R) = tn− a. By Lemma 2.6, tn(R) = tn(S). Finally,
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tn(R) = tn(S) = t − a by Proposition 2.3 and the above remark. It
follows that t − a +

∑n−1
i=1 ti(R) = t(n − 1) + (t − a), so ti(R) = t for

all i ≤ n − 1(ti(R) ≤ t for all i by [7]). Conversely, assume that the
type sequence of R is t, . . . , t, t − a. Then l∗(R) = tn − λ(R/R) =
tn − (tn − a) = a.
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