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FOURIER ANALYSIS ON COSET SPACES
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ABSTRACT. Let G be a locally compact group with a
closed subgroup H. We will define and study natural analogs
of the Fourier and Fourier-Stieltjes algebras for the homoge-
neous space G/H of left cosets of H in G. In particular, we
show that when H is compact, the Fourier algebra A(G/H)
of G/H can be used to study the nature of G/H in a manner
similar to that of the group case.

1. Introduction. Let G be a locally compact group. Let B(G)
be the Fourier-Stieltjes algebra of G as defined by P. Eymard in [6].
In a recent article, Bekka, Lau and Schlichting investigated the self-
adjoint translation invariant subalgebras of B(G) [3]. In particular,
they have characterized the self-adjoint two-sided translation invariant
subalgebras of the Fourier algebra A(G) [3, Theorem 2.1]. They showed
that these spaces could be identified as the functions in A(G) which
are constant on cosets of some compact normal subgroup K of G.
It follows that such algebras are isometrically isomorphic with the
Fourier algebras of the quotient group G/K. Moreover, each compact
normal subgroup determines a different subalgebra. It is an immediate
consequence of this result that the structure of the quotient group G/ K
is reflected in algebra A(G).

The result of Lau, Bekka and Schlichting can be viewed as a refine-
ment of some earlier work of Takesaki and Tatsuuma [24]. In fact,
Takesaki and Tatsuuma considered the left invariant self-adjoint subal-
gebras of A(G) and succeeded in establishing a one-to-one correspon-
dence between such space and all compact subgroups K of G. In this
case we are dealing with those functions which are constant on left
cosets of K. However, when K is not normal, no link has been made
between the nature of these subalgebras of A(G), the structure of the
homogeneous space G/ K of left cosets of K and the structure of G itself.
This is precisely the goal of this paper. We will give what we believe
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are natural definitions for the Fourier and Fourier-Stieltjes algebra of
a coset space, A(G/H) and B(G/H), respectively. We will then show
that, for a compact subgroup K, it is possible to extend a number of
classical results to this new setting. In particular, we are able to show
that A(G/K) is a regular Banach algebra with maximal ideal space
G/K and to characterize the amenable cosets space G/K in terms of
various structural properties of A(G/K). We will be able to apply this
analysis to study the Fourier algebra of a totally disconnected group.

2. Preliminaries and notation. Let G be a locally compact
group. Let C*(G) denote the group C*-algebra, the enveloping C*-
algebra of L;(G). We let X denote the equivalence classes of weakly
continuous unitary representations of G. If 7 € ¥ and &, n € H,,
where . is the Hilbert space associated with =, then the continuous
function u(z) = (mw(x)§,n) is called a coefficient function of . The
dual of C*(G) can be identified with B(G), the space of all coeflicient
functions of G. B(G) is a commutative Banach algebra with respect to
the dual norm and pointwise multiplication called the Fourier-Stieltjes
algebra of G.

For m € X, we let A, denote the closed linear span of the coefficient
functions of 7, and let B,; be the weak-* closure of A,. In the case of the
left regular representation Ag on L2(G), Ay, is actually a closed ideal in
B(G). A, is usually denoted by A(G) and is called the Fourier algebra
of G. The maximal ideal space A(A(G)) of A(G) can be identified
with G. The dual of A(G) is denoted by VN(G). VN(G) is the von
Neumann subalgebra of B(Lz(G)) generated by {A(z) | x € G}. (See
[1] and [6].)

Let H be a closed subgroup of G. By G/H, we will denote the
homogeneous space of left cosets of H. We will write Z to denote the
left coset zH as an element of G/H. Let ¢ : G — G/H be the canonical
map. Given a continuous function @ on G/H, we can identify @ with
the continuous function v on G defined by u = @ o ¢. This provides us
with an isomorphism between C(G/H) and C(G : H), the subalgebra
of C(G) consisting of functions which are constant on left cosets of H
in G.

Let A be a commutative Banach algebra. Let X be a Banach A-
bimodule. A derivation of 4 on X is a linear map D : A — X such
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that D(uv) = uD(v)+ D(u)v for every u,v € A. A is said to be weakly
amenable if every continuous derivation from A into a commutative
Banach A-bimodule is identically zero.

We assume that A is a semisimple commutative Banach algebra and
as such we will identify A with its Gelfand transform. Given a closed
subset A of A(A), we define the ideals I(A), j(A) and J(A) as follows:

I(A) = {u € A| u(z) =0 for every x € A}

j(A) ={u € I(A) | suppy is compact}
J(A) = the norm closure of j(A) in I(A).

A is said to be a set of spectral synthesis if I(A) = J(A). A is said to
be a set of weak spectral synthesis if, for each u € I(A), there exists a
positive integer n such that u™ € J(A). We say that (weak) spectral
synthesis fails for A if there exists a closed subset A of A(A) which is
not a set of (weak) spectral synthesis.

A multiplier of A is a linear operator T' on A for which T(uv) =
uT'(v). We denote the space of all such maps by M(A). M(A) is a
Banach algebra with respect to the operator norm.

3. The spaces A(G: H) and B(G: H).

Definition. Let H be a closed subgroup of the locally compact
group G. Let B(G : H) = {u € B(G) | u(zh) = u(z) for every z € G,
h e H}. Let A(G: H) = {u € B(G: H) | ¢(suppu) be compact in
G/H}*H'HB(G)‘

We will begin with two straightforward results:

Proposition 3.1. (i) B(G: H) and A(G : H) are closed subalgebras
of B(G). Moreover, A(G : H) is a closed ideal in B(G : H).
(ii) B(G : H) 1is unital.
(i) A(G : H) N A(G) # {0} if and only if H is compact.
) A(G: H) = B(G: H) if and only if G/H is compact.

(iv

When H is compact and normal, it is well known that A(G : H) is
isometrically isomorphic to A(G/H). The next result shows that the
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assumption of compactness is not necessary. It is essentially due to
Eymard [6, 2.9 Corollaire].

Proposition 3.2. Let H be a closed normal subgroup of G. Then
B(G : H) and A(G : H) are isometrically isomorphic to B(G/H) and
A(G/H), respectively.

Recall that a function f € C(G) is said to be weakly almost periodic
if OL(f) = {sf | * € G} is relatively weakly compact. It is well known
that B(G) C WAP(G), the C*-algebra of all continuous weakly almost
periodic functions on G. Moreover, it is also well known that WAP(G)
has a unique translation invariant mean ¥ which is the weak-* limit of a
net ¥, of finite means. Each ¥, is a convex combination > "% a0z,
of point masses. It follows that, for each f € WAP(G), the net
> Ga;Ta; [ of convex combinations of translates of f converges
pointwise to ¥(f)1q, the unique constant function in the closed convex

hull of O (f).

Theorem 3.3. Let H be a closed subgroup of G. Then there exists
a projection P : B(G) — B(G : H) with ||P]| < 1.

Proof. Let ¥ be the unique invariant mean on WAP(H). Let
u € B(G). Let {zg}ger be a complete set of coset representatives
of H in G. Define

Uz, (h) = u(xgh) for h € H.
Then u,, € B(H) C WAP(H). Let
P(u)(z) = ¥(ug,) forallz € apH.

By the previous remark, P(u)(z), viewed as a function on G, is in
the pointwise closure of the convex hull of the right translates of u by
elements of H. Since translation is an isometry on B(G) and since the
unit ball in B(Gy) is closed in the topology of pointwise convergence,
P(u) € B(Gq) and [|P(u)|| (g, < ||lullp(e). Moreover, by definition,
P(u)(zh) = P(u)(z) for every h € H. Furthermore, since z — u, is
continuous in B(G) and hence in || ||, P(u) is a continuous function.
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It follows that P(u) € B(G). Finally, that P is a linear projection is
obvious. O

We note that, in general, we cannot hope that P maps A(G) onto
A(G : H). In fact, if H is noncompact, then P(u) = 0 whenever
u € A(G). This is fortunately not the case for a compact subgroup K.
In this case it is routine to show that

P(w)(z) = Pr(u)(z) = /K w(zk) dk.
We have

Corollary 3.4. Let K be a compact subgroup of G. Then Pk is a
continuous projection of B(G) onto B(G : K). The restriction of Pg
to A(G) is a projection of A(G) onto A(G : K).

If we let 7 be a continuous unitary representation of G, then the
projection P in Theorem 3.3 maps A, onto A, N B(G : H) and B,
onto B, N B(G : H). To see this, simply observe that A, and B, are
both translation invariant.

In [24], Takesaki and Tatsuuma showed that the spaces A(G : K)
where K is a compact subgroup are precisely the norm-closed left
translation invariant *-subalgebras of A(G). In particular, they show
that A(G : K1) = A(G : K») if and only if K; = K;. We give a short
proof of this last statement. If G is a [SIN]-group, then the assumption
that the subgroups be compact is not necessary.

Proposition 3.5. Let K; and Ko be compact subgroups of G. Then
A(G : K1) = AG : Ky) if and only if K1 = Ko. If G is a [SIN]-
group, Hy and Hy are closed subgroups of G and Hy # Hs, then

Proof. Assume that o € Ky and zg ¢ Ko. Then there exists an
open set U C G/K, with é € U and Z, ¢ U. Let U = <p;(i((~]) Then
U is an open neighborhood of K3 not containing zy. We can find a
u € A(G) such that u(z) = 1if x € Ky and u(z) = 0if z ¢ U. Let
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uy; = Pg,u. Then u; € A(G : K3). But u;(e) =1 while u;(z9) = 0 so
Uy ¢ A(G : Kl)

Let G be a [SIN]-group. Assume that g € Hy and zg ¢ Hs. Let
V be an open symmetric neighborhood of e in G' with V' compact and
V2HyNzoHy = @. By modifying an argument of Cowling and Rodway
[4] in a manner similar to the proof of [10, Proposition 3.10], we get
an extension u of 1y, in B(G) with support in V2H,. Let u; = Pp,u.
Observe that suppu C V2H,. Hence, u; € A(G : Hy) and, as before,
uy(e) =1 while u;(zg) = 0. O

Corollary 3.6. Let K1 and Ky be compact subgroups of G. Then
B(G: K;) = B(G : Ks) if and only if K1 = Ks. If G is a [SIN]-group,
then B(G : Hy) = B(G : Hs) if and only if Hy = Hy for any closed
subgroups Hy and Hj.

Proof. In either case, the function u; constructed above is in B(G :
H,) but not in B(G : Hy). u]

It is reasonable to believe that the previous two results hold for non-
[SIN]-groups as well. However, we do not know how to construct the
function v separating Hs and the coset zoH> as above. We note that
any such procedure would also be useful in studying the ideal structure
of A(G) for arbitrary groups. In particular, one should then be able
to give a complete characterization of the ideals of A(G) with bounded
approximate identities when G is amenable, see [10] and [11].

The analog of the Fourier algebra for the coset space G/H is often
considered to be the space A, , where 7y is the quasi-regular represen-
tation of G determined by H, see [1] and [20], for instance. However,
this space may have two serious deficiencies. First A, is not in general
an algebra. Indeed, Arsac [1] has shown that, when K is a compact
subgroup, then Ay, is an algebra if and only if Az, = Az, , where
K, = NgegzKz~!. Since K; is normal, Arg, = A(G/Ky), [1, 4.12
Théoreme]. It follows immediately from these results that, for K com-
pact, A(G : K) # Ay, unless K is normal. More can be said.

Proposition 3.7. Let K be a compact subgroup of G. Then
A(G: K) = A, for some 7 € ¢ if and only if K is normal.
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Proof. If K is normal, this is obvious. Conversely, if A(G : K) = A,
then A(G : K) is a norm closed translation invariant *-subalgebra of
A(G). By [8, Theorem 2.1}, A(G : K) = A(G : K;) for some compact
normal subgroup K;. It follows from Proposition 3.5 that K = Kj.
O

The second major deficiency in using A, for the Fourier algebra of
G/H is that it is possible for two distinct closed subgroups H; and Hj
to be such that A,, = Ar, even when these subgroups are compact
[1, 4.14 Exemple 1]. As aresult, we feel that the algebras A(G : H) and
B(G : H) are more useful analogs for G/H of the Fourier and Fourier-
Stieltjes algebras. Therefore, we define A(G/H), the Fourier algebra of
the coset space G/H, to be the subalgebra of C(G/H) identified with
A(G : H) and B(G/H), the Fourier-Stieltjes algebra of G/H, to be the
subalgebra of C'(G/H) identified with B(G : H). In addition, we define
the norm on B(G/H) in the obvious way. We can show, particularly
when H is compact, that A(G/H) and B(G/H) have many of the
desirable properties of A(G) and B(G), respectively. We begin with
some simple observations.

Let AP(G/H), WAP(G/H), denote the space of (weakly) almost
periodic functions on G/H, see [23].

Proposition 3.8. Let H be a closed subgroup of G. Then

(i) B(G/H) C WAP(G/H) and B(G/H) N AP(G/H) is the space
identified with B(G : H) N AP(G).

(ii) B(G/H) N AP(G/H) is a complemented subalgebra of B(G/H)
with the Radon-Nikodym property.

Proof. (i) This follows immediately from [23, Lemma 4.25].

(ii) Clearly B(G/H)NAP(G/H) is an algebra. It is well known that
B(G)N AP(G) has the RNP [17] and that it is complemented in B(G).
In fact, B(G) N AP(G) is of the form A, where 7 is essentially the
left regular representation of the almost periodic compactification of
G. If P, is the projection determined by m, then P, o Py is the desired
projection. u]
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The significance of Proposition 3.8 can be seen in the following
observation. Recall that, for any locally compact group G, A(G)
is sup-norm dense in Cy(G). For a compact subgroup K, it is an
immediate consequence of the regularity of A(G) that A(G/K) is
again sup-norm dense in Co(G/K). However, M. Skantharajah has
informed us that Ching Chou has shown that it is possible to have
a noncompact subgroup H and a function f € Cy(G/H) for which
f ¢ WAP(G/H). In particular, A(G/H) need not be sup-norm dense
in Co(G/H). Consequently, A(G/H) may fail to separate points of
G/H. For such groups, A(G/H) will be of limited use in studying the
nature of the coset space G/H. However, a careful examination of the
proof of Theorem 3.5 yields the following:

Theorem 3.9. Let G be a [SIN]-group with a closed subgroup H.
Then A(G/H) separates points in G/H.

The next proposition extends an important result of Herz [12].

Proposition 3.10. Let K be a compact subgroup of G. Let H be
a closed subgroup of G such that K C H. Then every @ € A(H/K)
extends to a function 4y € A(G/K) with ||l|aa/x) = ||@1llaa/x)-

Proof. Let u € A(H : K) be the function identified with @. By Herz’s
result, u extends to some v € A(G) of equal norm. Let u; = Pk (v).
Then since ||Pk|| < 1, @y is the desired extension. O

It is not always possible to extend a u € B(H) to some v € B(G).
However, this can be done whenever G is a [SIN]-group or if H is normal
[4]. By modifying the above argument, we have

Proposition 3.11. Let H Be a closed subgroup of G. Assume that
either G is a [SIN]-group or that H is normal. Let Hy be another
closed subgroup containing H. Then every u € B(H1/H) extends to a
v € B(G/H) with the same norm.

4. The structure of A(G/K). Let K Be a compact subgroup of
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the locally compact group GG. We assume that a measure pg/x has
been chosen so that, for every f € Li(G),

f@) = [ . | () didunc (@)

As in the previous section, we define a projection on L;(G) which we
shall also denote by Px by Pk (f)(x) = [, f(xk)dk. Pg maps Ly(G)
onto a closed subalgebra which is in general not self-adjoint. In fact,
we have a “generic projection Px” on C*(G), on A(G)* = VN(G)
and on B(G)*. We denote P,(C*(G)) by C*(G : K). C*(G : K) is
simply the closure of L; (G : K) in C*(G) and is therefore a nonself-
adjoint subalgebra of C*(G). Moreover, C*(G : K)* is B(G : K).
We denote PkKVN(G) by VN(G : K). VN(G : K) is the closure
of L1(G : K) in VN(G) with respect to the weak-+ topology. If
¥ € VN(G : K) = A(G : K)*, then the support (in the sense of
Eymard) of ¥ consists of the union of cosets of K.

For H noncompact, we have seen that A(G/H) need not separate
points of G/H. However, if G is a compact group, then it is known
that, for any closed subgroup K, that AA(G/K) = G/K. We will
show that the assumption that G be compact is not necessary.

Theorem 4.1. A(G/K) is a regular commutative Banach algebra
with AA(G/K) = G/K.

Proof. Let I C G/K be closed. Let & € G/K\F. There exists an
open set U containing &, such that U N F = @. There exits u € A(G)
such that u(z) = 1 for each z € zoK and u(z) = 0 if ~(U). Let
v = P (u). Then #(&p) = 1 and o(&) = 0 for every & € F.

Let Zg € G/K. Then §;z,(a) = u(Zy) is clearly a continuous
multiplicative linear functional on A(G/K). Conversely, assume that
® ¢ A(A(G/K)). We can identify ® with ® € A(G : K)*. Since
A(G : K) is complemented in A(G) there exists I' € VN(G) with
Pi(®) = T and I'|g:x) = ®. Since & # 0, I' # 0. Moreover,
the support of I' is the union of K-cosets. We can then proceed
as in the proof of [4, 3.34 Théoréme] to show that supp’ = zoK
for some 9 € G. The set oK is a set of spectral synthesis for
A(G) [10]. Therefore, I' is the weak-* limit of operators of the form
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v = Z?zl a;L,, where z; € zoK. However, the restriction of L,, to
A(G : K) is 64, It follows that I'| g(g.x) = ® = ad, for some a € C.
Since ® # 0 and ® is multiplicative, a = 1. Hence, ® = §3,. Finally,
the mapping & — dz, is a homeomorphism of G/K onto A(A(G/K)).
]

We can now extend some of the structural properties of the Fourier
algebra A(G) too that of the coset space G/K.

Theorem 4.2. Let G be a locally compact group with compact
subgroup K. Then the following are equivalent:

(i) G is amenable.
(ii) G/K is an amenable coset space.

(iii) A(G/K) has a bounded approzimate identity consisting of func-
tions with compact support in G/K.

(iv) A(G/K) weakly factorizes.

Proof. The equivalence of (i) and (ii) is well known, see [6, p. 16].

(i) = (iii). Let F C G/K be compact. Then F = ¢~ (F) is compact
in G. Let € > 0. Since G is amenable, a standard application of Reiter’s
property P establishes the existence of a function uz (z) € A(G) with
compact support such that uz () = 1/(1 +¢€) for every € F' and
lug Nla@) < 1. Let vp = Pup ). Clearly, Vi (z) = 1/(1 +¢) for
every z € F. Moreover, supp vz . is compact and HUF,EHA(G) < 1. The
elements of A(G/K) with compact support being dense in A(G/K),
it is now a routine matter to verify that {ﬁﬁ,s} determines a bounded
approximate identity for A(G/K).

(iif) = (iv). This follows immediately from Cohen’s factorization
theorem, [12, p. 268].

(iv) = (i). Let F C G be compact. Let F' = o(F) and F' = ¢~ !(F).
Clearly, F' is compact. Assume that A(G/K) weakly factorizes. Since
A(G : K) is a self-adjoint algebra, there exist upr € A(G : K) such
that w(z) > 1 on F' and [|up/|la@) < M where M can be chosen
independently of F' [8]. The remainder of the proof is standard, but
we shall include it for completeness.
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Let f € Ciy(G). Let F = supp f and ups be chosen as above. Then

(upr, 1] < 1 gllcusllur | ace) < MILslcon-
But
(ugr, f) = /G upr (2)f(z) dz > || £

Therefore, ||f|1 < M||Lf|/cv,. It follows that || f||T < M||Lf||’év2 for

every f € Cgy(G) and, hence, that || f||; = ||Ly||cv,. This is well known
to imply that G is amenable. i

Corollary 4.3. Let G be an amenable locally compact group with
a compact subgroup K. Then M(A(G/K)) = B(G/K) and the usual
norms agree.

Proof. By Theorem 4.2, A(G/K) has a bounded approximate identity
{ta} where |luq|ag) < 1 for each a. If 4 € M(A(G/K)), then @
is a continuous function on G/K. Therefore, there exists u € C(Q)
such that u = @ o ¢ and wv € A(G : K) for every v € A(G : K).
Now uu, € A(G : K) and |[uua|| ) < 8] mlluallae < [|@]jae for
every a. Also uu,(z) converges pointwise to u(x). It follows that
u € B(G : K) and that ||ul|gg) < ||@||a. In particular, @ € B(G/K)
and ||l pq/k) = |lil|lam, since it is clear that ||illpa/rx) > ||@l|am-
]

Our next goal is to extend the automatic continuity result for deriva-
tions, the Fourier algebra of amenable groups given in [9]. We will need
the following proposition.

Proposition 4.3. Let K be a compact subgroup of G. Let E C G/K
be a set for which (weak) spectral synthesis fails in A(G/K). Then

(weak) spectral synthesis fails for p~1(E) in A(G). In particular,
if (weak) spectral synthesis fails for A(G/K), then (weak) spectral
synthesis fails for A(QG).

Proof. Assume that £ C G /K is a set for which spectral synthesis

fails in A(G/K). Then there exists a @ € Ig/x(E) such that o ¢

Ja/k(E). Let v =00 ¢. Then v € Ig(A) where A = ¢ (E).
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Assume that v € Jg(A). Then there exists {v,}32; C jg(4)
such that lim, [[v — v,lag) = 0. But then lim, [|P(v — v,)|la@q) =
lim, |[v — P(vn)|laqgy = 0. However, P(v,) = ¥n o ¢ for some
f}n S A(G/K) and limn H’ﬁ - f}nHA(G/K) = limn H’U - P(”n)HA(G) = 0.
Observe that supp P(v,) C (supp v, )K. Hence supp ¥, C ¢(suppv,).
It follows that o, € jg/K(E). This is impossible since ¥ ¢ Jg/K(E).

A simple modification of the above argument shows that, if EcCa /K
is not a weak spectral set for A(G/K), then ¢ !(E) is not a weak
spectral set for A(G). o

We will give two corollaries of Proposition 4.3. The first corollary is
of independent interest.

In [19], Malliavin showed that spectral synthesis fails for the Fourier
algebra of any nondiscrete locally compact abelian group G. In a more
recent article [21], Parthasarathy and Varma considered the failure of
weak spectral synthesis in the Fourier algebra of G when G belongs to a
class of infinite compact groups which contains all compact Lie groups.
While there is every reason to believe that Malliavin’s result extends to
the noncommutative case, we do not know how to prove this. However,
we have the following consequence of Proposition 4.3.

Corollary 4.4. Let G be a locally compact group for which A(G)
admits (weak) spectral synthesis. Then G is totally disconnected.

Proof. Let Gy be the connected component of the identity e in G. If
(weak) spectral synthesis fails for A(Gp), then (weak) it is routine to
verify that spectral synthesis fails for A(G).

Assume that A(Gp) admits (weak) spectral synthesis. If Gy # {e},
then Gg has a proper compact normal subgroup K such that Gy/K is
a nontrivial connected Lie group. However, every nontrivial connected
Lie group contains a closed nondiscrete abelian subgroup H. But
(weak) spectral synthesis fails for A(H), [19] and [21, Theorem 3.1],
and thus for A(Go/K). We can now appeal to Proposition 4.3 to see
that (weak) spectral synthesis fails for A(Go/K) and hence for A(Gy).
This contradiction shows that Gy = {e} and therefore that G is totally
disconnected. O



FOURIER ANALYSIS ON COSET SPACES 185

If G is assumed to have additional structure, then this result may in-
deed extend Malliavin’s theorem. For example, if G is either locally fi-
nite or locally solvable, then any infinite compact open subgroup would
contain a nondiscrete abelian subgroup. This is clearly impossible if
A(G) satisfies (weak) synthesis.

Corollary 4.5. Let G be a locally compact group with a compact
subgroup K. Then each singleton {&} C G/K is a set of spectral
synthesis for A(G/K). Furthermore, if G is amenable, then every finite
subset of G/K 1is a set of spectral synthesis.

Proof. The first statement follows immediately from Lemma 4.3 and
the fact that K (and hence every coset of K) is a set of spectral synthesis
for A(G). If G is amenable, then it can be shown that any set of the
form A = U}_,z, K is a set of spectral synthesis for A(G), see [11,
Theorem 3.11]. Hence every finite set in G/K is a set of spectral
synthesis. ]

Proposition 4.6. Let G be an amenable locally compact group with
compact subgroup K. Let {Z1,... ,&,} be a finite subset of G/K. Then
I = Ig/k{%1,.-.. ,2n} has a bounded approzimate identity {i,} in
A(G/K) N Co(G/K).

Proof. Since G is amenable, A(G/K) has a bounded approximate
identity in Cyo(G/K) by Theorem 4.2.

Let £ be a compact subset of G/K with z; ¢ . Then there exists
u € B(G), the Fourier-Stieltjes algebra of G, such that u(z) = 1 if
¢ € oK, u(@) = 0 on o~ (F) and lulley = 1. Let v = P(u).
Again, v(z) =1 on 2, K, v(z) = 0 on ¢! (F) and llv||B(g) = 1. Since
{#1} is a set of spectral synthesis, by proceeding as in the proof of [10,
Proposition 3.2], we can construct a bounded approximate identity for
Ig/k{#1} with the desired properties. Similarly, we get such a bounded
approximate identity for each ideal I x{#;} for i = 2,... ,n. That I
also has a bounded approximate identity with the desired properties is
standard. ]
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Corollary 4.7. Let G be a locally compact group with compact
subgroup K. Then the following are equivalent:

(i) G is amenable.
(ii) If I is a cofinite ideal of A(G/K), then I = I({z1,...,z,})

where n = codim (I).

(i) Every cofinite ideal I in A(G/K) has a bounded approzimate
identity.

(iv) Each homomorphism of A(G/K) with finite dimensional range
1S continuous.

Proof. Assume that G is amenable. It follows from Proposition 3 and
Theorem 4 that every closed cofinite ideal of A(G/K) has a bounded
approximate identity. Then, from Cohen’s factorization theorem, we
have that each closed, cofinite ideal of A(G/K) is idempotent. But, by
[5, Theorem 2.3], (i) implies each of (ii), (iii) and (iv). Conversely, each
of (ii), (iii) and (iv) imply that A(G/K) weakly factorizes [5, Theorem
2.3]. Thus G is amenable by Theorem 4.2. o

The following result is a generalization of [9, Theorem 1].

Theorem 4.8. Let G be a locally compact group, and let K be a
compact subgroup of G. Then the following are equivalent:

(i) G is amenable.

(ii) Every derivation from A(G/K) into a Banach A(G/K)-bimodule
1S continuous.

Proof. A(G/K) is a Silov algebra. It follows from Corollary 4.5 that
each closed primary ideal in A(G/K) has codimension 1. Moreover,
by Proposition 4.6, each maximal ideal has a bounded approximate
identity. It follows from [2, Corollary 2.10] that every derivation from
A(G/K) into a Banach A(G/K)-bimodule is continuous.

If G is nonamenable, then A(G/K) fails to factorize by Theorem 4.2.
Therefore, since A(G/K)? is dense in A(G/K), A(G/K)? is not closed
in A(G/K). Let ® be a discontinuous linear functional on A(G/K) with
®(u) = 0 for every u € A(G/K)?. Let X be a one-dimensional space,
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and let u.x = z.u =0 for every u € A(G/K). Then D : A(G/K) - X
defined by D(u) = ®(u)z is a discontinuous derivation, see [2, Example
1]. o

5. Weak amenability of A(G). In [9], we showed that A(G) is a
weakly amenable Banach algebra whenever G is a discrete. Recently,
B. Johnson has shown that, if G is the rotation group on R3, then
A(G) is not weakly amenable [16]. Johnson’s surprising result leaves
us to ask for which G is A(G) weakly amenable? In fact, very little is
known about this class of groups. As an application of the material of
the previous sections, we will show that class for which A(G) is weakly
amenable contains all totally disconnected groups. For compact groups
this follows from [16, Theorem 7.1].

Theorem 5.1. Let H be an open subgroup of G. then A(G/H) is
weakly amenable.

Proof. Let D : A((G/H)) — X be a continuous derivation into a
commutative Banach A(G/H)-bimodule. Let % be an idempotent in
A(G/H). Then D(a) = D(a") = n(D(a)) for n > 2. It follows that
D(a) = 0. Since H is open, the linear span of the idempotents is
dense in A(G/H). Hence, D is identically zero and A(G/H) is weakly
amenable. o

Lemma 5.2. Let G be a totally disconnected locally compact group.
Let u € A(G) and € > 0. Then there exists an open compact subgroup
K and av € A(G : K) such that ||u —v||a) < .

Proof. The map z — ,u is continuous from G into A(G). Therefore,
there exists a neighborhood V' of e such that, if x € V, then |ju —
«U||a() < &. Let K be an open compact subgroup contained in V. Let
v = Pg(u) = [, rudk be the vector-valued integral of translates of .
Then

llu —v|la) = H/ (u — pu)dk
K

A(@)

S/ ||U7k’LLHA(G)dk§€ O
K
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Theorem 5.3. Let G be a totally disconnected locally compact group.
Then A(G) is weakly amenable.

Proof. Let D : A(G) — X be a continuous derivation into a
commutative Banach A(G)-bimodule. Then the restriction of D to
A(G : K), where K is a compact open subgroup of G, determines a
derivation of A(G/K) in the obvious way. By Theorem 5.1, D is zero
on each A(G : K). However, Lemma 5.2 shows that every u € A(G)
can be approximated arbitrarily closely by some v € A(G : K) for some
open compact subgroup K. It follows that D = 0. a

In essence, what we have shown is that, for a locally compact totally
disconnected group G, the span of the idempotents in A(G) is dense. In
fact, this can easily be seen to characterize totally disconnected groups.
The idempotents in A(G) are characteristic functions of open compact
subsets in the coset ring of G. Let X = N{K | K is an open compact
subgroup}. If G is not totally disconnected, then K # {e}. However,
the idempotents in A(G) are constant on . It follows that their span
cannot be dense in A(G).

Proposition 5.4. Let Gi and G2 be such that A(G;) is weakly
amenable for i = 1,2. Then A(Gy X G3) is also weakly amenable.

Proof. Since A(G1) and A(G2) are both weakly amenable, so is the
projective tensor product A(G;)®A(G2) [12]. The map u ® v — w,
where w(g1,92) = u(g1)v(g2) extends to a continuous homomorphism
from A(G1)®A(G2) onto a dense subalgebra of A(G; x Gz). It follows
that A(G1 x Gz) is also weakly amenable. O

Corollary 5.5. Let G = G1 X Gy where Gy is abelian and G is
totally disconnected, then A(G) is weakly amenable.

Proof. Tt is well known that, if G is abelian, then A(G) is in fact
amenable. The result now follows from Theorem 5.3 and Proposi-
tion 5.4. O
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Note added in proof. We wish to thank Professor A. Derighetti
for making us aware of [17] where Noél Lohoué obtains our result,
Corollary 4.4, in the case of spectral synthesis.
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