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ON THE ABSOLUTE HARDY-BOHR CRITERIA

J. DEFRANZA, D.J. FLEMING AND B.E. RHOADES

ABSTRACT. We consider the general question of when the
series to sequence variational summability domain, of an ab-
solutely regular matrix method, is a sum space. In particular,
for Norlund polynomial methods it is shown to never be the
case unless the method is equivalent to convergence.

1. Introduction. In most instances where the summability factors
for a matrix method or pair of matrix methods have been determined,
they have been characterized by the classical Hardy-Bohr conditions,
see [1, 3]. In sequence space theory the notion of a sum space was
introduced in [13], and in [3] it is shown that these classical conditions
characterizing the summability factors are equivalent to the series to
sequence convergence domain being a sum space. The situation is
similar in the case of absolute summability factors, see [2, 3]. In [6]
and [7], for example, certain classes of Norlund methods are studied
and results on when the series to sequence convergence domain is a sum
space are given. Here we begin the study of similar questions in the
context of absolute summability. In Section 2 we use the notion of a 7'-
solid sequence space introduced in [10] to show that for any nontrivial
Noérlund polynomial method IV, the summability domain buy, s is never
a sum space. In Section 3 we note that, for an absolutely regular
matrix method A, a necessary condnition for the series to sequence
summability domain bvsy to be a sum space is that the method be
of type M (bvy). This coincides with the situation for regular matrix
methods given in [3]. That is, if c4x is a sum space, then the matrix A is
of type M. In the final section we make several observations concerning
certain absolutely regular Norlund methods and pose the open question
as to whether their series to sequence summability domains are in fact
sum spaces.
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2. Notation and terminology. Throughout we use the notation
and results given by Wilansky [17] and by Zeller and Beekmann [19].
Let w denote the space of all sequences, m the space of bounded
sequences, ¢ the convergent sequences, ¢y sequences that converge to 0,
cs ={x € w: Xz, is convergent}, bv = {x € w: X, |z, —2p—1| < 00},
bug =bvNecy, I = {z € w: Bp|ry] < oo} and ¢ all finitely nonzero
sequences. If A = (ank) is an infinite matrix, the method A defines
a seqeunce to sequence transformation mapping a sequence s (real or
complex) to ¢t where

oo
tn, = E angTr, mn=0,1,....
k=0

The convergence domain c4 for a matrix A consists of those sequences
s for which t = As exists and belongs to ¢. The A-limit is defined for
s € ca by A—limsg =limt,. The method A is conservative provided
¢ C ca and strictly stronger than convergence if, moreover, ¢ # c4. A
conservative method A is regular provided A — lim s = lim s, for all
s € c¢. The summability domain bva consists of those sequences s for
which ¢ = As exists and belongs to bv. The regular matrix method A
is absolutely regular provided, in addition, bv C bvy. The matrix A
is called a triangle if a,, = 0 for £ > n and a,, # 0 for all n. Let X
denote the triangle of ones, so that A is the series to sequence method
associated with A.

An FK-space containing ¢ densely is said to be an AD space. If
E is an FK-space containing ¢, the multipliers on E are defined as
M(E) ={z € w: 2y € E, for all y € E}, where zy denotes the
coordinatewise product. The f-dual of E is Ef = {(f(e;))2, : f € E'},
where E’ is the topological dual of E and e; denotes the ith coordinate
sequence. Then F is said to be a sum space provided Ef = M(FE). The
notion of a sum space was defined and studied by Ruckle in [13, 14,
15] and [16]. A regular method A is Hardy-Bohr if and only if cax is
a sum space. In [3] it is noted that the summability factors for A are
characterized by the classical Hardy-Bohr conditions if and only if A
is Hardy-Bohr. That is, for these methods the summability factors
represent the continuous linear functionals on c,x. An absolutely
regular triangle A is absolute Hardy-Bohr if and only if bvayx is a
sum space. For an absolutely regular matrix method A, the absolute
summability factors, see for example [2], are characterized by the
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classical Hardy-Bohr conditions if and only if bv 4y is a sum space with
AD (see Theorem 4.1 of [8] and Theorem 3.7 of [3]).

3. T-solid sequence spaces. In Theorem 4.1 of [8] equivalent
conditions are given for bvsy to be a sum space. In particular, [8]
covers the case in which A is an absolutely regular triangle and 7' = AX..
However, it is difficult to determine if one of these conditions is satisfied
for specific matrix methods. In [10], the notion of a T-solid sequence
space is introduced, and it is shown that bvr is a sum space if and only
if bur is T-solid. For T bv-reversible, the sequence space E is T-solid
if and only if for each z € £ and y € m

(Z yn(tnk - tn—l,k)xk> cFE
n=1 k

[10, Theorem 4.2]. It is this condition that we now use to show that,
for any Norlund polynomial method N, buy,s is not N,X-solid and
hence buy,s is not a sum space.

The Norlund polynomial method associated with the complex poly-
nomial p(z) = Zszo prz® is defined by N, = (ani) where

ank =
0 if k> N.

To ensure that NN, is a regular triangle, we need p(1) = 1 and pgy # 0.
Any regular Norlund polynomial method is absolutely regular [12,
Theorem 1].

Theorem 3.1. If N, is an absolutely regular Nérlund polynomial
method with buy, =% bv, then bun,x 1s not a sum space.

Proof. Let p(z) = Zszo pr2" generate an absolutely regular Norlund
polynomial method such that buy, # bv. Let P; = Sh—opPk, T = N,T
and ur, = @ Yoy Yn(tnk — tn_1,k), where z € bur and y € m. We
need to show that there exists an z € bvy and y € m so that u ¢ bur.
After some simplification,

N

U = Tk ijyk+j
J=0
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and for n > N,

(Tu)n—(Tu)n—1 =) PN—kUn—N+k

M=

0

<.
I

-

Il
o

N
pj ZpN_kxn—N-i-kyn—N-i-k-i-j
7 k=0

N
:{ ijynN+j}mn — NPN

J

I
=)

+

-

Il
o

N
pj E PN—kZn—N+kYn—N+k+j
7 k=1

N N N
= ijyn—N+j { ZPN—kIn—J\H-k *ZPN—kIn—NJrk }
j=0 k=0 k=1

N N
+ij ZpN—kxn—N-i-kyn—N—i-k-i-j
j=0 k=1
N
= Divn- N+ (T2)n — (T2)n1)
§=0
N N
7ZPN—kxn—N+k ijyn—N-q-j
k=1 j:0
N N-1 N
+ij Z PN—kTn—N+kYn—N+k+j +ijp0yn_N+j
j=0 k=1 =0
N
= Dy n+i(T2)n — (T)s1)
§=0
N N
_ZprkxanJrk ijyn,Nﬂ-
k=1 =0
N N-1

+ij Z DPN—kTn—N+kYn—N+k+j
j=0 k=1
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N-1

+ Z PjPoTnYn+j + PNPOTnYn+N-
=0

In the last expression for (Tu), — (Tu),_1, the second term is a

linear combination of ¥, N, Yn—_N+1,--- »Yn, the third term is a linear
combination of y,-n41,...,Ynt+nN—1, and the fourth term is a linear
combination of yn,...,yn+n—1. Denote the coefficients of the terms
Yn—Ns-+ yYntN—1 by bu_n,... ,bpyn—1. Then
N
(Tu)p — (Tu)p—1 = ijyanij((Tx)n - (T'z)n-1)
§=0
2N -1
+ > baoNpkUn-Nik
k=0
+ PNPOZnYn+N-
Thus,

oo 2N—-1

> Y ) bu N4kYn N4k T PNPOTRYntN
n=N+1"' k=0

= 3 S il s N Tw)n — (Tu)o—al.

n=N+1j=0

For any z € bup and y € m, the second term on the right side of the
previous inequality is bounded. It suffices to show that there exists an
x € bur and y € m so that the first term of the inequality is unbounded.
Since I # bur, there exists an z € bur\ly, i.e., bug = bv implies bu gy =
l;. Consider the following disjoint subsequences of the sequence z :

(Tn+1)n)nets (TEN+nt1)nets - - > (T@N+1)nt2n)ner-  Then there
exists an index j, 0 < j < 2N such that > 07 [#ant1)ntj| = 00,
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and
o] 2N—-1
Z Z bn—N+kYn—N+k + PNPOTRYntN
n=N+1"' k=0
o |2N-1
> Z Z b N+kY@N+1)n+j—N+k
n=N+1"' k=0
+ PNPOT(2N+1)n+5Y(2N+1)n+j+N |-
2N -1
Leta=) ,_¢ bn-N+k, b= PNPOT(2N+1)n+j> and set YN 1)ntj— N4k
= 1 for each ¥k = 0,...,2N — 1. If l[a + b > |a — b, then set
YeN+1)n+j+n = L and if [a—b] > |a+b|, then set yont1)ntj+n = —1.

Then we have chosen the yian41)n4j+n S0 that

2N 1
Z beN+1)ntj—N+kYEN+1)ntj—N+k
k=0

+ PNPOT(2N+1)n+5Y(2N+1)n+j+N
is as large as possible. If L is the larger of |a + b| and |a — b|, then

> max{|al, |b[} = ||

> la + 0| + |a — b
2
= |PNPO$(2N+1)n+j|-

Consequently,

oS} 2N—-1

D1 D0 ba NtkUn Ntk +PNPOYnsN
n=N+1" k=0
oo

> > Iewllpolleen iyl = oo
n=N+1

(since pypo # 0) and bur is not T-solid. O

4. Type M(bvy). Let E be an FK-space containing ¢ and A a
matrix method which maps E into E. In [4] the method A is defined
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to be of type M(E) if, whenever tA = 0 for t € EP (the 3-dual of
E), then t = 0. This definition agrees with the usual definition of
type M and M* when E = c or Iy, respectively. It also agrees with
the definition given in [9] for E with basis (e;, E;) since, in this case,
EP = E° (the §-dual of E). In Theorem 2 of [9], it is shown that for A
areversible E— F method, A is perfect if and only if A is of type M (E).
In the present setting we have A is bvp-perfect, i.e., bug = (bvg) 4, if and
only if A is of type M (bvy). The next proposition gives a little more.
If A is a regular matrix method with row sums one, then Ae = e.

Proposition 4.1. Let A be an absolutely reqular triangle with row
sums 1. Then A is of type M (bvy) if and only if A is bv-perfect, i.e.,
% = b’UA.

Proof. =. Since A is absolutely regular, A maps bvg into bvgy, so
that assuming A is of type M (bvy) gives A is buvg-perfect [9]. That is,
bug = (bvg) 4. Let x € buy. If x € (bvg)a C buy, then choose a sequence
(z(™) C bug such that (™) —  in (bvy) 4. But then (™) — z in buy so
that € bv in buy. Now suppose = € bus\(bvg) 4. Then Az € bv\bvg
and there exist some y € byy and scalar k # 0 such that Az = y + ke.
Then x = A 'y + kA te = A1y + ke, where A~y € (bvy)a. Choose
(2(™) C bug such that 2(™ — A~y in (bvg)a. Let w(™ = 2(" 4 ke.
Then w™ € bv and

Aw™ = Az™ 4 ke — y + ke = Az

in bv. Therefore, w™ = 2 in bvy and bv = buga.

<. Let € (bvg)a C bvs. Since bu = bva, choose a sequence
(™) € bv such that (™ — zin bv4. For each n write (") = y(™ 4k, e
where y(") € byg and the k,, are scalars. Then y(”) + kpe — x in bva
which implies
lim ||Ay™ + knAe — Az||p, = 0.
n—oo

Let 2™ = Ay(™) + k,Ae — Az. Then, for all n,

12l = 1 tim 2]+ 7 12" = 273, .
k
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But since Ay(™), Az € bug, limy(Ay™);, = limg(Az), = 0 and, since
A has row sums one, (Ae), =1 for each k. Therefore,

12 oy = [kl + D 128 = 27|
k

and hence [|z(™||y, — 0 implies k, — 0. Finally,
1A4y™) = Azlbo, = | Ay™ — Ay
< | Ay™ — Az + k Aelloy + [kn|||Aéllpy — O,

and hence
y(") — z in (bvy)a,

which implies bvy = (bvp) a. O

Proposition 4.2. Let A be an absolutely regular triangle and
T = AX.. Then bvr has AD if and only if bv = bu,.

Proof. =. Suppose bur has AD and x € buyg. Then x € bvy = Az €
bv = T~'(Az) € bur. Hence there exists a sequence (2(™) C ¢ such
that

||T_1(Ax) - z(")||va — 0= ||Az — Tz(")||bv — 0.

But Tz(™ = A¥:(™ = A(Zz(™) and (") C ¢ C I; implies that
(3> 2(™) € bu. Thus we have

|Az — A(22")||py — 0,
which implies

z—xz™ — 0.

bv g
This gives bv = buy.

<. Suppose bv = buy, and let z € buy. Now z € bup = Tz € bv =
A=Y(Tz) € bua. So there exists a sequence (y™)) C bv such that

ly™ = A7 (T2) oy — 0= [|Ay™ —Tejp, — 0
= |77 (Ay™) = T7H(T) lpo, — 0
= |77 (Ay™) — @[[pu, — O
— =7 A Ay — 2|, — 0
_— ||E_1y(") — 2||po;, — 0.
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But ¥ :I; — bv and bus = [; so that X! : bu — I; which gives
E’ly(”) € l; for each n. Then l; C bv C bur and ¢ dense in [; implies,
given € > 0, we can choose an ng such that

12" — zlpor, <.

Thus @ = bvr and bup has AD. ]

In Proposition 3.2 of [3] it is shown that, for a regular triangle A, if
cay is a sum space, then A is of type M. We have the analogous result
in this setting.

Proposition 4.3. Let A be an absolutely regular triangle. If bvay, is
a sum space, then A is of type M (bvy).

Proof.

bvuas a sum space

= buyy is a sum space with AD (see [8, Theorem 4.1])
= bv = bvy by Proposition 4.2
= A is of type M(bvg) by Proposition 4.1. O

Proposition 4.3 can be used to give another proof that for any
Norlund polynomial method N, which is absolutely regular with bv #
bun,, bun,s is not a sum space. If it were a sum space, then by
Proposition 4.3, N, would be of type M (bvg). However, by Theorem 4.4
of [4] and Theorem 4.6 of [5], no coregular Norlund polynomial method
stronger than convergence can be of type M (bvy).

5. Norlund methods. The Cesaro methods C,, for a > 0 satisfy
both cc, 5 is a sum space, see [1, 18, 3], and buc,_ 5 is a sum space, see
[2, 3]. In [6], the N6rlund method N, defined by p(z) = (1+2)/(1—z)
is shown to satisfy cy,s is a sum space. In [7], other, non-Cesaro like,
Norlund methods are shown to have series to sequence convergence
domains that are sum spaces. For example, if p(z) = (1 + 2)/(1 — 2)*
where o > 1, then cy, x is a sum space. If p(z) = (1 + 2)/(1 — 2),
then N, is absolutely regular, see [12, Theorem I], with bv # buy, x.
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Moreover, if p(z) = (1 + 2)/(1 — 2)" and ¢(z) = (1 + 2)/(1 — 2)"*!
where r is a positive integer, then buy s C bun,x, see [11, Theorem
2.19], so that all these Noérlund methods are absolutely regular. If the
series to sequence summability domains bvy, » are to be sum spaces by
Proposition 4.3, the methods must be of type M (bvp).

Proposition 5.1. If

142 r
p(z) = Zp 2k,

(1-2)r

where r is a positive integer, then the Norlund method N, is of type
M(bvo) .

Proof. If p(z) = (1 + z)/(l — 2)", denote the nkth term of the
matrix method by p( /P D for k < n, 0 otherwise and wehre

P = >0 p(r). Let t € bs, the space of bounded series, be such
that tN, = 0. Then

(r)
t;
Hk:(t,Npek,)—Zp] k7 —0 forall k > 0.

@)
i= b

For all positive integers m, pgnfl)c = Pj(inkfl), so that if m > 1,

Akpg.i‘])c = p;T;;l)a where A denotes the first forward difference. This
gives

[e’s] (r e’} (r)
_ NPkl Pj k1t
AHy = Z p™ - Z p(™
j=k £ j=k+1 L
_ P(()T)tk Akpg'r—)ktj
Pk(,T) i Pj(r)
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since each p(()r) = 1. It then follows that

o (1) 00
_ P iti 123 t;
a3 3 Ao
() (r) (r)
= P Py ickr1 Bj
for all £ > 0,
and hence,
tr Nt tgaa Nt
N Y
Plg ) j=k+1 Pj( ) PI§+)1 j=k+2 Pj( )
t t
:%Jr k(j)l =0 forall k>0.
Py Pey

Thus, for all £ > 0, t;, = (fl)kPlgr)to, and for each j,

2j 2j

j J
> t= S U= 10 Y AR =03
k=1 k=1

k=1 k=1

Since t € bs, the lefthand side of the previous equality is bounded for
all 5. Since p,(cr) > 1 for all k it follows that ¢y = 0 and hence t; = 0 for
all k. Therefore, N, is of type M (bvy). O

An interesting open question is whether the summability domains
bun,s: are sum spaces for the Norlund methods of the previous propo-
sition.
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