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MULTIPLE POSITIVE SOLUTIONS FOR HIGHER
ORDER BOUNDARY VALUE PROBLEMS

ERIC R. KAUFMANN

ABSTRACT. Multiple positive solutions are shown to
exist for the boundary value problem u(™ + fit,u) = 0,
au®=2)(0) = fu("~1)(0) = 0, yul*~2(1) + su"~H(1) = 0,
u(®(0) = 0,0 < i < n—3, when f is sublinear at one end point
(zero or infinity) and superlinear at the other. The methods
involve applications of a fixed point theorem for operators on
a cone in a Banach space.

1. Introduction. In this paper we consider the two-point boundary
value problem,

(1) u™ + flt,u) =0, 0<t<1,

(2) yuln=?)

where f:[0,1] x [0,400) — [0,+00) is continuous, «, 3,7, > 0, and
p = B+ ay+ ad > 0. Notice if u(t) is a nonnegative solution of (1),
(2), then u("~2)(t) is concave on [0, 1].

When n = 2 the boundary value problem (1), (2), arises in nonlinear
elliptical equations on an annulus, see [2, 3, 11, 13, 14]. In many
physical and biological problems only positive solutions are of interest.
Cones provide an elegant means to define positive elements in a Banach
space. In [4] and [5] fixed point theorems with respect to a cone
were used to find positive solutions for higher order boundary value
problems. For a thorough treatment of cones in a Banach space, see
Deimling [6] or Krasnosel’skii [12].
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Our goal is to extend the work of Erbe, Hu, and Wang [9] to obtain
two positive solutions of (1) and (2), when f is superlinear at one
endpoint (zero or infinity) and sublinear at the other; that is, when
either

(1) fO,Tn =400 and foo,m = +o00, or
(ii) fo,m = 0 and foo,pr =0,

where,
t,x
fom = lim min It ),
’ z—0t 0<t<1l T
. . ft=)
= lim min
foo,m @00 0<t<1 = )
t,x)
= lim max !
fO,M o0t 0<t<1 z )
and,

fooor = lim max
’ rz—+00 0<t<l T

We will make our assumptions on f more precise in Section 3. The
results herein are also related to those by Atici [1] and Eloe and
Henderson [8].

In Section 2 we present some preliminary results involving the Green’s
function of (1) and (2). We also state a fixed point theorem due
to Krasnosel’skii [12] which will be used to yield multiple positive
solutions of (1) and (2). In Section 3 we provide an appropriate Banach
space and cone in order to apply the fixed point theorem to obtain
solutions of (1) and (2).

2. Preliminaries. In this section we state a fixed point theorem
due to Krasnosel’skii which utilizes cones in a Banach space. Our cone
will be constructed based on properties of the Green’s function, G(t, s),
for the boundary value problem,

(3) —Mm—m 0<t<1,
Bun=1)

(4) (1) +6u"7H(1) = 0,
Um) 0, 0<i<n-3.
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It can be shown, using arguments similar to those in Eloe [7], that

%G(t,s) >0, (0,1)x(0,1), 0<i<mn-—3,

and
877, —2
atn -2

where K (t, s) is the Green’s function for

G(t,s) = K(t,s),

(5) —u"=0, 0<t<1,

(6) yu(1) + du'(1) = 0.

In [10] it was shown that K (t,s) satisfies

(7) 0 < K(t,s) < K(s,s), 0<ts<1,
as well as

K(t,s) 1 3
8 > - <t< - 0<s<1
(8) K(s,5) =7 a="=p "=°=%

where o = min{(y + 49)/(4(y + 9)), (a« +48)/(4(a + B)) }.

The existence of the multiple positive solutions of (1) and (2) is based
on an application of the following fixed point theorem [12].

Theorem 1. Let B be a Banach space and let P C B be a cone.
Assume Q1,Qs are bounded open subsets of B such that 0 € Q1 C Q; C
Q. Suppose that

T:PN(Q\ Q) =P
is a completely continuous operator such that, either
@) ITu| < |lu|l, w € PNOQ and || Tul| > ||ul|, w € PN IN2, or
(ii) [|Tul| > |lull, we PNoQ and [|[Tul| < ||ull, w € P NINs.
Then T has a fized point in P N (Q \ Q).
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3. Multiple positive solutions. In this section we use the fixed
point theorem from Section 2 to find two positive solutions of (1) and
(2). It is well known that u(t) is a solution of (1) and (2) if and only if

u(t):/o Glt, 5)f(s,u(s))ds, 0<t<1.
Define

B={zecC™ 20,1 :2(0)=0,0<i<n-—3},

with norm ||z|| = |2(" )|, where | - |5 denotes the supremum norm
on [0,1]. Then, (B,|| - ||) is a Banach space.

Remark. For each z € B, |z)|. < |jz|, 0<i<n—2.

Define the cone P C B by

P= {x eB:z"D(#)>0and min z™D() > U||x||} .
1/4<t<3/4

If € P then, 2@(t) > 0,0 < i < n—2, and 2(t) > oz ((t —
1/4)"2)/(n—i—2),1/4 <t <3/4,0<i<n—2. Hence, if z € P
then,

. 1 3

G () > g , S<t<? <i<n-—2.
9) =) > (n_i_2)!4n_l_2llx\|, g St<y, 0<isn

Consider the operator 7': P — B given by

1
Tu(t) = / G(t,s)f(s,u(s))ds, 0<t<1.
0
We seek a fixed point of the operator T" in P.

Lemma 2. The operator T is completely continuous and T: P — P.
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Proof. Let u € P. From (7) we have, for 0 <¢ <1,

1 8n72

(n=2)(4) — =
)20 = [ G

G(t,s)f(s,u(s))ds

and, hence,

(10) ITul| = |(Tw)=2 / K(s, ) f(s,u(s)) ds.

If u € P then, by (8) and (10),

min  (Tu)"?(t)= min /Kts s,u(s))ds
1/4<t<3/4 1/4<t<3/4

> U/O K(s,s)f(s,u(s))ds > o ||Tul|.

Finally from (7), we have (Tu)®=2)(t) > 0 for v € P, and so,
Tu € P. Standard arguments can be used to show that 7" is completely
continuous. This completes the proof of the lemma. O

For our first theorem we will require that f satisfies the following
conditions:

(A) fO,m = 00, foo,m = +o00 and
(B) there exists a p > 0 such that, if 0 <z <p, 0 <t <1, then
f(t,z) < np,

where

1 —1
6p

—( [ K(s,5)ds) = .

</0 (5,9) S) 603 + 378 + ay + 306
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Theorem 3. Assume f(t,u) satisfies conditions (A) and (B). Then,
the boundary value problem, (1), (2), has at least two positive solutions,
u1,u2 € P, such that

0 < flual| <p < fuzl.

Proof. Choose M > 0 so that

oM 3/4 11
11 _— K| = > 1.
(1D (n—2>!4"2/1/2 (2’S>ds—

By condition (A), there exists a 0 < r < p such that
(12) f(t,u) = Mu,

for0<u<r,0<t<l1.
Let u € P with ||u|]| = r. From (9) and (12) we have

(Tw)"=2 (%) = /01K<%, s> F(s,u(s))ds

3/4 14
> M K(—,s)u(s) ds
1/2 2

oM 3/4 1
> - K| = d
> /1/2 (2) sl

If we define Q; = {u € B : ||u|| < r}, then the above argument shows
that

(13) | Tul| > [jul, wePnao.

Now consider v € P with ||u|| = p. By the remark, |u|. < p, and so,
from condition (B),

(Tw)"=D(t) = /0 K(t,5)f(s,u(s)) ds < /0 K(s, ) (s, u(s)) ds

1
g/ K(s,s)dsnp < p=|ul.
0
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If we define Qo = {u € B: ||u|]| < p}, then
(14) ITull < |luf, wePno,.

Theorem 1, together with (13) and (14), implies that there exists a fixed
point, uy, of T in PN (Q2\ 24). This fixed point satisfies r < |luz|| < p.

Using condition (A) again, we know there exists an R; > 0 such that
(15) ft,u) = eu,

for all u > Ry, where € > 0 was chosen so that

3/4
o€ 1

—_ K\ = ds > 1.
(n—2>!4"2/1/2 (2> 0e

Set R = max{2p, ((n — 2)!4"72/0)R1} and pick u € P with |jul]| = R.
Notice, by (9), that u(t) > (o/((n —2)14""2))||u|| > R; on [1/2,3/4].

And so,
(Tw)"=2 (%) = /:K(%,s)f(s,u(s))ds

Set Q3 = {u € B:||u]| < R}. Then
(16) [Tl = lull, wePnos.
Theorem 1, together with (14) and (16), implies that there exists a

fixed point, ug, of T such that p < ||uz|| < R and the proof is complete.
O

For our second theorem we will require that f satisfies the following
conditions:
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(C) foom =0, foo,nr =0, and

(D) there exists a ¢ > 0 such that, if (o/((n —2)!14" 2))qg < z < g,
0<t<1, then
f(t, ) > g,

3/4 1 -1
)\:(/ K(—,s)ds) .
1/2 2

Theorem 4. Assume f(t,u) satisfies conditions (C) and (D). Then
the boundary value problem (1), (2), has at least two positive solutions,
u1, Uz € P, such that

0 < flua]] < g < fuz.

Proof. From condition (C), there exists an 0 < r < p such that
ft,u) <nuforall 0 <u<r, 0<t <1, where n = (folK(s,s) ds)~L.
Define

Q ={ueB:|u| <r}

For w € P N 9Q; we have, by the remark, |u|o. < ||u]| = 7. Hence,
1 1
) 20) = [ K6 u)ds < [ Ksonulsds
0 0
1
< [ K(ss)dsllul < [ul.
0
That is,
(17) ITul| < ||ul| for wePnNoR.

Now let
Qo ={ueB:|ul <q}

Notice that, for u € P N 0Qa,

in u(t) > ———|lu| 7
min u —_— ||| = .
1/2<t<3/4 ~ (n—2)l4n-2 (n—2)l4n—2
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Thus, by (D),

@ (3) =[5 (505 ) 1650t as
> /lj:4K<%8> dsAq>q = |[ull.

(18) [Tl = f[ull  on PN oKy

Hence,

Returning to condition (C), we know that for any £ > 0, there exists
an M > 0 such that,

ft,u) <M+eu for u>0, 0<t<1.

And so

(Tu) (¢ / K(t, $)[M + cu(s)] ds

<M/Kssds+5/Kss)()ds

<—+€/Kss

By choosing € > 0 sufficiently small and R > M/n sufficiently large,
we have for u € P N 0Q3

(19) [Tull < R = [|ul],

where
Q3 ={z € B:|u|| < R}.

Applying Theorem 1 to (17), (18) and (19) yields the desired results.
This completes the proof of the theorem. o

As an example, consider the boundary value problem

1
(20) u” + g(ul/6 +u’) =0,
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6079700

/ — 49y" _

123517 ¥ (0) 9" (0) =0,

(21) 7/ (1) + 220u” (1) = 0,
u(0) = 0.

Note that fo,, = lim,_ o+ (u!/® + u%)/(3u) = 4+00 and foom = +00.
Also
1~ 0.701

and
o~ 0.624.

It can be shown that f(t,u) satisfies condition (B) for p = 1.003.

Let M = 17.90. Then (11) holds. Using this M we can show that
(12) is valid for all 0 < u < r where

r=28.33x107°
Hence there is a positive solution, u1, of (20), (21) which satisfies

8.33 x 1072 < [Juy || < 1.003.

Inequality (15) holds for v > R; = 1.94. From the proof of Theorem 3
we have R = max{2p,4R;/o} < 12.44 as an upper bound on our second
solution, us. Thus,

1.003 < ||uz|| < 12.44.

The bounds on the norms of the solutions can be improved. Recall
that, if x € P, then

; (t—1/a) 2

20(t) > ol L
(n—1i—2)!

1 3

-<t< - <i<n-—2.

4_t_4, 0<i<n

Fix 0 < ¢ < 1/2. Then for all z € P,

n—i—2
20 > 2 g,
1 3 .
- S StTsSsn— 4.
§+4<t<4 0<:1< 2



HIGHER ORDER BOUNDARY VALUE PROBLEMS 1027

Note that ¢ = 1/4 in (9). The values of r, R; and R change
slightly if (22) is used in place of (9) in the proofs of Theorems 3
and 4. For example, if ¢ = 27/100, then » = 8.39 x 1073 and
R = max{2p,1.94/(c¢)} < 11.51 for the boundary value problem (20),
(21). Thus the solutions u; and wus satisfy

8.39 x 102 < ||uy|| < 1.003,

and
1.003 < [juz|| < 11.51.
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