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TORAL ARRANGEMENTS AND
HYPERPLANE ARRANGEMENTS

J. MATTHEW DOUGLASS

ABSTRACT. We consider pairs, (T,.A), where T is a torus
and A is a finite set of characters of 7. Then d.A = {ker(dX) |
X € A} is a finite set of hyperplanes in the Lie algebra of T'.
Let Ot be the coordinate ring of T', and O  the local ring of
the identity in 7'. In analogy with hyperplane arrangements,
puty = H (x;—1), and consider the set, D(.A), of derivations,

1

0, of Op that satisfy 6(y) € yOr. The main results are that
the localization of D(A) at the identity of T is a free O .-
module if and only if dA is a free hyperplane arrangement,
and that if this is the case, then the exponents of d.A can be

recovered from A.

1. Introduction. Let k& be an algebraically closed field of character-
istic zero. In analogy with the definition of a hyperplane arrangement,
we will define a toral arrangement to be a pair, (T, A), where T is a
torus defined over k and A = {X1,...,Xs} is a finite set of characters
of T. Let t be the Lie algebra of 7. Then if X is a character of T,
its derivative dy is a linear functional on t. Let dA be the multiset of
hyperplanes {ker(dX1),...,ker(dx,)}. Then the distinct hyperplanes
in dA form a central hyperplane arrangement in t. In this way, a cen-
tral hyperplane arrangement is canonically associated with each toral
arrangement.

Define y = [[;_;(X; — 1) in Or and v = [[;_;dx; in Oy Let
Dery(Or) and Derg(O;) be the modules of k-linear derivations of Or
and Oy, respectively. Then D(dA) is defined to be {§ € Dery(O;) |
0(y") € 'O}, and dA is said to be free if D(dA) is a free O¢-module.
Terao [7, Theorem 2.5] has shown, using the homogeneity of y’, that
D(dA) is a free O¢-module if and only if its localization at mg is a free
Oy 0-module. Notice that we have modified the standard definitions
slightly, see [6], since the linear functions {dy, | 1 < j < s} are not
necessarily distinct. It will be shown in Section 2, after Corollary
2.5, that our definition of D(dA) gives the same O-module as the
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module of derivations of O; usually associated with the arrangement
of distinct hyperplanes in dA. For a toral arrangement, we define
D(A) = {6 € Dery(Or) | 6(y) € yOr}, but we will say that (7, .A), or
just A, is free if D(A). is a free Op -module, where e is the identity
inT.

Our main results are that D(A). is a free Oy -module if and only
if D(dA) is a free Op-module and that if this is the case, then the
exponents of (t,d.A) can be recovered from D(A).. In particular, (T, .A)
is a free toral arrangement if and only if (t,dA) is a free hyperplane
arrangement.

Since t depends only on a neighborhood of the identity in 7', it
is plausible that d.A only gives information near e. We will give an
example in Section 4 which shows that this is indeed the case. Thus,
it can happen that D(A), is free, but D(A) is not.

Our motivation for considering toral arrangements is a result of
Lehrer and Shoji [4] in which the exponents of certain restricted
arrangements are shown to arise in the decomposition of Springer
representations of Weyl groups. In that setup, G is a complex reductive
Lie group, L is a Levi factor of a parabolic subgroup of G, Tj is a
maximal torus in L and T is the center of L. The characters involved
are the restrictions to T' of the roots of (G,Tp). If w is a regular
unipotent element in L and B, is the variety of Borel subgroups of G
that contain u, then T" acts on B, and the Weyl group, W, acts on the
cohomology of B,. It can be shown that the set {Lie (T}) | z € B,},
where T is the stabilizer of x, is precisely the lattice of subspaces of
the corresponding hyperplane arrangement (t,d.A). Lehrer and Shoji
show that the reflection representation of W appears in H*(%8,) in
degrees given by the exponents of dA. The results in this paper show
that the exponents of dA, and hence the multiplicity of the reflection
representation in the H*(*8,), can be computed in the coordinate ring
of T" without passing to Lie algebras.

More generally, suppose 1" is any torus and V is a finite dimensional,
rational T-module. Let X be a T-stable subvariety of V or a T-stable
subvariety of the projective space of V. For x € X, the stabilizer of x
in T is then an intersection of kernels of characters of T'. It can happen
that there are characters Xi,...,Xs of T so that {1, | z € X} =
{Njesker(x;) | J € {1,...,s}}. This happens, for example, if X =V
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or X =P(V). If{T; |z € X} = {Njesker(Xx;) | J € {1,...,s}},
then there is a hyperplane arrangement canonically associated with
the action of 7" on X and it might be hoped that this hyperplane
arrangement controls in some way the structure of X. In order to realize
such a hope, the first step is to understand the relationships between
toral arrangements and their associated hyperplane arrangements.

Our approach to toral arrangements is based on an explicit isomor-
phism constructed by Atiyah and Hirzebruch [1, Section 4.3] from the
completed representation ring of T to the completion of the ring of
regular functions on t and on an analysis of the completions of D(A)
and D(dA). More generally, if k£ is a commutative ring, A is a com-
mutative k-algebra, and y is in A, we can consider the A-module
D(A,y) = {6 € Derig(4) | (y) € yA}. In Section 2 we prove some
general results about these modules as well as consider how derivations
behave relative to completion. In Section 3 we discuss the factorization
of regular functions on 7" of the form X — 1 where X is a character of T'.
Finally, in Section 4 we apply the results of Sections 2 and 3 to toral
arrangements and prove the main results mentioned above.

2. Derivations and completion. In this section we will start with
a commutative, Noetherian ring, k, a finitely generated, commutative
k-algebra, A, and an ideal, m, of A. We will add hypotheses on k, A
and m as necessary.

Let Q4/), be the module of Kéhler differentials of A over k, and let
d 4k be the natural A-linear map from A to ,4,;. We will denote the
A-module of k-linear derivations of A by Derg(A). Then Derg(A) can
be naturally identified with Hom 4 (24 /%, A). If 6 is in Dery(A), we will
often identify 6 with the unique A-linear map €24/, — A it determines.
With this convention, if y is in A, then 0d 4/, (y) = 0(y).

All A-modules will be considered with the m-adic topology. If M is
an A-module, then M will denote the completion of M. Recall that if
M is finitely generated, then M is naturally isomorphic to Aos M ,
that A is a flat A-module, and that the m-adic topology is the same as
the m-adic topology for any A-module [2, Chapter 10].

We first consider how derivations behave with respect to completion.
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Lemma 2.1. If M is an A-module and 0 € Dery(A, M), then 6 is
continuous.

Proof. Given f1,..., frinm, O(f1-+- fi) = Doy f1--0(fi) - [ €
m™ 1 M. Thus, #(m™) C m™ 1M and so 0 is continuous. O

Lemma 2.2. Suppose that X is an A-module and 0 : A — X is a
k-linear derivation. Then 0 extends to a k-derivation 6 : A — X.

Proof. Since 4/, is a finitely generated A-module, so is the image
of §. Let Y be the A-submodule of X generated by the image of
0, so Y is a finitely generated, hence complete, A-module. Suppose
a € A and {an}32; is a Cauchy sequence in A converging to a.
Then by Lemma 2.1, {6(a,)}52; is a Cauchy sequence in Y. Since
6(0) = 0, if {b,}5>, is another Cauchy sequence in A converging to
d, then {6(a,)}52, and {6(b,)}5>; both converge to the same element
of Y. Thus we can define §(a) = lim, o 0(a,). Since addition and
multiplication are continuous, it follows that 6 is a derivation. Finally,
extending the range of 6 to all of X gives the result. i

Let Dery, (A) denote the A submodule of Dery(A) generated by the
extensions, 6, for 6 € Dery(A).

Proposition 2.3. The A module, Der o(A), of A-linear derwations

of A is a complement to Dery(A) in Dery(A). Thus, Dery(A) =
Dery(A) @ Der 4 (A).

Proof. 1t follows from [5, Theorem 57], using Lemma 2.2, that there
is a split exact sequence of A-modules,
0—)A®AQA/k L)Q/i/k —)QA/A — 0,
where v(a ® da/kb) = ad . b. Since A is a flat A-algebra, HomA(A ®a

Qa/ks A) ~ A®4 Dery, (A) and so we can identify the exact sequence of
dual A-modules with

(2.3a) 0— DerA(/Al) — Derk(/l) LA ®4 Dery(A) — 0,
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where v* is induced by v. It is straightforward to check that if 6 is in
Derg(A), then v*(f) = 1® 6, so 1 ® 6 — 6 determines a splitting of
the sequence (2.3a) whose image in Dery,(A) is Dery, (A). It follows that
Dery, (A) = ]5\6_;]9 (Ao DerA(A) as claimed. o

As in the introduction, if y is in A, define D(A,y) = {6 € Dery(A) |
6(y) € yA}. Then D(A,y) is an A-submodule of Derg(A). In the next
proposition we collect several simple properties of D(A,y).

Proposition 2.4. With the preceding notation

(a) If u is a unit in A, then D(A,u) = Derg(A) and D(A,yu) =
D(4,y).

(b) If S is a multiplicatively closed subset of A, then the natural iso-
morphism given by the quotient rule from S~1Dery(A) to Dery(S—1A)
restricts to an isomorphism from ST1D(A,y) to D(S7'A,y).

(c) If A is an integral domain, y; and y» are elements in A, and
Y1y2A = y1ANy2 A, then D(A,y1y2) = D(A,y1) N D(4,y2).

(d) If k is a field with characteristic zero, A is an integral domain
and n is a positive integer, then D(A,y™) = D(A,y).

Proof. The proof of (a) is straightforward and will be omitted.

To prove (b), suppose 6 € Deri(A). Let 6" denote the extension
of 6 to a derivation of S™1A. Clearly, if § € D(A,y), then ¢’ €
D(S7'A,y). Hence, S™'D(A,y) C D(S7'A,y). Conversely, suppose
ne D(S7A,y). Thenn =37  (a;/b;)6; where the a;’s are in A, the
b;’s are in S, and the 6;’s are in Dery (A4). Suppose n(y) = (¢/d)y where ¢
isin Aand disin S. Put b =[[;_, b;. Then Y"1 | bd(a;/b;)0;(y) = bey,
so Y. bd(a;/b;)0; € D(A,y) and n = (1/bd) >, bd(a;/b;)0; €
STID(A,y).

Now suppose that A is an integral domain and @ € D(A,y1y2). Then
0(y1y2) = v10(y2) + y20(y1) € 1924 = y1 ANy A.

Thus y10(y2) + y20(y1) € 114, so y20(y1) € y1A. It follows that
y20(y1) € 1A NysA = y;ysA. Since A is an integral domain, we
must have 6(y1) € y1 A. Similarly, 6(y2) € y2A. Thus D(A4,y1,y2) C
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D(A,y1) N D(A,y2). An easy computation shows that the reverse
containment always holds. This completes the proof of (c).

Finally, suppose that k is a field with characteristic zero and A is
an integral domain. If § € Derg(A), then 6(y™) = ny"~10(y), so
O(y™) € y"A if and only if §(y) € yA. Thus, D(A,y™) = D(A,vy).
This completes the proof of the proposition. ]

Corollary 2.5. If y1,...,yn are elements in A with y,---y, A =
y1AN---Ny,A and A is an integral domain, then D(A,y1---y,) =
D(Aayl) ARRE mD(Aayn)

Proof. This results follows easily by induction from Proposition 2.4(c)
since, with the given hypotheses on y1,... ,y,, we have y; ---y, A =
y1ANys-- -y, A. We will omit the details. O

Notice that it follows from Corollary 2.5 and Proposition 2.4(d) that,
with the notation in the introduction, if y{ is the product of the distinct
factors of ', then D(O,y’) = D(Oy,y}). Thus our definition of D(d.A)
agrees with the usual one.

For the rest of this section, we will assume that A is an integral
domain, that 4/, is a free A-module, and that finitely generated
projective A-modules are free. These conditions all hold, for example,
if A is the coordinate ring of a torus or an affine space, or if A is a
regular local ring. Let [ be the rank of Dery(A).

We next consider the A submodule of Dery(A) generated by {6 |
9 € D(A,y)}. Denote this submodule by D(A,y). Since A is a
flat A-algebra, we can consider A ®4 D(A,y) as a submodule of
A ®4 Derg(A). Tt follows that D(A,y) = A ®4 D(A,y). Also, A
is an integral domain, so we can consider A as a subring of A. In
particular, D(A,y) is defined for y in A. If # € D(A,y), then clearly
6(y) = 6(y) € yA C yA, so D(A,y) € D(A,y). Moreover, any A-linear
derivation of A is obviously in D(A,y) and so D(A,y) + Ders(4) C
D(A,y). Our next goal is to show that, under certain circumstances,
D(A,y) = D(4,y) N la‘grk(A). It then follows easily that we have
a direct sum decomposition, analogous to that of Proposition 2.3,

D(A,y) 2 D(A,y) ® Dera(A).
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If w € Q4 /g, then evaluation at w is an A-valued function on its dual,
Dery(A). We will denote this function also by w. Hence, if 6 is in
Dery(A), then w(f) = 0(w) and du/,y(0) = 0(y) for y in A. Because
4/, and Dery (A) are dual A-modules, there is a natural pairing, given
by evaluation, from 4/, x Dery(A) to A. This pairing will be denoted

by <'7 >

Proposition 2.6. Assume A is an integral domain, Q 4y, is a free A-
module, and finitely generated projective A-modules are free. Suppose
y € A and dy/ry(Dery(A)) = A. Then D(A,y) is a free A-module.

Proof. If d 4 j,y(Dery(A)) = A, then we can find 6 € Dery(A) so that
dasry(0) = 1. Because Derg(A) is a free A-module, we can identify
with the A-linear functional on €24/, defined by w ~ w(#). Then ¢ is a
linear functional on 24 /5, which takes the value 1 on d4 /3y, and using
our assumption that finitely generated projective A-modules are free,
it follows that there is a basis of 24/, containing d4,;y. Notice that,
conversely, if d 4 /.y is contained in a basis, then d 4 /,y(Dery(4)) = A.

Since 4/, has a basis containing d4 /Yy, we can choose dual bases
{wi,...,wi}and {Dy, ..., D} of Q4 and Dery(A), respectively, with
da/ky = w1. Thus, (w;, Dj) = d; ; where §; ; is the Kronecker delta.

Define §; = yD; and, for ¢ > 1, define §; = D;. Then 0;(y) =
yDi1(y) € yA and, for i > 1, 0;(y) = (da/wy,0i) = (w1,0;) = 0. Thus,
{61,...,6:} is contained in D(A,y). We will show that {61,...,60;}
is a basis of D(A,y). Linear independence follows from the linear
independence of {D;, ..., D;} and the assumption that A is an integral
domain. So suppose 4 is in D(A,y) and §(y) = ya where a € A. Then

l

0 = (da/ry,0)D1+ > _(wi,0)D;
i=2

! !
=0(y)D1 + Z<Wz’, 0)8; = af, + Z(wi, 6)0;.
i=2 =2

Thus {6y,...,0,} spans D(A,y). This completes the proof of the
proposition. O
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Corollary 2.7. With the assumptions of Proposition 2.6, D(A,y) =
D(A,y) N Dery(A) and D(A,y) = D(A,y) @ Der4(A).

Proof. For 1 < i < [, let D;, w; and 6; be as in the proof of
Proposition 2.6, and let D and 6; be the extensions of D; and 6; to
derivations of A, respectively. Then, since D(A,y) = A®y D(4,y),
{51, .. ,5;} is a basis of D(A,y). Also, it is easily seen that 6, = yD;.

Using the natural isomorphism, ],)\é;k (A) = HomA(A ®aQa/k, A), we
may consider the D;’s as A-linear functionals on A®4 Q4 /k- With this
identification, it is easily checked that {Dj,...,D;} is the basis dual
to the basis {1 @ wy,...,1 ®w;} of Aga Qa/k-

Suppose g is in Derk(fi), and recall the map v from the proof of
Proposition 2.3. Then f(v(1 ® dajry)) = 9(dA/ky) = f(y). Now
suppose 6 is in D(A,y) N Dery(A), say 6 = Zi L@;D; and 0( ) = yb
where the @;’s and b are in A. Then a; = (1® dA/ky,9> = (y) = yb,
so 6 = b, + ZZ 2a19 Thus, {01,...,6;} spans D(A,y) N f)‘é}k(A),
and so D(A,y) N Dery(A) € D(A,y). Conversely, D(A,y) C D(A,y) N
Dery(A). Therefore, D(A,y) = D(A,y) N Derg(A).

Clearly, D(A,y) N DerA(fl) =0. Iffisin D(A, y), then by Propo-
sition 2.3, § = 7 + ¢ where 7 is in Derk(A) and ¢ is in Der(A).
Then § — Y =17 is in D(A4, y) N Dery,(A) = D(A ,y)- It follows that
D(A,y) = D(A,y) + Dera(A), and so D(A,y) = D(A,y) ® Dera(A).
This completes the proof of the corollary. a

We can now state the main result of this section.

Theorem 2.8. Assume A is an integral domain, 4, 1s a free A-
module, and finitely generated projective A-module are free. Suppose
Y1, --- ,Yn are elements of A satisfying:

(@) y1-ynA=y1AN---Ny,A and
(b) dayryi(Derg(4)) = A for 1 <i <n.

Lety = y1++-yn. Then D(A,y) = D(A,y) N Dery(A) and D(A,y) =
D(A,y) @ Ders(A).
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_Proof. First notice that, since A is a flat A-algebra, Ay = A(Ay) =
ANy A) = Ny (AAy;) = NIy Ay;. It follows from Corollary 2.5,
applied to A and A, that D(A,y) = N 1D(A,y;) and D(A, y) =
N?_,D(A,y;). Thus, again using that A is flat as well as Corollary
2.7, we see

A®aD(Ay)=A®4 ( ﬁ D(A, yi))

i=1

(A ®a D(Aa yz))

I

ﬁ
Il
-

(D(A,y:) N Dery(A))

1%

=1

I
A/~

() PA)) N ery(4)

(2

= D(Av y) n ]S\e;k(A)

The argument in the proof of Corollary 2.7 shows that D(A,y) =
D(A,y) ® Dera(A). This completes the proof of the theorem. u]

For the rest of this section, we will assume that & is a field, A is a
finitely generated, regular, local k-algebra which is an integral domain,
m is the maximal ideal in A and A contains a field isomorphic to its
residue field. Choose z1, ... ,z; in m so that {z;+m?,... ;z;+m?}isa
k-basis of m/m?. It is shown by Hartshorne [3, Proposition I1.8.7] that
z+m? — dz ®1 defines an isomorphism of k-vector spaces from m/m?
to Qa/k®ak, so it follows from Nakayama’s lemma that {dz,... ,dz;}
is an A-basis of Q4/;. Let {D1,...,D;} be the dual basis of Dery(A).
Thus D;(z;) = §;; for 1 <4,5 <I.

If M is an A-module, m € M and p € N, define v(m) = p if and
only if m € mPM\mPTLM for some nonnegative integer, p, and define
v(m) = oo if m is in mP M for all p > 0. Notice that, if § € Dery(A),
then v(f) = p if and only if § € mPDerg(A)\m?*'Dery(A) because
mA = mA.
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Lemma 2.9. If6 € Dery(A), then v(0) > p if and only if (m) C mP.
Similarly, if § € Dery(A), then v(6) > p if and only if O(in) C @?.

Proof. Clearly, if f € m? and 0 € Dery(A), then f6(m) C mP. Hence,
if v(#) > p, then #(m) C mP. Conversely, suppose that f(m) C mP.
Then 6 = 22:1<dwi,9)Di, and (dz;,0) = 6(x;) € mP for all 4, so
v(f) > p. The same argument applies to Derk(fi). This proves the
lemma. O

Proposition 2.10. Suppose 0 € Dery(A) and f is the extension of
0 to a deriwation of A. Then v(0) = v(6).

Proof. Tt suffices to show that v(6) > p if and only if v(§) > p for
all p > 0. Using Lemma 2.9, it suffices to show that f(m) C m? if and
only if f(m) C mP.

Suppose #(i) C mP. Then §(m) C §()NA C mPNA = mP, where the
last equality follows from the fact that Ais faithfully flat. Conversely,
suppose f(m) C m? and & € m. Notice that our assumptions on A
and m imply that the topology on A is Hausdorff. Choose a Cauchy
sequence {a,}p>; contained in m and converging to G. Then the
sequence {0(a,)}5; converges to 6(a), each 0(ay,) is in m? C mP, and
WP = @mP is complete, so 6(a) € mP. This completes the proof of the
proposition. u]

Finally, notice that, with the preceding notation, A = E[[z1,...,z.]],
and for f € k[[x1,...,zn]], ¥(f) is the degree of the leading form of f.
Moreover, if 6§ = 22:1 fiD; € Derg(A), then v(0) is the minimum of
{w(f1);- - w(f)}-

3. Factorization in Oy. In this section k is an algebraically closed
field and T = G!, is a k-torus. Recall that the k-algebra of regular
functions on 7" is Or and the identity in T by e. Notice that Or is a
unique factorization domain. Our goal in this section is to describe the
factorization into irreducibles of a regular function of the form x — 1
where X is a character of T. If X is a character of T', then ker’(X) will
denote the identity component of the kernel of X. If f is any function
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in Op, Z(f) will denote the zero set of f in T, and df will denote the
derivative of f, a k-valued function on Lie (T).

Proposition 3.1. Suppose X1 and X2 are characters of T. Then
ker®(X1) = ker’(X2) if and only if ker(dx;) = ker(dx2).

Proof. First notice that, for any character X, any integer n, and any
t €T, x(t) =1 implies x(¢)" = 1, so ker(Xx) C ker(x™). In particular,
ker’(x) = ker’(x") for all n.

Now assume that ker’(X;) = ker’(Xz). Then Op is a unique factor-
ization domain, so there is an irreducible regular function, f € Or,
so that ker’(x;) = ker’(X2) = Z(f). Hence, f divides X; — 1 and
Xoe —1. Say X1 —1 = ¢g1f and X9 — 1 = gof. Taking deriva-
tives, we have dx1 = d(X1 — 1) = d(g1f) = g1(e) df + f(e) dg:. But
f(e) =0, so dx1 = g1(e)df. Similarly, dXs = g2(e) df. We may as-
sume that X; and Xy are not the trivial characters, so dX; and dXs
are not identically zero. It follows that gi(e) # 0 and ga2(e) # 0, so
ker(dx;) = ker(df) = ker(dXxz).

Conversely, suppose ker(dx1) = ker(dX2). Let {z1,..., 2} be a basis

of the character group of T. Then {z1,...,z} are global coordinates
on T and {dzj,...,dz} is a basis of the dual space of t. There
are integers ni,...,n; and my,... ,my so that X; = 27" --- 2" and

X2 = 21" --- 2. But then dx; = 22:1 m;dz; and dxo = 22:1 nidz;.
Since ker(dxi) = ker(dXz), it follows that there is a rational number,
p/q, so that n; = (p/q)m; for all . Hence pm; = g¢n; for all i, so
x? = x34. Thus ker’(x;) = ker’(x?) = ker®(x4) = ker’(Xx). This
completes the proof of Proposition 3.1. n]

Proposition 3.2. If X1 and X3 are characters of T with ker dX; #
ker dXs, then X1 — 1 and X2 — 1 are relatively prime in Or.

Proof. Suppose f € O, f isirreducible and f divides both X; —1 and
X2 — 1. Then Z(f) C ker(x1) Nker(X2). But Z(f), ker(x1) and ker(Xx2)
are all hypersurfaces and Z(f) is connected, which by Proposition 3.1
contradicts the assumption that ker dx; # ker dxs. Therefore, no such
f can exist and so X; — 1 and Xs — 1 are relatively prime. o
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Proposition 3.3. Suppose X is a character of T. Then there is a
character Xo and an integer n so that X = X§ and ker’(X) = ker(Xo).

Proof. Put S = ker’(x), and let X (T), X (S) denote the character
groups of T and S, respectively. Recall that restriction from 7 to S
defines a split surjection from the character group of 7" to the character
group of S. Thus, we can choose a basis, {X1,...,X;}, of X(T) so
that, if X’ € X(T'), then S C ker(X’) if and only if X’ = XJ* for some
n, and the span of {Xi,...,X;_1} is isomorphic, via restriction, to
X(S). Now S = Nker(Xx’) where the intersection is over all X" € X(T)
with S C ker(X'), so S = Npezker(X}'). As noted in the proof of
Proposition 3.1, ker(X;) C ker(X}') for all n, so S = ker(X;). Moreover,
S C ker(X), so X = X}* for some n. Taking Xy = X; gives the result.
O

Now suppose X is a character of T" and X = X{ where X, has a
connected kernel. Let pu, be the group of nth roots of unity in k.
Then X —1=X§ —1 =[], (Xo — (). We can find a one-parameter
subgroup, A, of T" so that T is the direct product of the image of A and
the kernel of X, and replacing A by the natural map from G,/ ker(\)
to T, if necessary, we may assume that A is injective. It follows that
XooA is the identity character of G,. For ¢ € Gy, set t = A({). Then,
if t € T', t can be expressed uniquely as ¢t = t¢t' with ¢’ € ker(X,) and
s0 X(t) = Xo(te)"Xo(t')™ = XoA(¢)™ = (™. Hence, t = t¢t' € ker(X) if
and only if ¢ € py, so ker(X) = [{.¢,, tcker(Xo).

It is easily seen that, if {; and (s are in G,, and t' € ker(Xg), then
(XO — Cl)(tCzt/) = Cz — Cla SO t<2t, S Z(Xo — Cl) if and only if Cl = CQ. It
follows that Z(Xo — ¢) = t¢ ker(Xo) for all ¢ € G,,,. Now, for { € G,
Z(Xo—¢) = t¢ ker(Xp) is an irreducible hypersurface and Or is a unique
factorization domain, so Xo — ( is irreducible, and we have proved the
following proposition:

Proposition 3.4. Suppose X is a character of T and X = X{
where Xo has a connected kernel. Then X —1 = [[.., (Xo — () is
the factorization of X — 1 into irreducible factors.
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4. Freeness and toral arrangements. In this section k is an
algebraically closed field of characteristic zero and (7', .A) is a fixed toral
arrangement. Say A = {X1,...,Xs}, so dA = {kerdXy,... ,kerdx;}.
Define y = [[;_,(X; — 1) and ¥’ = [];_, dX;. Then D(A) = D(Or,y)
and D(dA) = D(Oy,y'). Recall that A is free if D(A), is a free Or -
module and dA is free if D(dA) is a free Op-module. Using Proposition
2.4(b), we see that A is free if and only if D(Ore,y) is a free Op -
module.

We can now state the main theorem of this paper.

Theorem 4.1. Suppose (T, A) is a toral arrangement. Then A is
free if and only if the associated central hyperplane arrangement, dA,
1s free.

Proof. In order to apply the results of Section 2, we need two lemmas.

Lemma 4.2. Suppose X is a nontrivial character of T. Then
dOT/k(X - 1)(Derk((9T)) = Or.

Proof. Choose a basis of X (T'), say {#1,...,z}. Then X = 2{'* --- "
for some integers ny,...,n;, D; = 2;(0/0z;) is a derivation of Or, and
{D;,...,D;}is abasis of Dery(Or). Since X is not the trivial character,
we can choose i so that n; # 0. Then do, /x(X —1)(D;) = Di(x —1) =
n;X is a unit in Op. Thus, the image of dp, k(X — 1) contains a
unit. Now do,. /(X — 1) is Or-linear, so it follows that de,. /1 (X —1) is
surjective. ]

We next discuss the isomorphism from Or to (51. Suppose X is
a character of T', so dX is a linear functional on t. Let edX denote
the power series Y o (dx)"/n! in O It is shown by Atiyah and
Hirzebruch [1, Section 4.3] that X + e extends linearly to an
isomorphism of k algebras from @T to (/’/):t, which we will denote by
¢. Let ¢ denote the map from Dery(Or) to Dery(O;) defined by
¢%(0) = p0p~L. Then ¢ is bijective and ¢# (D(Or, f)) = D(Oy, ¢(f))
for f € Or.
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Lemma 4.3. Suppose ¢* is as above and X is a character of T, then
(a) ¢# (Dery(Or)) = Dery(Oy),

(b) ¢*(D(Or, X — 1)) = D(Oy, dx), and

(c) ¢#(D(Or,X — 1)) = D(Oy, dX).

Proof. To prove (a), suppose {z; | 1 < ¢ < [} is a basis of
X(T). Then {2;(0/0z) | 1 < i < I} is a basis of Dery(Or) and

{z,(/87_8/zz) | 1 < i <1} is a basis of Dery(Or). Define z; = dz; for
1 < i <l Then {0/0z; | 1 < i < 1} is a basis of Derg(O,) and

{(9//(\9; | 1 < ¢ <1} is a basis of ]3\&;6(01). It suffices to show that
o7 (2;(0/02;)) = 8/0z; for 1 < i <.

Suppose z1'! - -- 2" is in Op. Then

/—\é/
B0 zig (- 2") = Bniz - 2")
i
— nien1z1+"'+nlwl
— i(en1w1+"'+nziﬂz)
B 6$i

0 n ng
=5 od(zt - 2").

8Ii

—_~—

Therefore, ¢ 0 2;(0/9z;) and §/0x; o ¢ agree on Or and it follows that
o (:(0/07)) = 00

To prove (b), put f = 3227, (dX)"~*/n!. Then f is a unit in O; and
¢# (X —1) = e™ — 1 = dxf. Hence ¢*(D(Or,X —1)) = D(Oy, dx;) =
D(Oy, dx) by Proposition 2.4(a).

Finally, (c) follows from (a), (b), and Corollary 2.7. mi

We can now complete the proof of Theorem 4.1. We need to show
that D(Or.,y) is a free O -module if and only if D(Oy,y’) is a free
O¢-module.

It is well known that @T is naturally isomorphic to the completion of
Or,e in the m.O7 .-adic topology, and hence that Oy is a faithfully flat
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Op c-algebra. Therefore, D(Or c,y) is a free Op -module if and only if

(o]

its completion, Or ®o,. . D(Or,c,y) = D(OT@ y), is a free Op-module.

As mentioned in the introduction, Terao has shown that D(Oy,y’)
is a free Oy-module if and only if D(Oy,y’) is a free O -module.
Applying the argument in the preceding paragraph to Oy, O and @t,
we conclude that D(Oy,y') is a free O-module if and only if D(Oy,y')
is a free O¢-module. Thus, it is enough to show that D(OT,e,y) is a
free Op-module if and only if b((’)t, y') is a free (51—m0dule.

Notice that, if f is in Or, then using Proposition 2.4(b), gives
D(Or., f) = Or ®0,, D(Or, f)e = Or @0, D(Or, f) = D(Or, f).

Assume the characters in A are labeled so that A = {x;; | 1 <
i < rl < j < m;} for some positive integers my,...,m,, where
ker dX; ; = ker dX; ; if and only if i = i’. For each i, choose a character,
X;,0, S0 that kerO(Xi,j) = ker(X;,0) for all j. Thus X; ; is a power of X; o
for every j. If X is any character and n is a nonzero integer, then
X"—1=(X-1)(1+x+---+Xx""and 1+X+---+X""!is a unit in
Or,.. Hence, if y1 = [[;_,(X;,0 — 1)™, then y = y;u where u is a unit
in Or .. By Proposition 2.4(a), D(Ore,y) = D(Ore,y1). It follows
from Proposition 3.2 and the fact that Or is a unique factorization
domain that y1Or = Ni_;((Xi,0 — 1)™Or). It is easily seen that this
last statement implies y10r = NI_;((Xi0 — 1)™Ore). Thus, by
Corollary 2.5 and Proposition 2.4(d), D(Or ¢, y) = Ni_1D(Or.e, Xi0 —
1). Therefore, taking completions we get

T

D(Or.e,y) = ﬂ D(Op e, Xip — 1) = ﬂ D(Or, X0 — 1).
i=1

i=1

Now y' = a[[;_;(dXi,0)™, for some non-zero « in k, and the dX;o’s
are relatively prime, so using Corollary 2.5 and Proposition 2.4(d) we
have D(Oy,y') = Ni_;D(O4,dX; ). Once again, taking completions,
we get D(O,y') = Ni_y D(Oy, dXi0)-

Finally, by Lemma 4.3(c), ¢#(D(Or,X;0 — 1)) = D(Oy,dy, ,) for
1 < i < r. Therefore, $#(D(Or.c,y)) = D(Oy'). Tt follows that
D((’)Tye,y) is a free Op-module if and only if D(O,y') is a free Oy
module. This completes the proof the theorem. ]
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Proposition 4.4. Assume that A is free, {01,...,0;} is a basis of
D(Or.,y), and v is defined as in Section 2. Then {v(61),...,v(0)}
is the set of exponents of dA.

Proof. Choosing coordinates for t we can identify O with a polyno-

mial ring k[z1,... ,z;], m = my, with the ideal generated by z,... ,z,
and O, with ring of formal power series k[[z1,... ,2;]]. Then O, is fil-

tered by (Oy)p, = mp@t. If M is any Oi-module, we will consider M as
filtered by M, = m?M for p > 0. Let Gr (M) be the associated graded
Gr (O()-module. Then Gr(O,) = O, and Gr is an additive functor
from the category of @t—r/podules to the category of O¢-modules. In
particular, if M is a free O-module, then Gr (M) is a free O¢-module.

Suppose M is a free @t—module and {m4,... ,m,} is a basis of M.
Say v(m;) = p; and define m; = m; + mPiT M in Gr(M). Then
mm; is homogeneous with degree v(m;) and it is easily checked that
{m1,... ,my,} spans Gr (M). Now applying results of Orlik and Terao
[6, Theorem A.19, Proposition A.24], we have that {my,... ,m,} is
a basis of Gr (M) and {deg(m1),...,deg(m,)} does not depend on
{m1,... ,Mmy}. Therefore, {v(mi),...,v(my,)} does not depend on
the choice of {m1,...,m,}.

For 1 <1 <, let 6; be the extension of #; to a derivation of 6T
so {61,...,0i} is a basis of D(Ore,y). It follows from the proof of

Theorem 4.1 that {¢#(6,),...,4#(6;)} is a basis of D(Oy,y'). Now,
by Proposition 2.10,

6. v} = @), - @)}
= {v(¢7(61)),... , v (6" (1))}

Suppose {07, ... ,0;} is a homogeneous basis of D(Oy,y’). Then the
arguments in the preceding paragraphs apply as well to D(Oy,y') and
S0

{deg (61),... ,deg (8))} = {v(¢7 (B1)),- .. , (6" (8))}-
Thus {v(61),...,v(6;)} is the set of exponents of dA.
We conclude with an example of a toral arrangement (7,.4) where
D(A). is a free Op-module, but D(A) is not a free Op-module.

Our example is essentially the extension of [6, Example 4.36] to toral
arrangements.
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Suppose T is three-dimensional and z1, z2 and z3 is a basis of the char-
acter group of T. Then every character of T" is of the form 27" 252252
for some integers ny,ny and nz. Let A = {23, 23, 23, 21, 20, 25 2523 ° }, s0
with the notation we’ve been using, y = (23 —1)(25 —1)(23 —1)(2122 —
1)(2523253 —1).

For 1 < i < 3, put x; = dz;, so {x1,x2,x3} is a basis of the dual space
of t and dA = {ker(z1), ker(zz), ker(zs), ker(z1+x2), ker(z1+z2—23)}.
It is shown in [6, Example 4.54] that dA is free. It follows from
Theorem 4.1 that D(Or,y) is a free Op -module so D(A). is a free
Or,.-module.

Let w be a primitive cube root of unity and put t = (w,w,w) € T. We
will show that D(A) is not a free Op-module by showing that D(Or, y)+
is not a free O7 -module.

Define ¢, : Op — Op by £4(f)(t') = f(t~'t') for f € Op and ¢’ € T.
Then ¢;(m.) = m; and ¢; extends to a k-algebra isomorphism from
Or,e to Or,¢, which we will also denote by ¢;. Let Zf& : Der(Or,e) —
Dery(Or,) by ¢ (8) = £,0¢,* for € Dery,(Or.) so £¥ is a k-vector
space isomorphism.

Clearly t € ker(z}) N ker(z3) N ker(z3) N ker(z523253) and ¢ ¢
ker(z122). Put f = (2§ — 1)(25 — 1)(25 — 1)(2$2323° — 1). Then
y = (z122 — 1)f, z122 — 1 is a unit in Opy, and 4(f) = f. Thus,
D(Or4,y) = D(Ory, f) = D(Or, bu(f)) = €] (D(Ore, f)). Let Ay =
{23,23,,23,23,2325°}, so dA; = {ker(z;),ker(x2),ker(x3), ker(z; +
x2 — x3)}. It is shown in [6, Example 4.34] that d.A; is not free, so,
by Theorem 4.1, D(Or,, f) is not a free Op -module. It follows that
D(Ory,y) = D(A); is not a free Op-module and therefore D(A) is
not a free Or-module.
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