ON THE K-THEORY OF C^{*}-ALGEBRAS OF PRINCIPAL GROUPOIDS

IAN F. PUTNAM

Abstract

We consider the K-theory of C^{*}-algebras of principal r-discrete groupoids. We describe two basic situations in which three groupoids are related; they can very loosely be described as "factor groupoids" and "subgroupoids." For each, we show that there is a six-term exact sequence of associated K-groups. We present examples which arise from dynamical systems and from problems in the study of the orbit structure of topological systems. We also obtain the usual Mayer-Vietoris sequence in topological K-theory as a corollary.

1. Introduction. This paper is concerned with principal topological groupoids, their C^{*}-algebras and the K-theory of such C^{*}-algebras. For those not familiar with the terminology, principal groupoid is just a fancy way of saying equivalence relation; our objects of study are certain topological equivalence relations. We view these as objects in the theory of topological dynamics. Indeed, most important examples arise from well-known situations in topological dynamics, e.g., equivalence classes are the orbits of a free action of a countable group acting as homeomorphisms of a topological space or tail equivalence for a onesided shift of finite type [18].

To an equivalence relation, G (satisfying certain conditions), one can construct a C^{*}-algebra, $C_{r}^{*}(G)$, the reduced groupoid C^{*}-algebra, as in [16]. An important tool in the study of C^{*}-algebras is K-theory. To any C^{*}-algebra, A, one may associate a pair of abelian groups, $K_{0}(A)$ and $K_{1}(A)[\mathbf{1}]$. The former also carries additional structure in the form of a pre-order. Combining these two constructions, we have a way of assigning to a topological equivalence relation, G, a pair of abelian groups, $K_{0}\left(C_{r}^{*}(G)\right)$ and $K_{1}\left(C_{r}^{*}(G)\right)$. One can view this as a kind of dynamical homology theory. It extends the usual notion of topological K-theory in that, if one restricts to the case that the

[^0]equivalence relation is equality, the result is the usual topological K theory of the underlying space. Of course, in specific situations, it is desirable to have a purely dynamical interpretation of these invariants.

In the case that the equivalence classes are the orbits of a single transformation, the K-theory was computed by Pimsner-Voiculescu $[\mathbf{1 3}, \mathbf{1}]$. In the particular case of a minimal homeomorphism of the Cantor set, the K-theoretic invariants (including the order structure) have been useful in classifying the system up to orbit equivalence [7]. The case of more general homeomorphisms of the Cantor set has also been considered in $[\mathbf{2}, \mathbf{3}]$.

The present paper is concerned with some basic properties of this dynamical homology theory. We describe two situations where a trio of groupoids G, G^{\prime} and H are related in some specific way and then describe the relation between their K-theories. These results are given in Theorem 2.1 and Theorem 2.4, although the hypotheses are described before the statements.

In spirit, these are much like the long exact sequence in homotopy theory related to a fibration.

Let us describe the first situation which we refer to as factor groupoids. Suppose X and Y are locally compact Hausdorff spaces and we have two inclusions of Y in X with disjoint images. We can then form the quotient space X^{\prime} by identifying the two images. We suppose that X^{\prime} is again Hausdorff and that the quotient map is proper. If we also suppose that X and Y carry equivalence relations G and H and that the inclusions map each H-equivalence class bijectively to a G-equivalence class, then X^{\prime} naturally obtains an equivalence G^{\prime} which we describe as a factor groupoid. In the case G, H and hence G^{\prime} are equality, Theorem 2.1 (which relates the K-theories of X, Y and X^{\prime}) can be obtained by standard topological methods. Our Theorem 2.1 can be viewed as an equivariant extension of this result.

The second situation is more essentially an equivalence relation phenomenon (and hence probably more interesting). We refer to it as the subgroupoid situation. We have two equivalence relations $G^{\prime} \subseteq G$ on the same space X. There are some strict conditions on the set-up which imply, in particular, that each G-equivalence class is either equal to a G^{\prime}-equivalence class or is the union of two G^{\prime}-equivalence classes. (Moreover, in most interesting situations, the former will happen on
a dense $G_{\delta^{-}}$-set in X.) The third equivalence relation H is basically that part of G where G and G^{\prime} differ. (This statement sweeps a lot of topological difficulties under the rug for the moment.) Theorem 2.4 relates the K-theoretic invariants of G, G^{\prime} and H. In Example 2.5, we show that the usual Mayer-Vietoris sequence for topological K-theory can be obtained from Theorem 2.4 and a result of Kumjian. Another motivation in the study of subgroupoids was $[\mathbf{1 4}]$ and $[\mathbf{7}]$ where various $A F$-relations (see Appendix) were obtained as subequivalences of relations associated with minimal homeomorphisms of the Cantor set. This is described in Example 2.6.

There appears to be a duality between the factor groupoid situation and the subgroupoid situation. In particular, Examples 2.3 and 2.7 look reminiscent of the beginning of a Jones tower construction $[\mathbf{8}, \mathbf{2 0}]$.
In order to make our results as accessible as possible to readers in dynamical systems, we try to describe the set-ups in the language of equivalence relations as well as groupoids. Also we present examples from familiar dynamical situations and an appendix which discusses $A F$-equivalence relations. The remainder of this section describes basic notions and notation. In Section 2 we present the statements of the two main theorems and several examples of each. Finally, Section 3 contains the proofs of the main results. In both cases, the proof relies critically on a result, a kind of excision theorem for C^{*}-algebra K theory, in [15]. In the proofs, it is of course necessary to use a lot of C^{*}-algebra machinery including the theory of groupoid C^{*}-algebras, K-theory and even the Kasparov $K K$-theory (which manages to creep into the statements of the main results in Section 2, though in a minor role).

If $G \subseteq X \times X$ is an equivalence relation, then G has the algebraic structure of a groupoid [16]: a partially defined product

$$
(x, y)\left(y^{\prime}, z\right)=(x, z) \quad \text { if } y=y^{\prime}
$$

and an inverse $(x, y)^{-1}=(y, x)$. The space of units [16] , denoted G^{0}, is equal to $\{(x, x) \mid x \in X\}$ which we denote by Δ and which may be identified with X in the obvious way. The range and source maps, $r, s: G \rightarrow G^{0}$ can then be identified with the two canonical projections onto X. Such a groupoid is principal [16] and every principal groupoid occurs in this way.

Henceforth, we adopt the notation of [16]. The elements of G will be denoted x and y, and their product is $x y$. As in $[\mathbf{1 6}], G^{2}$ denotes the set of all composable pairs in G. Note that (x, y) is in G^{2} if and only if $r(y)=s(x)$. For sets $A, B \subseteq G$, we let

$$
A B=\left\{x y \mid x \in A, y \in B,(x, y) \in G^{2}\right\}
$$

All of our groupoids will have a topology as described in [16]. First, we assume that G is locally compact, Hausdorff and second countable. Secondly, we assume that G is r-discrete, i.e., G^{0} is open in G. Finally we assume that counting measure is a Haar system for G. It follows that the maps $r, s: G \rightarrow G^{0}$ are local homeomorphisms. Conversely, for an r-discrete groupoid it is easy to see that this condition implies that counting measure is a Haar system. From a dynamical point of view, this means that the equivalence relation G is made up of the graphs of local homeomorphisms γ from $X=G^{0}$ to itself; explicitly, $\gamma=$ $r \circ s^{-1}$. Let us also mention that, for such groupoids, a straightforward compactness argument shows that, for fixed x in G^{0} and $K \subseteq G$ compact, $r^{-1}\{x\} \cap K$ is finite. Hence, $r^{-1}\{x\}$ is countable.

We state for emphasis: throughout this paper, our groupoids will all be second countable, locally compact, Hausdorff, principal r-discrete groupoids with counting measure as Haar system.
Also note that locally compact and second countable imply σ compact.
Let us give a specific example. Let X be a locally compact Hausdorff space and Γ be a countable (discrete) group acting freely on X by homeomorphisms. Let $G=X \times \Gamma$ with the product and inverse

$$
\begin{aligned}
(x, \gamma)\left(x^{\prime}, \gamma^{\prime}\right) & =\left(x, \gamma \gamma^{\prime}\right) \quad \text { if } \quad x^{\prime}=\gamma(x) \\
(x, \gamma)^{-1} & =\left(\gamma(x), \gamma^{-1}\right)
\end{aligned}
$$

for x in X, γ in Γ. We give G the product topology. As an equivalence relation, the equivalence classes are just the Γ-orbits.

For any locally compact, Hausdorff space X, we use $C_{c}(X)$ and $C_{0}(X)$ to denote the spaces of continuous complex-valued functions which are compactly supported and vanish at infinity respectively. If X is compact, we denote both by $C(X)$.

If G is a groupoid satisfying our conditions above, we regard $C_{c}(G)$ as a linear space and define a product and involution by

$$
\begin{aligned}
(f g)(x) & =\sum_{\substack{z \in G \\
r(z)=r(x)}} f(z) g\left(z^{-1} x\right) \\
\left(f^{*}\right)(x) & =\overline{f\left(x^{-1}\right)}
\end{aligned}
$$

for f, g in $C_{c}(G)$ and x in G. We describe the regular representation of $C_{c}(G)$ as follows. Let $l^{2}(G)$ denote the (usually inseparable) Hilbert space of square summable functions on G. For each f in $C_{c}(G)$ we define an operator $\lambda(f)$ on $l^{2}(G)$ by

$$
[\lambda(f) \xi](x)=\sum_{\substack{z \in G \\ r(z)=r(x)}} f(z) \xi\left(z^{-1} x\right)
$$

for ξ in $l^{2}(G)$ and x in X. The completion of $\lambda\left(C_{c}(G)\right)$ in the operator norm in $\mathcal{B}\left(l^{2}(G)\right)$, the bounded linear operators on $l^{2}(G)$, is the reduced C^{*}-algebra of G and is denoted $C_{r}^{*}(G)$.
We refer the reader to [1] for a treatment of K-theory for C^{*}-algebras and also $K K$-theory. We use [,] to denote the commutator; for a, b in an algebra $A,[a, b]=a b-b a$. We use $\mathcal{K}(\mathcal{H})$ to denote the C^{*}-algebra of compact operators on the Hilbert space \mathcal{H} and M_{n} to denote the $n \times n$ complex matrices. If A is any C^{*}-algebra and A^{\prime} is any C^{*}-subalgebra, we let $C\left(A^{\prime} ; A\right)$ denote the mapping cone of the inclusion $A^{\prime} \subseteq A$, that is,

$$
C\left(A^{\prime} ; A\right)=\left\{f:[0,1] \longrightarrow A \mid f \text { continuous, } f(0)=0, f(1) \in A^{\prime}\right\} .
$$

It is a C^{*}-algebra with pointwise product and $\|f\|=\sup \|f(t)\|$. For a full discussion we refer the reader to $[19,15]$.
2. Statements of the results and examples. Here we state our two main results and provide some examples of each. In each case we begin with an account of the hypotheses in the language of equivalence relations. The proofs of both results will be left until Section 3.

Situation 1. Factor groupoids. Suppose X and Y are spaces with equivalence relations G and H, respectively. Suppose $i_{0}, i_{1}: Y \rightarrow X$
are two continuous, injective maps with disjoint images. We assume that, for $j=0,1, i_{j}$ maps each H-equivalence class in Y in a bijective way to a G-equivalence class in X. (This is hypothesis (1) and the statement that i_{j} is a groupoid morphism which follow.)

We define X^{\prime} to be the set X identifying $i_{0}(y)$ and $i_{1}(y)$ for all y in Y. More precisely, let $X^{\prime}=\left(X-i_{0}(Y)-i_{1}(Y)\right) \cup Y$. There is a canonical projection map $\pi: X \rightarrow X^{\prime}, \pi\left(i_{j}(y)\right)=y, y \in Y, j=0,1$, and we endow X^{\prime} with the quotient topology. We must make the hypothesis that X^{\prime} is Hausdorff and that the map π is proper. Then X^{\prime} is locally compact and metrizable.

Now X^{\prime} has a natural equivalence relation G^{\prime} because of our hypotheses on i_{0}, i_{1}, i.e., $G^{\prime}=\pi \times \pi(G)$. To simplify notation, we let π denote the natural map from G to G^{\prime}. We give G^{\prime} the quotient topology. We must verify that this makes G^{\prime} into a groupoid in the sense described in Section 1 and that $\pi: G \rightarrow G^{\prime}$ is proper.

Since $\pi: G \rightarrow G^{\prime}$ is continuous and proper, it induces an inclusion of $C_{c}\left(G^{\prime}\right)$ in $C_{c}(G)$. It is easy to verify that this is actually a $*-$ homomorphism between these algebras using the basic properties of i_{0} and i_{1}. We will show that it extends to a $*$-homomorphism α : $C_{r}^{*}\left(G^{\prime}\right) \rightarrow C_{r}^{*}(G)$ which is also injective.

Let us give our hypotheses in a more precise way using the language of groupoids. Suppose G and H are two groupoids satisfying the conditions of Section 1 and i_{0}, i_{1} are two continuous injective groupoid morphisms from H to G with disjoint images. We also assume that
(1) for any x in G and $j=0,1$, the following are equivalent:
(i) x is in $i_{j}(H)$,
(ii) $r(x)$ is in $i_{j}\left(H^{0}\right)$
(iii) $s(x)$ is in $i_{j}\left(H^{0}\right)$.
(2) The space,

$$
G^{0} /\left\{i_{0}(x) \sim i_{1}(x) \mid x \in H^{0}\right\}
$$

with the quotient topology, is Hausdorff and the natural quotient map from G^{0} is proper.

Given this, we define

$$
G^{\prime}=G /\left\{i_{0}(x) \sim i_{1}(x) \mid x \in H\right\}
$$

and let $\pi: G \rightarrow G^{\prime}$ be the natural quotient map. In a natural way, G^{\prime} is a groupoid in the purely algebraic sense.

The main result for this situation is the following.

Theorem 2.1. For r-discrete principal groupoids H, G, G^{\prime} satisfying the conditions of Section 1 and maps i_{0}, i_{1} as in the "factor groupoid" situation described above, there is a six-term exact sequence

where the maps $\left[i_{0}, i_{1}\right]_{*}$ are induced by a natural element $\left[i_{0}, i_{1}\right]$ in $K K\left(C_{r}^{*}(G), C_{r}^{*}(H)\right)$ described in the proof.

Example 2.2. Let (X, d) be a compact metric space, and let Γ be a countable group acting freely on X. Suppose x_{0} and x_{1} are points of X such that, for any $\varepsilon>0$, the set $\left\{\gamma \in \Gamma \mid d\left(\gamma x_{0}, \gamma x_{1}\right) \geq \varepsilon\right\}$ is finite. Then the space X^{\prime} obtained by identifying γx_{0} and γx_{1} for all γ in Γ, is Hausdorff. Moreover, Γ acts on X^{\prime} in a natural way.

To apply Theorem 2.1, let $G=X \times \Gamma$ as in Section 1. Let $H^{0}=\Gamma$ and $H=\Gamma \times \Gamma$ be the trivial equivalence relation. (Here Γ is given the discrete topology.) The maps i_{0}, i_{1} are given by $i_{j}\left(\gamma_{1}, \gamma_{2}\right)=$ $\left(\gamma_{1}\left(x_{j}\right), \gamma_{2} \gamma_{1}^{-1}\right)$ from H to $G, j=0,1$. In this case $C_{r}^{*}(H) \cong \mathcal{K}\left(l^{2}(\Gamma)\right)$. Hence, we have $K_{0}\left(C_{r}^{*}(H)\right) \cong \mathbf{Z}$ and $K_{1}\left(C_{r}^{*}(H)\right)=0$. In this situation $G^{\prime}=X^{\prime} \times \Gamma$.

Example 2.3. This example refers to the following three Bratteli diagrams.

FIGURE B_{1}.

FIGURE B_{2}.

FIGURE B_{3}.

The number of sources in V_{n}, the nth vertex set in B_{3}, is $2 \cdot 5^{n-1}$ and so the edges from sources in V_{n} are indexed by $\{1,5\} \times\{1,2,3,4,5\}^{n-1}$, for $n \geq 1$.

Let G be the groupoid associated with B_{2}, see Appendix. The process of reading the edge labels defines a homeomorphism between the unit space of $G=X$, i.e., the infinite path space of B_{2}, and the set $\{1,5\} \times\{1,2,3,4,5\}^{n-1}$ with its usual product topology. For convenience, we identify these two.

Let H be the groupoid associated with B_{3}. The maps i_{0}, i_{1} are described as follows. If $\left(e_{n+1}, e_{n+2}, \ldots\right)$ is a path in B_{3} starting at some source in $V_{n}, n \geq 2$, then to the edge e_{n+1} we associate an element of $\{1,5\} \times\{1,2,3,4,5\}^{n-1}$, say $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$. To the path $\left(e_{n+2}, e_{n+3}, \ldots\right)$, we read edge labels to associate to it a sequence $\left(f_{n+2}, f_{n+3}, \ldots\right)$ in $\prod_{n+2}^{\infty}\{2,3,4\}$. We define $i_{0}\left(e_{n+1}, e_{n+2}, \ldots\right)$ to be $\left(f_{1}, f_{2}, \ldots, f_{n}, 1, f_{n+2}, f_{n+3}, \ldots\right)$ in X. We also define $i_{1}\left(e_{n+1}, e_{n+2}, \ldots\right)$ to be $\left(f_{1}, f_{2}, \ldots, f_{n}, 5, f_{n+2}, f_{n+3}, \ldots\right)$. To identify the quotient $X / i_{0} \sim$ i_{1} with the path space of B_{1}, we proceed as follows. First we identify the path space of B_{1} with $\{1,2,3,4,5\}^{\mathbf{N}}$. For x in $\{1,5\} \times\{1,2,3,4,5\}^{\mathbf{N}}$
$(=X)$ we define $\alpha(x)$ in $\{1,2,3,4,5\}^{\mathbf{N}}$ by

$$
\begin{array}{lll}
\alpha(x)_{n}=x_{n+1} & \text { if } & x_{n+1} \in\{2,3,4\} \\
\alpha(x)_{n}=x_{k} & \text { if } & x_{n+1} \in\{1,5\}
\end{array}
$$

where k is the largest integer less than or equal to n with $x_{k} \in\{1,5\}$, for $n \geq 1$. That is, α leaves fixed the entries of x which are 2,3 or 4 and shifts the 1 and 5 entries to the right. We leave it to the reader to verify that α is a homeomorphism from $X / i_{0} \sim i_{1}$ to the path space of B_{1} and identifies the two equivalence relations. That is, G^{\prime} is identified with the groupoid of diagram B_{1}. In this case we have

$$
\begin{aligned}
K_{0}\left(C_{r}^{*}(H)\right) & \cong \mathbf{Z}\left[\frac{1}{3}\right] \\
K_{0}\left(C_{r}^{*}\left(G^{\prime}\right)\right) & \cong \mathbf{Z}\left[\frac{1}{5}\right]
\end{aligned}
$$

with usual orderings from \mathbf{R} and

$$
K_{1}\left(C_{r}^{*}(H)\right) \equiv K_{1}\left(C_{r}^{*}(G)\right) \cong K_{1}\left(C_{r}^{*}\left(G^{\prime}\right)\right) \cong 0
$$

Situation 2. Subgroupoids. We begin our discussion in a very heuristic fashion. Let X be a space with an equivalence relation G. Our second equivalence relation G^{\prime} will again be on the space X (unlike Situation 1). In fact, it will be a subequivalence relation, i.e., $G^{\prime} \subseteq G$. This should be so that each G-equivalence class is a G^{\prime}-equivalence class or is the union of two distinct G^{\prime}-equivalence classes. In order for this to happen in some sort of "topologically regular" fashion, we proceed more precisely as follows.

Suppose we have L contained in G such that
(1) L is closed,
(2) $r(L) \cap s(L)$ is empty,
(3) $G^{\prime}=G-L-L^{-1}$ is such that $G^{\prime} G^{\prime} \subseteq G^{\prime}$,
(4) $L G^{\prime}, G^{\prime} L \subseteq L$.

That is, G^{\prime} is obtained by removing L and L^{-1} from G so that for x in $L, r(x)$ and $s(x)$ are in the same G-equivalence classes but distinct
G^{\prime}-equivalence classes. The simplest example is the following: let $X=\{1, \ldots, n\}, G=X \times X$ and $L=\{(i, j) \mid 1 \leq i \leq k, k<j \leq n\}$ for some fixed $1 \leq k<n$.

We then define

$$
\begin{aligned}
H_{0} & =L^{-1} L \\
H_{1} & =L L^{-1} \\
H^{\prime} & =H_{0} \cup H_{1} \\
H & =H^{\prime} \cup L \cup L^{-1}
\end{aligned}
$$

which are all groupoids in the purely algebraic sense. In fact, H_{0}, H_{1} and H are the reductions of G onto the sets $s(L), r(L)$ and $s(L) \cup r(L)$, respectively. It is important to note, however, at a topological level, $s(L)$ and $r(L)$ may not be closed in G^{0} even though L is closed in G.
As suggested by the last remark, the relative topologies on H_{0}, etc., are not necessarily so nice. However, we introduce a new topology on each which is better. We give three (equivalent) descriptions of the topology on H_{0}.
(A) Regard the product in the groupoid as a map from $G^{2} \cap\left(L^{-1} \times L\right)$ onto H_{0}. The domain is given the relative topology of G^{2}, i.e., $G \times G$, and then H_{0} receives the quotient topology.
(B) Let $\left\{x_{n}\right\}_{1}^{\infty}$ be a sequence in H_{0}. The sequence converges to x in H_{0} if and only if there are sequences $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ in L converging to y and z in G (and hence in L since it is closed) such that $x_{n}=y_{n}^{-1} z_{n}$ for all n, and hence $x=y^{-1} z$.
(C) Choose a sequence $\left\{U_{n}\right\}$ of open subsets of G whose union is G and, for each n, \bar{U}_{n} is compact and contained in U_{n+1}. For each n, let $H_{0, n}=\left(U_{n} \cap L^{-1}\right)\left(U_{n} \cap L\right)$ with the relative topology of G. Then H_{0}, which is the union of the $H_{0, n}$, is given the inductive limit topology.

The set H_{1} is treated in a similar way, while H^{\prime} is given the disjoint union topology. Using the usual topology on L and L^{-1}, H is given the disjoint union topology. In Section 3, we will show that all of H_{0}, H_{1}, H^{\prime} and H are groupoids with these topologies. It is also easy to see that the inclusions of these in G are continuous.

Since G^{\prime} is an open subset of G, we have $C_{c}\left(G^{\prime}\right)$ included in $C_{c}(G)$. This is actually a $*$-homomorphism of algebras and the inclusion extends to a $*$-homomorphism $\alpha: C_{r}^{*}\left(G^{\prime}\right) \rightarrow C_{r}^{*}(G)$. The main result is then the following.

Theorem 2.4. For r-discrete principal groupoids, H, G, G^{\prime} satisfying the conditions of Section 1 and L as in the "subgroupoid" situation described above, there is a six-term exact sequence

where the maps $[L]_{*}$ are induced by a natural element $[L]$ in $K K^{1}\left(C_{r}^{*}(G)\right.$, $\left.C_{r}^{*}(H)\right)$ described in the proof.

Example 2.5. Let M be a compact metrizable space, and let U_{1} and U_{2} be two open subsets of M which cover M. For emphasis, we let i_{1} and i_{2} denote the two inclusion maps of U_{1} and U_{2} in M. Also, $U_{1} \uplus U_{2}=X$ denotes the disjoint union of U_{1} and U_{2}. We define an equivalence relation on $U_{1} \uplus U_{2}$ by

$$
\begin{aligned}
G= & \left\{(x, x) \mid x \in U_{1} \uplus U_{2}\right\} \\
& \cup\left\{(x, y),(y, x) \mid x \in U_{1}, y \in U_{2}, i_{1}(x)=i_{2}(y)\right\}
\end{aligned}
$$

which is endowed with the relative topology of $\left(U_{1} \cup U_{2}\right) \times\left(U_{1} \cup U_{2}\right)$. This groupoid was considered by Kumjian [9] who showed that $C_{r}^{*}(G)$ is strongly Morita equivalent to $C(M)[\mathbf{1 7}]$.

Let

$$
L=\left\{(x, y) \mid x \in U_{1}, y \in U_{2}, i_{1}(x)=i_{2}(y)\right\}
$$

It is easy to verify that $H_{0} \cong U_{1} \cap U_{2} \cong H_{1}$, both with the cotrivial groupoid structure, i.e., equivalence is equality. Moreover, we have

$$
H \cong\left(U_{1} \cap U_{2}\right) \times(\{1,2\} \times\{1,2\})
$$

and $G^{\prime} \cong U_{1} \uplus U_{2}$.
Therefore, we have

$$
\begin{aligned}
C_{r}^{*}(H) & \cong M_{2}\left(C_{0}\left(U_{1} \cap U_{2}\right)\right) \\
C_{r}^{*}\left(G^{\prime}\right) & \cong C_{0}\left(U_{1} \cup U_{2}\right) \\
& \cong C_{0}\left(U_{1}\right) \oplus C_{0}\left(U_{2}\right)
\end{aligned}
$$

and

$$
K_{i}\left(C_{r}^{*}(G)\right) \cong K_{i}(C(M))
$$

by using Kumjian's result for the last part. Then the sequence of Theorem 2.4 becomes the Mayer-Vietoris sequence in K-theory for the cover $\left\{U_{1}, U_{2}\right\}$ of X.

Example 2.6. Let X be a compact metric space, and let ϕ be a homeomorphism of X with no periodic orbits. Let $G=X \times \mathbf{Z}$ be the associated groupoid as in Section 1. Suppose that Y is a closed, nonempty subset of X which meets each ϕ-orbit at most once. That is, $\phi^{n}(Y) \cap Y$ is empty for $n \neq 0$. Let \mathbf{Z}^{+}and \mathbf{Z}^{-}denote $\{1,2,3, \ldots\}$ and $\{0,-1,-2, \ldots\}$, respectively. Define

$$
L=\left\{\left(\phi^{l}(y), k\right) \mid y \in Y, l \in \mathbf{Z}^{+}, k+l \in \mathbf{Z}^{-}\right\}
$$

In this example, the G-equivalence classes are the orbits of ϕ and such a class is also a G^{\prime}-equivalence class if it does not meet Y. For a ϕ orbit which meets Y, say at y, it is the union of two G^{\prime}-equivalence classes; namely, the forward ϕ-orbit of $\phi(y)$ and the backward ϕ-orbit of y. The C^{*}-algebra of G is the crossed-product $C(X) \times{ }_{\phi} \mathbf{Z}$ while the C^{*}-algebra of G^{\prime} may also be described as the C^{*}-subalgebra of $C(X) \times{ }_{\phi} \mathbf{Z}$ generated by $C(X)$ and $u C_{0}(X-Y)$, see [14] for details. The main result of $[\mathbf{1 4}]$ is that, when X is totally disconnected and ϕ is minimal, G^{\prime} is an $A F$-equivalence relation.

In the general situation above, one can show that

$$
\begin{aligned}
H_{0} & \cong Y \times \mathbf{Z}^{-} \times \mathbf{Z}^{-} \\
H_{1} & \cong Y \times \mathbf{Z}^{+} \times \mathbf{Z}^{+} \\
H & \cong Y \times \mathbf{Z} \times \mathbf{Z},
\end{aligned}
$$

i.e., cotrivial equivalence on Y, trivial equivalence on $\mathbf{Z}^{-}, \mathbf{Z}^{+}$and \mathbf{Z}, respectively, so that we have

$$
C_{r}^{*}(H) \cong C(Y) \otimes \mathcal{K}\left(l^{2}(\mathbf{Z})\right)
$$

The exact sequence of Theorem 2.4, in the case of X totally disconnected and ϕ minimal, is then the same as that appearing in $[\mathbf{1 4}, 4.1]$. Note that we have

$$
K_{1}\left(C_{r}^{*}\left(G^{\prime}\right)\right)=0
$$

since G^{\prime} is $A F$ while

$$
\begin{aligned}
K_{0}\left(C_{r}^{*}(H)\right) & \cong K_{0}(C(Y)) \cong C(Y, \mathbf{Z}) \\
K_{1}\left(C_{r}^{*}(H)\right) \cong K_{1}(C(Y)) & =0
\end{aligned}
$$

since Y is also totally disconnected in this case.
The result of Theorem 2.4, in conjunction with the Pimsner-Voiculescu sequence $[\mathbf{1 3}, \mathbf{1}]$ will also give the exact sequence of $[\mathbf{6}]$. (The results of [6] are more general since the partial homeomorphism need not extend to a homeomorphism.)

Example 2.7. We refer to the Bratteli diagrams B_{1}, B_{2} and B_{3} of Example 2.2. We let B_{4} be the diagram shown below:

FIGURE B_{4}.

The C^{*}-algebra associated with B_{4} is $*$-isomorphic with the 2×2 matrices over the C^{*}-algebra associated with B_{1}. Here we let G be the groupoid associated with B_{4}. As in Example 2.2, we identify the path
space with $\{1,5\} \times\{1,2,3,4,5\}^{\mathbf{N}}$. Define

$$
\begin{gathered}
L=\{(x, y) \in G \mid \text { there exist } K, M, N \text { such that } \\
\qquad x_{K}=1, x_{i} \in\{2,3,4\}, \quad i>K, \\
y_{M}=5, y_{i} \in\{2,3,4\}, \quad i>M, \\
\text { and } \left.x_{i}=y_{i} \text { for } i>N\right\} .
\end{gathered}
$$

It is an easy exercise to see that L satisfies the appropriate hypotheses. One can also identify G^{\prime} with the groupoid associated with B_{2} and H with the groupoid of B_{3}. We leave the details of this to the reader.
3. Proofs of the results. In both cases the proofs of the main theorem follow from an application of the main result of [15]. However, it still requires some work to see that hypotheses of $[\mathbf{1 5}]$ hold.

Before getting into the two specific situations, we will need the following technical result.

Lemma 3.1. Let G and H be r-discrete principal groupoids satisfying the conditions of Section 1, and let i be a groupoid morphism from H to G which satisfies
(1) for x in G, the following are equivalent:
(i) x is in $i(H)$,
(ii) $r(x)$ is in $i\left(H^{0}\right)$,
(iii) $s(x)$ is in $i\left(H^{0}\right)$;
(2) i is injective;
(3) i is continuous.

Let K be any compact set in H^{0}. If $\left\{x_{n}\right\}_{n \geq 1}$ is a sequence and x is any point in $r^{-1}(K)$, or $s^{-1}(K)$, then x_{n} converges to x if and only if $i\left(x_{n}\right)$ converges to $i(x)$ in G. That is,

$$
i: r^{-1}(K) \longrightarrow i\left(r^{-1}(K)\right)=r^{-1}(i(K))
$$

is a homeomorphism.

Proof. The "only if" statement follows from continuity of i. For the "if" part, choose a compact neighborhood U of $i(x)$ such that r is a
homeomorphism from U to $r(U)$, a neighborhood of $r(i(x))=i(r(x))$ in G^{0}. Choose a compact neighborhood V of x in H such that $i(V) \subseteq U$ using the continuity of i and such that $r \mid V$ is a homeomorphism. The sequence $r\left(x_{n}\right)$ is in K and, since K is compact, it has an accumulation point. Now if $r\left(x_{n}\right)$ converges to z in $H, i\left(r\left(x_{n}\right)\right)=r\left(i\left(x_{n}\right)\right)$ converges to $i(z)$. Since i is injective, $z=r(x)$. We conclude that $r\left(x_{n}\right)$ has at most one accumulation point $r(x)$ and $r\left(x_{n}\right)$ converges to $r(x)$. So, for sufficiently large $n, r\left(x_{n}\right)$ is in $r(V)$ so we may find y_{n} in Y such that $r\left(x_{n}\right)=r\left(y_{n}\right)$. Since $r \mid V$ is a homeomorphism and y_{n}, x are all in V, y_{n} converges to x. Now consider $i\left(y_{n}^{-1} x_{n}\right)=i\left(y_{n}\right)^{-1} i\left(x_{n}\right)$ which converges to $i(x)^{-1} i(x)$ which is in G^{0}. Since G is r-discrete, we must have $i\left(y_{n}^{-1} x_{n}\right)$ in G^{0}, for n large. Thus, $i\left(y_{n}\right)=i\left(x_{n}\right)$ and hence $x_{n}=y_{n}$ for n large, since i is injective. Since y_{n} converges to x in H, we are done.

Situation 1. Factor groupoids. The first step is to check that G^{\prime} satisfies the conditions of Section 1. That is, we must see that G^{\prime} is Hausdorff and the natural maps $r, s: G^{\prime} \rightarrow X^{\prime}$ are local homeomorphisms. Both of these facts follow almost at once from the facts that the quotient X^{\prime} is Hausdorff and that in G and H the r, s maps are local homeomorphisms. One also needs the first property of i_{0}, i_{1}; that they map equivalence classes onto equivalence classes. We leave the details to the reader.

For technical reasons we will need the following description of G. Fix a sequence of open sets in $H, H_{1}, H_{2}, H_{3}, \ldots$, whose union is H and so that, for each k, \bar{H}_{k} is compact and contained in H_{k+1}. For each k, we define

$$
G_{k}=G /\left\{i_{0}(x) \sim i_{1}(x) \mid x \in H-H_{k}\right\}
$$

and we let $\pi_{k}: G \rightarrow G_{k}, \pi_{k}^{\prime}: G_{k} \rightarrow G^{\prime}$ be the obvious quotient maps. Then each G_{k} is locally compact and Hausdorff and G is the inverse limit (in the category of locally compact spaces with proper, continuous maps) of the system

$$
G^{\prime} \longleftarrow G_{1} \longleftarrow G_{2} \longleftarrow \cdots
$$

At the level of functions, we have

$$
C_{c}\left(G^{\prime}\right) \subseteq C_{c}\left(G_{k}\right) \subseteq C_{c}(G)
$$

and the union of the $C_{c}\left(G_{k}\right)$ is dense in $C_{c}(G)$ (in the inductive limit topology: a sequence f_{n} in $C_{c}(G)$ converges to f if there is a compact set $K \subseteq G$ with $\operatorname{supp}\left(f_{n}\right) \subseteq K$ for all n and $f_{n} \rightarrow f$ uniformly.)
We now define representations of our groupoids and their C^{*}-algebras. Let λ denote the regular representation of $C_{c}(G)$ on $l^{2}(G)$. The completion of $\lambda\left(C_{c}(G)\right)$ is $C_{r}^{*}(G)$. If we restrict λ to $C_{c}\left(G^{\prime}\right)$, we obtain the regular representation of G^{\prime} except some irreducible factors (corresponding to points of G^{\prime} where π is two-to-one) appear twice as many times. We conclude that the $\lambda\left(C_{c}\left(G^{\prime}\right)\right)^{-}$is $*$-isomorphic to $C_{r}^{*}\left(G^{\prime}\right)$. (We will simply identify the two.)

We define a self-adjoint unitary z on $l^{2}(G)$ by

$$
(z \xi)(x)= \begin{cases}\xi\left(i_{1}(y)\right) & \text { if } x=i_{0}(y) \text { for some } y \text { in } H \\ \xi\left(i_{0}(y)\right) & \text { if } x=i_{1}(y) \text { for some } y \text { in } H \\ \xi(x) & \text { otherwise },\end{cases}
$$

for ξ in $l^{2}(G), x$ in X. Let us remark that every element of $C_{r}^{*}\left(G^{\prime}\right)$ commutes with z (see Lemma 3.2), and later we will show that $C_{r}^{*}\left(G^{\prime}\right)$ is exactly the commutant of z in $C_{r}^{*}(G)$.
We define a representation of $C_{r}^{*}(H) \oplus C_{r}^{*}(H)$ on $l^{2}(G)$ as follows. For h_{0}, h_{1} in $C_{c}(H)$, define, for ξ in $l^{2}(G)$

$$
\left(\mu\left(h_{0} \oplus h_{1}\right) \xi\right)\left(i_{j}(x)\right)=\sum_{\substack{s(y)=s(x) \\ y \in H}} h_{j}\left(x y^{-1}\right) \xi\left(i_{j}(y)\right)
$$

for $j=0,1, x$ in H,

$$
\left(\mu\left(h_{0} \oplus h_{1}\right) \xi\right)(x)=0
$$

for x in $G-i_{0}(H)-i_{1}(H)$. That is, μ is just the direct sum of the regular representation of $C_{r}^{*}(H)$ with itself and with the zero representation. The closure, then, of $\mu\left(C_{c}(H) \oplus C_{c}(H)\right)$ is $C_{r}^{*}(H) \oplus C_{r}^{*}(H)$.

Lemma 3.2. Suppose $k \geq 1$, and let f be in $C_{c}\left(G_{k}\right)$. Define $\tilde{f}: H \rightarrow \mathbf{C} b y$

$$
\tilde{f}(x)=f\left(\pi_{k} \circ i_{0}(x)\right)-f\left(\pi_{k} \circ i_{1}(x)\right), \quad x \in H
$$

Then \tilde{f} is in $C_{c}(H)$ and

$$
z \lambda(f) z-\lambda(f)=\mu(\tilde{f} \oplus-\tilde{f})
$$

Proof. It is clear that \tilde{f} is continuous. Moreover, the support of \tilde{f} is contained in \bar{H}_{k}, which is compact. The final formula is a straightforward computation which we omit. \quad.

Next we want to show that $C_{r}^{*}(G)$ lies in the multiplier algebra of $C_{r}^{*}(H) \oplus C_{r}^{*}(H)[\mathbf{1 2}]$. This fact follows easily from the following.

Lemma 3.3. Let f be in $C_{c}(G)$ and g_{0}, g_{1} be in $C_{c}(H)$. Define $h_{0}, h_{1}: H \rightarrow \mathbf{C}$ by

$$
h_{j}(k)=\sum_{\substack{y \in H \\ s(y)=s(x)}} f\left(i_{j}\left(x y^{-1}\right)\right) g_{j}(y),
$$

$j=0,1, x$ in H. Then h_{0} and h_{1} are in $C_{c}(H)$ and

$$
\lambda(f) \mu\left(g_{0} \oplus g_{1}\right)=\mu\left(h_{0} \oplus h_{1}\right)
$$

Proof. As noted in Section 1, the set $\left\{y \mid s(y)=s(x), g_{j}(y) \neq 0\right\}$ is finite for any x in H, so h_{j} is well-defined, $j=0,1$. By observing that the formula for h_{j} is bilinear in f and $g_{0} \oplus g_{1}$, we may restrict our attention to the case where $\operatorname{supp}(f) \subseteq K, \operatorname{supp}\left(g_{j}\right) \subseteq K_{j}, j=0,1$, where K, K_{0} and K_{1} are compact sets in G and H, respectively, where $r, s: K \rightarrow G^{0}, r, s: K_{0} \rightarrow H^{0}, r, s: K_{1} \rightarrow H^{0}$ are all homeomorphisms onto their images. In this case, the support of h_{j} is contained in $i_{0}^{-1}(K) K_{0} \cup i_{1}^{-1}(K) K_{1}$ in H. We must show that $i_{0}^{-1}(K) K_{0}$ is compact in H; the argument for the other set is the same. Suppose $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in $i_{0}^{-1}(K)$ and K_{0}, respectively, such that $x_{n} y_{n}$ is defined for all n. By compactness of K and K_{0}, we may pass to subsequences such that $i_{0}\left(x_{n_{k}}\right)$ converges to z in K and $y_{n_{k}}$ converges to y in K_{0}. Since G^{2} is closed in $G \times G, z i_{0}(y)$ is defined. By the first hypothesis on i_{0}, z is in the image of i_{0}; say $z=i_{0}(x)$. By Lemma 3.1, we conclude that $x_{n_{k}}$ converges to x in H. Therefore, $x_{n_{k}} y_{n_{k}}$ converges to $x y$ in H and $x y$ is in $i_{0}^{-1}(K) K_{0}$. Hence, $i_{0}^{-1}(K) K_{0}$ is compact and so h_{0} is in $C_{c}(H)$. (The continuity of h_{0} is clear.) The final formula is an easy computation.

Let $E=C_{r}^{*}(H) \oplus C_{r}^{*}(H)$ be considered as a graded right Hilbert module over $C_{r}^{*}(H)$ in the usual way [1]. Lemma 2.3 asserts that
the products defined there extend to define a $*$-homomorphism $\bar{\lambda}$: $C_{r}^{*}(G) \rightarrow \mathcal{B}(E)$. Let F be the natural grading operator on E. Lemma 2.2 then implies that $(E, \bar{\lambda}, F)$ determines an element of the Kasparov group $K K\left(C_{r}^{*}(G), C_{r}^{*}(H)\right)[\mathbf{1}]$ which we denote by $\left[i_{0}, i_{1}\right]$. As described in $[\mathbf{1}, 23.1]$, this induces group homomorphisms

$$
\left[i_{0}, i_{1}\right]_{*}: K_{i}\left(C_{r}^{*}(G)\right) \rightarrow K_{i}\left(C_{r}^{*}(H)\right)
$$

To prove Theorem 2.1, we will use the main result of [15] which we state now. We suppose that A and B are separable C^{*}-algebras acting on the Hilbert space \mathcal{H}. We suppose that z is a self-adjoint unitary operator on \mathcal{H}. We assume:
(1) for a in A, b in $B, a b$ is in A; that is, B acts as multipliers of A,
(2) $z A z=A$,
(3) for b in $B, z b z-b$ is in A.

We also assume that there is a continuous path $\left\{e_{t}\right\}_{t \geq 1}$ in A satisfying:
(4) (i) $0 \leq e_{t} \leq e_{s} \leq 1$, for all $t \leq s$,
(ii) $e_{s} e_{t}=e_{t}$, for all $s \geq t+2$,
(iii) for all a in A,

$$
\left\|e_{t} a-a\right\|, \quad\left\|a e_{t}-a\right\| \longrightarrow 0, \quad t \rightarrow \infty
$$

(iv) $\left[e_{t}, z\right]=0$, for all $t \geq 1$.

We then define the C^{*}-algebras A^{\prime}, B^{\prime} by

$$
\begin{aligned}
A^{\prime} & =\{a \in A \mid[a, z]=0\} \\
B^{\prime} & =\{b \in B \mid[b, z]=0\}
\end{aligned}
$$

We further assume that
(5) for all b in B, there is a b^{\prime} in B^{\prime} such that $\left\|b-b^{\prime}\right\| \leq 2\|[b, z]\|$; that is, almost commuting with z implies nearly commuting with z.
(6) There is a dense $*$-subalgebra \mathcal{A} in A such that, for any a in \mathcal{A} and $t_{0} \geq 1$, there is a $t \geq t_{0}$ such that
(i) $a e_{s}=a=e_{s} a$, for $s \geq t$,
and, for any such t, there is a b in B such that
(ii) $b e_{s}=a=e_{s} b$, for $t+2 \geq s \geq t$,
(iii) $[b-a, z]=0$,
(iv) $\|b\| \leq\|a\|$.

Under these hypotheses, we have

$$
K_{i}\left(C\left(B^{\prime} ; B\right)\right) \cong K_{i}\left(C\left(A^{\prime} ; A\right)\right)
$$

for $i=0,1$. We let

$$
\begin{aligned}
& A=\mu\left(C_{c}(H) \oplus C_{c}(H)\right)^{-} \cong C_{r}^{*}(H) \oplus C_{r}^{*}(H) \\
& B=\lambda\left(C_{c}(G)\right)^{-} \cong C_{r}^{*}(G) \\
& \mathcal{H}=l^{2}(G)
\end{aligned}
$$

and z be as above. To define our approximate unit for A, we choose a sequence of functions χ_{n} in $C_{c}(H)$ such that
(i) $\operatorname{supp}\left(\chi_{n}\right) \subseteq H^{0}$,
(ii) $0 \leq \chi_{n} \leq \chi_{n+1} \leq 1$,
(iii) $\lim _{n \rightarrow \infty} \chi_{n}=1$ on H^{0} (pointwise).

For each n, we let $e_{n}=\mu\left(\chi_{n} \oplus \chi_{n}\right)$ and, for $n \leq t \leq n+1$, we let

$$
e_{t}=(t-n) e_{n+1}+(n+1-t) e_{n}
$$

In hypothesis (6), we let \mathcal{A} be $\mu\left(C_{c}(H) \oplus C_{c}(H)\right)$. It is easy to see that (1) follows from Lemma 3.3, (3) from Lemma 3.2 and (4) from the construction of e_{t}. Also, for g_{0} and g_{1} in $C_{c}(H)$, it is easily seen that

$$
z \mu\left(g_{0} \oplus g_{1}\right) z=\mu\left(g_{1} \oplus g_{0}\right)
$$

from which (2) follows.

Lemma 3.4. Let h_{0} and h_{1} be in $C_{c}(H)$. There are positive integers k and g in $C_{c}(G)$ such that
(i) $e_{l} \mu\left(h_{0} \oplus h_{1}\right)=\mu\left(h_{0} \oplus h_{1}\right)=\mu\left(h_{0} \oplus h_{1}\right) e_{l}$, for all $l \geq k$ and, for all $k \leq l \leq k+2$,
(ii) $\lambda(g) e_{l}=\mu\left(h_{0} \oplus h_{1}\right)$,
(iii) $\left[\lambda(g), e_{l}\right]=0$,
(iv) $\lambda(g)\left(e_{l}-e_{l}^{2}\right)=0$,
(v) $\left[\lambda(g)\left(1-e_{l}\right), z\right]=0$.

Proof. Since the supports of h_{0} and h_{1} are compact, they are contained in some H_{k}. Also, choose k sufficiently large so that $\chi_{k}=1$ on the ranges and sources of the supports of h_{0} and h_{1}. Property (i) then follows by an easy computation. Let

$$
K=r\left(\bar{H}_{k+3}\right) \cup s\left(\bar{H}_{k+3}\right)
$$

which is compact in H^{0}. Then, as r and s are continuous,

$$
\begin{aligned}
X & =i_{0}\left(r^{-1}(K) \cup s^{-1}(K)\right) \cup i_{1}\left(r^{-1}(K) \cup s^{-1}(K)\right) \\
& =r^{-1}\left(i_{0}(K) \cup i_{1}(K)\right) \cup s^{-1}\left(i_{0}(K) \cup i_{1}(K)\right)
\end{aligned}
$$

is closed in G and, by Lemma 3.1, the relative topology on X is the same as that on $r^{-1}(K) \cup s^{-1}(K)$ in H. Let $X^{\prime}=\pi_{k}(X)$ which is a closed set in G_{k}. If we define $g^{\prime}: X^{\prime} \rightarrow \mathbf{C}$ by

$$
g^{\prime}\left(\pi_{k}\left(i_{j}(x)\right)\right)=h_{j}(x)
$$

we see that g^{\prime} is well-defined since, if $\pi_{k}\left(i_{0}(x)\right)=\pi_{k}\left(i_{1}(x)\right)$, then x is in $H-H_{k}$ and h_{0} and h_{1} are both supported in H_{k}. Also, the support of g^{\prime} is contained in $\pi_{k}\left(i_{0}\left(\bar{H}_{k}\right) \cup i_{1}\left(\bar{H}_{k}\right)\right)$ which is compact in X. Moreover, since the relative topology of X is the same as that of $r^{-1}(K) \cup s^{-1}(K)$, g^{\prime} is continuous. Let g be any element of $C_{c}\left(G_{k}\right)$ such that $g \mid X^{\prime}=g^{\prime}$. The proof that g satisfies (i)-(v) is similar to the proof of Lemma 3.11. We omit the details.

Lemma 3.5. Let h_{0} and h_{1} be in $C_{c}(H)$. There is a positive integer k and $a b$ in $C_{r}^{*}(G)$ such that
(i) $e_{l} \mu\left(h_{0} \oplus h_{1}\right)=\mu\left(h_{0} \oplus h_{1}\right)=\mu\left(h_{0} \oplus h_{1}\right) e_{l}$, for all $l \geq k$ and, for all $k \leq l \leq k+2$,
(ii) $b e_{l}=\mu\left(h_{0} \oplus h_{1}\right)$
(iii) $\left[b, e_{l}\right]=0$
(iv) $b\left(e_{l}-e_{l}^{2}\right)=0$
(v) $\left[b\left(1-e_{l}\right), z\right]=0$
(vi) $\|b\| \leq\left\|\mu\left(h_{0} \oplus h_{1}\right)\right\|$.

Proof. Apply Lemma 3.4 to obtain k and g. Let $\delta=\left\|\mu\left(h_{0} \oplus h_{1}\right)\right\|$ and define

$$
\zeta(t)= \begin{cases}1 & 0 \leq t \leq \delta^{2} \\ t^{-1 / 2} \delta & \delta^{2} \leq t\end{cases}
$$

for t in $[0, \infty)$. Define $b=\lambda(g) \zeta\left(\lambda\left(g^{*} g\right)\right)$. Since, for $k \leq l \leq k+2, e_{l}$ commutes with $\lambda(g)$ and so does b. Moreover, we have

$$
\lambda(g) \zeta\left(\lambda\left(g^{*} g\right)\right) e_{l}=\lambda(g) e_{l}=\mu\left(h_{0} \oplus h_{1}\right)
$$

The other properties are easily verified.

Lemma 3.6. For A and B as above, hypotheses (5) and (6) of [15] hold.

Proof. First we consider (5). Let b be in B. If $[b, z]=0$, then we let $b^{\prime}=b$ and we are done. Otherwise, find a positive integer n and f in $C_{c}\left(G_{n}\right)$ so that

$$
\|\lambda(f)-b\| \leq \frac{1}{2}\|[b, z]\|
$$

Let \tilde{f} be as in Lemma 3.2, and let $h_{0}=\tilde{f}$ and $h_{1}=-\tilde{f}$ be in $C_{c}(H)$. That is,

$$
z \lambda(f) z-\lambda(f)=\mu\left(h_{0} \oplus h_{1}\right)
$$

Now let k and b_{0} be as in Lemma 3.5 for h_{0}, h_{1}. Let $b^{\prime}=\sigma(f)+b_{0} / 2$. It is then routine to verify b^{\prime} satisfies the conclusion of (5). (See the proof of Lemma 3.13.)

Hypothesis (6) follows immediately from Lemma 3.5.

There is one more issue; recall from [15] that

$$
B^{\prime}=\{b \in B \mid[b, z]=0\}
$$

We must check that B^{\prime} coincides with $C_{r}^{*}\left(G^{\prime}\right)$.

Proposition 3.7. $C_{r}^{*}\left(G^{\prime}\right) \cong B^{\prime}$.

Proof. As noted earlier, the map sending f in $C_{c}\left(G^{\prime}\right)$ to $\alpha(f)=\pi \circ f$ in $C_{c}(G)$ is a $*$-homomorphism. Moreover, $\lambda \circ \alpha$ is just the regular representation of $C_{c}\left(G^{\prime}\right)$, with some summands appearing with doubled multiplicity. By Lemma 3.2, $\lambda \circ \alpha\left(C_{c}\left(G^{\prime}\right)\right)$, and hence $C_{r}^{*}\left(G^{\prime}\right)$ is contained in B^{\prime}. We must show the reverse inclusion.

Let C denote the C^{*}-algebra generated by A and B. This contains B^{\prime} and $C_{r}^{*}\left(G^{\prime}\right)$. Suppose there exists b_{0} in B^{\prime}, not in $C_{r}^{*}\left(G^{\prime}\right)$. As in Lemma 3.9 of [11], we may find a representation ρ of C on a Hilbert space \mathcal{H} and vectors ξ_{0}, η_{0} in \mathcal{H} such that

$$
\begin{gathered}
\left\langle\rho\left(b_{0}\right) \xi_{0}, \eta_{0}\right\rangle \neq 0 \\
\left\langle\rho\left(b^{\prime}\right) \xi_{0}, \eta_{0}\right\rangle=0, \\
\text { for all } b^{\prime} \text { in } C_{r}^{*}\left(G^{\prime}\right) .
\end{gathered}
$$

We apply the disintegration theorem, [16, Theorem 1.21], to the restrictions of ρ to B and to A, the latter viewed as the groupoid C^{*}-algebra of the disjoint union of two copies of H. Some caution is needed since $\rho \mid A$ may be degenerate. Let \mathcal{H}_{0} denote the subspace of \mathcal{H} on which $\rho(A)$ acts nondegenerately. Using the fact that B acts as multipliers of A, it can easily be seen that \mathcal{H}_{0} is $\rho(B)$-invariant. As in [16], let (μ, K, L) and $\left(\mu^{0}, K^{0}, L^{0}\right)$ be the representations of G and $H \cup H$ obtained from $\rho \mid B$ and $\rho \mid A$ on \mathcal{H}_{0} via the disintegration theorem. Define another representation of G by decomposing

$$
G=\left(i_{0}(H) \smile i_{1}(H)\right) \cup\left(G-i_{0}(H)-i_{1}(H)\right)
$$

as Borel groupoids, using $\left(\mu^{0}, K^{0}, L^{0}\right)$ on $i_{0}(H) \cup i_{1}(H)$ and zero on its complement. Denote the representation of B by $\left(\rho^{\prime}, \mathcal{H}^{\prime}\right)$; notice that we may identify \mathcal{H}^{\prime} with \mathcal{H}_{0} in an obvious way. It is easy to check that, for any b in B and a in A, we have

$$
\rho(b) \rho(a)=\rho^{\prime}(b) \rho(a)
$$

from which we conclude $\rho^{\prime}=\rho \mid B$ on \mathcal{H}_{0}. Therefore, we conclude that the measures μ^{0} and $\mu \mid i_{0}\left(H^{0}\right) \cup i_{1}\left(H^{0}\right)$ are equivalent and the Hilbert bundles K^{0} and $K \mid i_{0}\left(H^{0}\right) \cup i_{1}\left(H^{0}\right)$ are isomorphic by a bundle
map intertwining the representations L^{0} and $L \mid i_{0}(H) \cup i_{1}(H)$. For simplicity of notation, we assume that they are equal.

Returning to b_{0} in B^{\prime}, let $\delta=\left|\left\langle\rho\left(b_{0}\right) \xi_{0}, \eta_{0}\right\rangle\right|$. There exists an f in $C_{c}(G)$ such that $\left\|\lambda(f)-b_{0}\right\|<\delta / 4$. In fact, we may assume that f in $C_{c}\left(G_{k}\right)$ for some k. Let \tilde{f} be as in Lemma 3.2, so we have

$$
\|\mu(\tilde{f} \oplus-\tilde{f})\|=\|z \lambda(f) z-\lambda(f)\|=\|[z, \lambda(f)]\|<\delta / 4
$$

since $\left[b_{0}, z\right]=0$. Let Y denote the closure of $i_{0}(\operatorname{supp}(\tilde{f})) \cup i_{1}(\operatorname{supp}(\tilde{f}))$ which is compact in G. Define f_{0} on G by

$$
\begin{aligned}
f_{0}\left(i_{0}(x)\right) & =\tilde{f}(x) \\
f_{0}\left(i_{1}(x)\right) & =-\tilde{f}(x) \\
f_{0}(y) & =0, \quad y \notin Y .
\end{aligned}
$$

Note that f_{0} is a compactly supported Borel function on G. Choose a continuous compactly supported function g on G such that $g\left|Y=f_{0}\right|$ Y. Now choose a sequence $\left\{h_{n}\right\}_{1}^{\infty}$ of continuous compactly supported functions of G such that
(i) $0 \leq h_{n} \leq h_{n-1} \leq 1$, for all n,
(ii) $h_{n} \mid Y=1$
(iii) $h_{n} \rightarrow \chi_{Y}$ pointwise.

The pointwise product $g h_{n}$ is in $C_{c}(G)$ and

$$
\begin{aligned}
\left(f-\frac{1}{2} g h_{n}\right)\left(i_{0}(x)\right) & =\left(f-\frac{1}{2} g\right)\left(i_{0}(x)\right) \\
& =f\left(i_{0}(x)\right)-\frac{1}{2} \tilde{f}(x) \\
& =\frac{1}{2} f\left(i_{0}(x)\right)+\frac{1}{2} f\left(i_{1}(x)\right) \\
& =\left(f-\frac{1}{2} g h_{n}\right)\left(i_{1}(x)\right)
\end{aligned}
$$

so that $f-g h_{n} / 2$ is in $\alpha\left(C_{c}\left(G^{\prime}\right)\right)$. We conclude that, for every n,

$$
\begin{aligned}
0 & =\left\langle\rho\left(f-\frac{1}{2} g h_{n}\right) \xi_{0}, \eta_{n}\right\rangle \\
& =\left\langle\rho(f) \xi_{0}, \eta_{0}\right\rangle-\frac{1}{2}\left\langle\rho\left(g h_{n}\right) \xi_{0}, \eta_{0}\right\rangle
\end{aligned}
$$

For the first term, we have

$$
\begin{aligned}
\left|\left\langle\rho(f) \xi_{0}, \eta_{0}\right\rangle\right| & \geq\left\|\left\langle\rho\left(b_{0}\right) \xi_{0}, \eta_{0}\right\rangle\right\|-\left\|b_{0}-\lambda(f)\right\| \\
& \geq 3 \delta / 4
\end{aligned}
$$

On the other hand, we compute

$$
\left\langle\rho\left(g h_{n}\right) \xi_{0}, \eta_{0}\right\rangle=\int_{G} g(x) h_{n}(x)\left\langle L(x) \xi_{0}(s),(x), \eta_{0}(r(x))\right\rangle d \mu(x)
$$

since ρ is the integrated form of (μ, K, L). The integrand above is in $L^{1}(G, \mu)$, and we may apply the dominated convergence theorem $\left(\left|g h_{n}\right| \leq\left|g h_{1}\right|\right)$ to conclude that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mid\left\langle\rho\left(g h_{n}\right) \xi_{0}\right. & \left., \eta_{0}\right\rangle \mid \\
& =\left|\int_{g} f_{0}(x)\left\langle L(x) \xi_{0}(s(x)), \eta_{0}(r(x))\right\rangle d \mu(x)\right| \\
& =\left|\int_{i_{0}(H) \cup i_{1}(H)} f_{0}(x)\left\langle L(x) \xi_{0}(s(x)), \eta_{0}(r(x))\right\rangle d \mu(x)\right| \\
& =\left|\langle\rho(\tilde{f} \oplus-\tilde{f})) \xi_{0}, \eta_{0}\right\rangle \mid \\
& \leq\|\mu(\tilde{f} \oplus-\tilde{f})\|<\delta / 4 .
\end{aligned}
$$

Thus, we arrive at a contradiction and so we conclude $B^{\prime} \subseteq C_{r}^{*}\left(G^{\prime}\right)$ as desired.

Proof of Theorem 2.1. We begin with the short exact sequence $[\mathbf{1 9}$, 15],

$$
0 \longrightarrow C_{0}(0,1) \otimes B \longrightarrow C\left(B^{\prime} ; B\right) \longrightarrow B^{\prime} \longrightarrow 0
$$

and obtain from it an associated six-term exact sequence of K-groups. By Proposition 3.7, we have $K_{i}\left(B^{\prime}\right) \cong K_{i}\left(C_{r}^{*}\left(G^{\prime}\right)\right)$ and, more generally, $K_{i}\left(C_{0}(0,1) \otimes B\right) \cong K_{i+1}(B) \cong K_{i+1}\left(C_{r}^{*}(G)\right)$. By the main result of [15] (the excision theorem), we also have $K_{i}\left(C\left(B^{\prime} ; B\right)\right) \cong K_{i}\left(C\left(A^{\prime} ; A\right)\right)$ where

$$
A \cong C_{r}^{*}(H) \oplus C_{r}^{*}(H)
$$

as before and

$$
\begin{aligned}
A^{\prime} & =\{a \in A \mid[a, z]=0\} \\
& =\left\{(a, a) \mid a \in C_{r}^{*}(H)\right\} \\
& \cong C_{r}^{*}(H) .
\end{aligned}
$$

Now, using the short exact sequence for $C\left(A^{\prime} ; A\right)$ analogous to the one above for $C\left(B^{\prime} ; B\right)$, its associated six-term sequence for K-groups and the computation of A^{\prime} above, it can easily be shown that

$$
K_{i}\left(C\left(A^{\prime} ; A\right)\right) \cong K_{i+1}\left(C_{r}^{*}(H)\right)
$$

This yields the exact sequence of Theorem 2.1; that the maps are as claimed there follows from results in $[\mathbf{1 9}]$ and $[\mathbf{1}]$. We leave the details to the reader.

Situation 2. Subgroupoids. We begin by establishing some basic properties of $H_{0}, H_{1}, H^{\prime}, H$.

Lemma 3.8. (i) L, L^{-1}, H_{0} and H_{1} are pairwise disjoint.
(ii) H_{0}, H_{1}, H^{\prime} and H are all groupoids and satisfy the conditions of Section 1.
(iii) $C_{r}^{*}\left(H^{\prime}\right) \cong C_{r}^{*}\left(H_{0}\right) \oplus C_{r}^{*}\left(H_{1}\right)$.
(iv) $C_{c}(L)$ may be completed to be a $C_{r}^{*}\left(H_{0}\right)-C_{r}^{*}\left(H_{1}\right)$ equivalence bimodule $[\mathbf{1 7}, \mathbf{1 0}]$.
(v) $C_{r}^{*}\left(H_{0}\right), C_{r}^{*}\left(H_{1}\right)$ and $C_{r}^{*}(H)$ are all strongly Morita equivalent [17, 10].

Proof. (i) If w, x, y, z are all in L and $w^{-1} x=y z^{-1}$, then $s(x)=$ $s\left(w^{-1} x\right)=s\left(y z^{-1}\right)=r(z)$ which contradicts hypothesis (1). By definition, then, we have $H_{0} \cap H_{1}=\varnothing$. The other cases are similar.
(ii) An argument similar to that in part (i) shows that $H_{0}=L^{-1} L$ is disjoint from L and L^{-1}. Then

$$
H_{1} H_{1}=L L^{-1} L L^{-1} \subseteq L G^{\prime} L^{-1} \subseteq L L^{-1}=H_{1}
$$

and, in a similar way, $H_{0} H_{0} \subseteq H_{0}$ and so H_{0} and H_{1} are groupoids in a purely algebraic sense. Similar arguments apply to H^{\prime} and H.

It is easy to check that the products and inverse operations are continuous. It is also easy to see each of these groupoids is r-discrete. The product map $\pi(x, y)=x y$ from G^{2} to G is a local homeomorphism since G is r-discrete $[\mathbf{1 6}]$. Therefore, by definition, the restriction of π
to $L^{-1} \times L \cap G^{2}$ (which is closed in G^{2}) to H_{0} is a local homeomorphism. From this, it follows that H_{0} is locally compact and Hausdorff. Also, the map $\phi(x, y)=\left(x, x^{-1}\right)$ is a local homeomorphism from G^{2} to G^{2} and maps $L^{-1} \times L \cap G^{2}$ to itself. Moreover, the diagram,

commutes and so we conclude that the restriction of r to H_{0} is also a local homeomorphism. Similarly, s is a local homeomorphism and so H_{0} is a groupoid. The groupoids H_{1} and H^{\prime} are treated similarly. Since L is closed, H is locally compact, and since the map taking x in L to $\left(x, x^{-1}\right)$ in $G^{2} \cap L \times L^{-1}$ is a local homeomorphism, $r: L \rightarrow H$ is again a local homeomorphism. Thus, H is a groupoid in the sense of Section 1.
(iii) This is a direct result of the definition of H^{\prime}.
(iv), (v). These both follow easily from the results and techniques of [10] and $[\mathbf{1 7}]$. In fact, one can see that $C_{r}^{*}\left(H_{0}\right)$ and $C_{r}^{*}\left(H_{1}\right)$ are both full corners in $C_{r}^{*}(H)$.

We represent the algebra $C_{c}(G)$ on the Hilbert space $l^{2}(G)$ via the regular representation, which we denote by λ. We regard $l^{2}(H)$ as a subspace of $l^{2}(G)$ and define a degenerate representation μ of $C_{c}(H)$ on $l^{2}(G)$ by setting μ to be the regular representation on $l^{2}(H)$ and zero on the orthogonal complement. We also define the self-adjoint unitary operator z on $l^{2}(G)$ by

$$
(z \xi)(x)= \begin{cases}-\xi(x) & \text { if } s(x) \in H_{1} \\ \xi(x) & \text { otherwise }\end{cases}
$$

for ξ in $l^{2}(G), x$ in G. The completions of $\lambda\left(C_{c}(G)\right)$ and $\mu\left(C_{c}(H)\right)$ are $C_{r}^{*}(G)$ and $C_{r}^{*}(H)$, respectively.

Lemma 3.9. Let f be in $C_{c}(G)$. Define $\tilde{f}: H \rightarrow \mathbf{C}$ by

$$
\tilde{f}(x)= \begin{cases}0 & \text { if } x \text { is in } H^{\prime}, \\ -f(x) & \text { if } x \text { is in } L \cup L^{-1} .\end{cases}
$$

Then \tilde{f} is in $C_{c}(H)$ and

$$
z \lambda(f) z-\lambda(f)=2 \mu(\tilde{f})
$$

Proof. From the definitions of the topology on H, it is clear that \tilde{f} is in $C_{c}(H)$. The last part follows by direct computation, which we leave to the reader.

Lemma 3.10. Let f be in $C_{c}(G)$, and let g be in $C_{c}(H)$. Define $h: H \rightarrow \mathbf{C} b y$

$$
h(x)=\sum_{\substack{y \in H \\ s(y)=s(x)}} f\left(x y^{-1}\right) g(y), \quad x \in H
$$

Then h is in $C_{c}(H)$ and we have

$$
\lambda(f) \mu(g)=\mu(h)
$$

Proof. We first observe that h is well-defined; for a fixed x, the set

$$
\{y \in H \mid s(y)=s(x), \quad g(y) \neq 0\}
$$

is finite. It is clear that the formula above is bilinear in f and g and therefore we may, using a partition of the supports of f and g, restrict to the case $\operatorname{supp}(f) \subseteq K_{1}, \operatorname{supp}(g) \subseteq K_{2}$ where K_{1} and K_{2} are compact and $r, s: K_{1} \rightarrow \overline{G^{0}}$ and $f, r: K_{2} \rightarrow H^{0}$ are injective. Then we have $h(x)=0$ unless x is in $K_{1} K_{2}$. We claim that this set is compact in H. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in K_{1} and K_{2}, respectively, such that $r\left(y_{n}\right)=s\left(x_{n}\right)$, i.e., $x_{n} y_{n}$ is a sequence in $K_{1} K_{2}$. Since K_{1} and K_{2} are compact, we may pass to convergent subsequences $\left\{x_{n_{k}}\right\}$ and $\left\{y_{n_{k}}\right\}$. Now $x_{n_{k}}$ converges to x in G and $y_{n_{k}}$ converges to y in H (hence also in G). Of course, x is in K_{1} and y is in K_{2} and $r(y)=s(x)$ so $x y$ is in $K_{1} K_{2}$. Since $s\left(x_{n_{k}}\right)$ and $s(x)$ are in $H^{0}, x_{n_{k}}$ and x are in H. We apply Lemma 3.1 with $K=r\left(K_{2}\right)$ to assert that $x_{n_{k}}$ also converges to x in the topology of H. Then $x_{n_{k}} y_{n_{k}}$ converges to $x y$ in H. This establishes the claim. Thus, the support of h is compact in H. Since the inclusion
of H in G is continuous, and since f and g are continuous, h is also continuous. The final formula is a straightforward computation which we leave to the reader.

Let $E=C_{r}^{*}(H)$ be considered as a trivially graded right $C_{r}^{*}(H)$ module. It follows from Lemma 3.10 that the product defined there extends to a $*$-homomorphism $\bar{\lambda}: C_{r}^{*}(G) \rightarrow \mathcal{B}(E)$. Then Lemmas 3.9 and 3.10 and $[\mathbf{1}, 17.5 .2$] show that $(E, \bar{\lambda}, z)$ determines an element of the Kasparov group $K K^{1}\left(C_{r}^{*}(G), C_{r}^{*}(H)\right)$, which we denote by $[L]$. This induces homomorphism

$$
[L]_{*}: K_{i}\left(C_{r}^{*}(G)\right) \longrightarrow K_{i+1}\left(C_{r}^{*}(H)\right)
$$

see $[\mathbf{1}, 23.1]$.
To prove Theorem 2.4, we will again appeal to the main result of [15]. We let $A=\mu\left(C_{c}(H)\right)^{-} \cong C_{r}^{*}(H), B=\lambda\left(C_{c}(G)\right)^{-} \cong C_{r}^{*}(G)$, $\mathcal{H}=l^{2}(G)$ and z be as above. Let χ_{n} be in $C_{c}(H)$ as in the factor groupoid situation; let $e_{n}=\mu\left(x_{n}\right)$ and $e_{t}=(t-n)_{e_{n+1}}+(n+1-t) e_{n}$. As before, we let $\mathcal{A}=\mu\left(C_{c}(H)\right)$.

Hypotheses (1) and (3) of [15] follow from Lemmas 3.10 and 3.9, respectively. For any h in $C_{c}(H)$, let

$$
h^{\prime}= \begin{cases}h & \text { on } H^{\prime}, \\ -h & \text { on } L \cup L^{-1} .\end{cases}
$$

It is easy to see that h^{\prime} is in $C_{c}(H)$ and that $z \mu(h) z=\mu\left(h^{\prime}\right)$ from which (2) follows. As before, (4) follows easily from the construction of $\left\{e_{t}\right\}$.

Lemma 3.11. Let h be in $C_{c}(H)$. There is a positive integer k and g in $C_{c}(G)$ such that
(i) $e_{l} \mu(h)=\mu(h)=\mu(h) e_{l}$ for all $l \geq k$,
(ii) $\lambda(g) e_{l}=\mu(h)$,
(iii) $\left[\lambda(g), e_{l}\right]=0$,
(iv) $\lambda(g)\left(e_{l}-e_{l}^{2}\right)=0$,
(v) $\left[\lambda(g)\left(1-e_{l}\right), z\right]=0$.

Proof. Choose k such that $\chi_{k}=1$ on the images of $\operatorname{supp}(h)$ under r and s. Property (i) follows. Let $K=\operatorname{supp}\left(\chi_{k+3}\right)$, and let

$$
X=r^{-1}(K) \cup s^{-1}(K) \cup L \cup L^{-1}
$$

Since K is compact, (in H and hence in G), r and s are continuous and L is closed, X is a closed set in G. Also note that $X \supseteq \operatorname{supp}(h)$. Moreover, by Lemma 3.1, the relative topologies from G and H agree on X. Therefore, we may find g in $C_{c}(G)$ such that $g|X=h| X$.

Let $k \leq l \leq k+2$. First we compute

$$
\begin{aligned}
& \left(\chi_{l} g\right)(x)=\chi_{l}(r(x)) g(x) \\
& \left(g \chi_{l}\right)(x)=\chi_{l}(s(x)) g(x)
\end{aligned}
$$

for any X in H. (The second is using the product of Lemma 3.9 since χ_{l} is in $C_{c}(H)$ and g is in $C_{c}(G)$. The first is defined analogously.) Note then that $\left(\chi_{l} g\right)(x)=0$, unless $r(x)$ is in $\operatorname{supp}\left(\chi_{l}\right) \subseteq K$, and hence x is in X. So we have

$$
\left(\chi_{l} g\right)(x)=\chi_{l}(r(x)) \cdot h(x)
$$

Again, if this is nonzero, then x is in the support of h, hence $\chi_{l}(r(x))=$ 1. We have shown that, if $\left(\chi_{l} g\right)(x)$ is nonzero, then it equals $h(x)$. A similar argument shows that, if $\left(g \cdot \chi_{l}\right)(x)$ is nonzero, then it also equals $h(x)$. Moreover, it is clear that, if $h(x)$ is nonzero, it equals $\left(\chi_{l} g\right)(x)$. We conclude that $\chi_{l} g=g \chi_{l}=h$. Parts (ii), (iii) and (iv) follow at once. As for (v), we have

$$
\begin{aligned}
z\left(\lambda(g)\left(1-e_{l}\right)\right) z-\lambda(g)\left(1-e_{l}\right) & =z \lambda(g) z-\lambda(g)-z \mu(h) z+\mu(h) \\
& =\mu(\tilde{g})-\mu\left(h^{\prime}\right) \\
& =\mu\left(\tilde{g}-h^{\prime}\right)
\end{aligned}
$$

where \tilde{g} is as in Lemma 3.9 and h^{\prime} is as above. It is easy to see that $\tilde{g}=h^{\prime}$, since $g\left|L \cup L^{-1}=h\right| L \cup L^{-1}$.

Lemma 3.12. Let h be in $C_{c}(H)$. There is a positive integer k and ab in $C_{r}^{*}(G)$ such that
(i) $e_{l} \mu(h)=\mu(h)=\mu(h) e_{l}$, for all $l \geq k$, and, for all $k \leq l \leq k+2$,
(ii) $b e_{l}=\mu(h)$
(iii) $\left[b, e_{l}\right]=0$
(iv) $b\left(e_{l}-e_{l}^{2}\right)=0$
(v) $\left[b\left(1-e_{l}\right), z\right]=0$
(vi) $\|b\| \leq\|\mu(h)\|$.

Proof. The proof uses Lemma 3.11 and the same technique as in Lemma 3.5. We omit the details.

Lemma 3.13. For A and B as above, hypotheses (5) and (6) of [15] hold.

Proof. First, we consider (5). Let b be in B. If $[b, z]=0$, then let $b^{\prime}=b$ and we are done. If not, find f in $C_{c}(G)$ such that

$$
\|\lambda(f)-b\| \leq \frac{1}{4}\|[b, z]\|
$$

Let \tilde{f} be as in Lemma 3.9. Letting $h=\tilde{f}$, apply Lemma 3.12 to obtain b_{0} in B. Then we have

$$
\begin{aligned}
z\left(\lambda(f)+b_{0}\right) z-\left(\lambda(f)+b_{0}\right) & =z \lambda(f) z-\lambda(f)+z\left[b_{0}, z\right] \\
& =2 \mu(h)+z[\mu(h), z] \\
& =0
\end{aligned}
$$

since $z \mu(h) z=-\mu(h)$. So then we have $b^{\prime}=\lambda(f)+b_{0}$ is in B^{\prime}, and

$$
\begin{aligned}
\left\|b-b^{\prime}\right\| \leq\|b-\lambda(f)\|+\left\|b_{0}\right\| & \leq \frac{1}{4} \|[b, z\|+\| \mu(h) \| \\
& =\frac{1}{4}\|[b, z]\|+\frac{1}{2}\|[\lambda(f), z]\| \\
& \leq \frac{1}{4}\|[b, z]\|+\frac{1}{2}\|[b, z]\|+\|\lambda(f)-b\| \\
& \leq\|[b, z]\|
\end{aligned}
$$

using Lemmas 3.12 and 3.9.
Hypothesis (6) follows at once from Lemma 3.12.

Again, one issue is left to resolve, which is identifying A^{\prime} and B^{\prime}.

Proposition 3.14. (i) $A^{\prime}=\left\{a \in C_{r}^{*}(H) \mid[a, z]=0\right\} \cong C_{r}^{*}\left(H^{\prime}\right)$.
(ii) $B^{\prime}=\left\{b \in C_{r}^{*}(G) \mid[b, z]=0\right\} \cong C_{r}^{*}\left(G^{\prime}\right)$.

Proof. (i) Consider h in $C_{c}(H)$. Define

$$
\tilde{h}(x)= \begin{cases}0 & x \text { in } H^{\prime} \\ -h(x) & x \text { in } L\end{cases}
$$

Then, from the definitions of the topologies on H, \tilde{h} is also in $C_{c}(H)$. Moreover, a straightforward computation shows that $z \mu(h) z-\mu(h)=$ $2 \mu(\tilde{h})$. This immediately gives $\mu\left(C_{c}\left(H^{\prime}\right)\right) \subseteq A^{\prime}$. Next we claim that the restriction of μ to $C_{c}\left(H^{\prime}\right)$ is unitarily equivalent to the direct sum of two copies of the regular representation of H^{\prime}. For any x in $r(L)$, say, we have

$$
\begin{aligned}
\{y \in H \mid r(y)=x\}= & \left\{y \in H^{\prime} \mid r(y)=x\right\} \\
& \cup z\left\{y \in H^{\prime} \mid r(y)=s(z)\right\}
\end{aligned}
$$

where z is chosen as any element of L with $r(z)=x$. If one repeats this for each point x in H^{0} (suitably modified for x in $s(L)$), one obtains a decomposition of H into $H^{\prime} \cup \gamma\left(H^{\prime}\right)$, where γ is a map obtained by piecing together the different multiplications by z above. This defines a unitary operator between $l^{2}(H)$ and $l^{2}\left(H^{\prime}\right) \oplus l^{2}\left(H^{\prime}\right)$. One then checks directly that this intertwines $\mu \mid C_{c}\left(H^{\prime}\right)$ and the direct sum of the regular representation of $C_{c}\left(H^{\prime}\right)$ with itself. Therefore we conclude

$$
C_{r}^{*}\left(H^{\prime}\right) \cong \mu\left(C_{c}\left(H^{\prime}\right)\right)^{-} \subseteq A^{\prime}
$$

As for the reverse inclusion, suppose a is in $C_{r}^{*}(H)$ and $[a, z]=0$. Then we may find $\left\{h_{n}\right\}$ a sequence in $C_{c}(H)$ such that $\mu\left(h_{n}\right)$ converges to a. Thus $\left[\mu\left(h_{n}\right), z\right]$ tends to zero. Consider $h_{n}^{\prime}=h_{n}+\tilde{h}_{n}$. We have

$$
\begin{aligned}
z \mu\left(h_{n}^{\prime}\right) z-\mu\left(h_{n}^{\prime}\right) & =\left(z \mu\left(h_{n}\right) z-\mu\left(h_{n}\right)\right)+\left(z \mu\left(\tilde{h}_{n}\right) z-\mu\left(\tilde{h}_{n}\right)\right) \\
& =2 \mu\left(\tilde{h}_{n}\right)-\mu\left(\tilde{h}_{n}\right)-\mu\left(\tilde{h}_{n}\right) \\
& =0,
\end{aligned}
$$

so h_{n}^{\prime} is in $C_{c}\left(H^{\prime}\right)$. Moreover,

$$
\left\|\mu\left(\tilde{h}_{n}\right)\right\|=\frac{1}{2}\left\|\left[\mu\left(h_{n}\right), z\right]\right\|
$$

which tends to zero, so $\mu\left(h_{n}^{\prime}\right)$ converges to a. We conclude that a in $C_{r}^{*}\left(H^{\prime}\right)$.
(ii) The containment \supseteq follows from Lemma 3.9, and the observation that $\lambda \mid C_{c}\left(G^{\prime}\right)$, is contained in the direct sum of two copies of the regular representation of $C_{c}\left(G^{\prime}\right)$. The argument is similar to that in (i). As for the reverse containment, we may regard B^{\prime} as a $C_{0}\left(G^{0}\right)$ bimodule contained in $C_{r}^{*}(G)$. Theorem $3.10[\mathbf{1 1}]$ characterizes such bimodules. It is straightforward to calculate, in the notation of [11], $Q\left(B^{\prime}\right)=G^{\prime}$ and hence $C_{r}^{*}\left(G^{\prime}\right) \cong B^{\prime}$ by $[\mathbf{1 1}, 3.10]$.

Proof of Theorem 2.4. This is exactly the same as the proof of Theorem 2.1 except in the computation of $K_{*}\left(C\left(A^{\prime} ; A\right)\right)$. One again uses the six-term exact sequence as in the proof of Theorem 2.1. Now we note that

$$
C_{r}^{*}\left(H^{\prime}\right) \cong C_{r}^{*}\left(H_{0}\right) \oplus C_{r}^{*}\left(H_{1}\right) .
$$

By Lemma 3.8(v) and [17(1,2)], the groups, for $i=0,1$,

$$
K_{i}\left(C_{r}^{*}(H)\right), \quad K_{i}\left(C_{r}^{*}\left(H_{0}\right)\right), \quad K_{i}\left(C_{r}^{*}\left(H_{1}\right)\right)
$$

may be identified. Under these identifications the map induced by the inclusion A^{\prime} in A sends (x, y) to $x+y$, for x, y in $K_{i}\left(C_{r}^{*}(H)\right.$). (Recall that $C_{r}^{*}\left(H_{0}\right)$ and $C_{r}^{*}\left(H_{1}\right)$ are full corners in $C_{r}^{*}(H)$. It is then easy to compute from the six-term exact sequence that

$$
K_{i}\left(C\left(A^{\prime} ; A\right)\right) \cong K_{i}\left(C_{r}^{*}(H)\right) .
$$

This then yields the exact sequence of Theorem 2.4 except for the matter that the maps $[L]_{*}$ are as claimed. As in the proof of Theorem 2.1, we leave this calculation to the reader.

APPENDIX

$A F$-groupoids. A discussion of $A F$-groupoids (or $A F$-equivalence relations) appears in [16]. This includes a description of their K-theory. We present a version here which is based on the ideal of a Bratteli diagram $[4,5]$.

A Bratteli diagram is an infinite graph consisting of a vertex set V and a set of (directed) edges E. Moreover, both are decomposed as

DIAGRAM
countable unions

$$
\begin{aligned}
& V=V_{0} \cup V_{1} \cup \cdots \\
& E=E_{1} \cup E_{2} \cup \cdots
\end{aligned}
$$

where each V_{n} and E_{n} are finite and nonempty. There are range and source maps

$$
r: E_{n} \longrightarrow V_{n}, \quad s: E_{n} \longrightarrow V_{n-1} .
$$

We sketch such a diagram vertically as shown above.

We require that there are no "sinks;" i.e., $s^{-1}\{v\}$ is nonempty for all v in V.

Given such a diagram, we define a space X as follows. For each source v in $V, r^{-1}\{v\}$ is empty, say v in V_{n}, we let

$$
X_{v}=\left\{\left(e_{n+1}, e_{n+2}, \ldots\right) \mid s\left(e_{n+1}\right)=v, s\left(e_{k+1}\right)=r\left(e_{k}\right), k>n\right\}
$$

which is given the relative topology of the product space $\prod_{k>n} E_{k}$ and is therefore compact, metrizable and totally disconnected. Now let X
be the disjoint union of the X_{v} with the inductive limit topology. The equivalence relation on X is tail equivalence or confinal equivalence; two elements $\left(e_{m+1}, e_{m+2}, \ldots\right),\left(f_{n+1}, f_{n+2}, \ldots\right)$ are equivalent if, for some $N, e_{k}=f_{k}$ for all $k \geq N$. Let us be slightly more precise in order to topologize the relation.

For each $N=1,2, \ldots$, let

$$
\begin{aligned}
G_{N}=\left\{\left(\left(e_{m+1}, e_{m+2}, \ldots\right),\right.\right. & \left.\left(f_{n+1}, f_{n+2}, \ldots\right)\right) \in X \times X \mid \\
& \left.m, n \leq N \text { and } e_{k}=f_{k} \text { for all } k>N\right\}
\end{aligned}
$$

Give G_{N} the relative topology of $X \times X$. Notice that $G_{N} \subseteq G_{N+1}$ for all N, and is an open subset. Let G be the union of the $G_{N}, N=1,2, \ldots$, and give G the inductive limit topology. Such a G is an $A F$-groupoid.
The C^{*}-algebra $C^{*}(G)$ is an $A F$-algebra. First of all $K_{1}\left(C^{*}(G)\right)=0$. To compute $K_{0}\left(C^{*}(G)\right)$, we let $\mathbf{F}\left(V_{n}\right)$ denote the free abelian group on the nth vertex set. Let

$$
\mathbf{F}\left(V_{n}\right)^{+}=\left\{\sum_{v \in V_{n}} k_{v} v \mid k_{n} \geq 0\right\}
$$

For each n, we have a group homomorphism $\alpha_{n}: \mathbf{F}\left(V_{n}\right) \rightarrow \mathbf{F}\left(V_{n+1}\right)$ given by

$$
\alpha_{n}(v)=\sum_{\substack{e \in E_{n+1} \\ s(e)=v}} r(e)
$$

Note that $\alpha_{n}\left(\mathbf{F}\left(V_{n}\right)^{+}\right) \subseteq \mathbf{F}\left(V_{n+1}\right)^{+}$. Then $K_{0}\left(C^{*}(G)\right)$ is the inductive limit in the category of ordered abelian groups of the system

$$
\mathbf{F}\left(V_{0}\right) \xrightarrow[\alpha_{0}]{ } \mathbf{F}\left(V_{1}\right) \xrightarrow[\alpha_{1}]{ } \mathbf{F}\left(V_{2}\right) \longrightarrow \cdots
$$

Acknowledgment. I am grateful to Iain Raeburn for suggesting Example 2.5 to me.

REFERENCES

1. B. Blackadar, K-theory for operator algebras, MSRI Publications 5, SpringerVerlag, New York, 1986.
2. M. Boyle and D. Handelman, Orbit equivalence, flow equivalence and ordered cohomology, preprint.
3. - , in preparation.
4. O. Bratteli, Inductive limits of finite dimensional C^{*}-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234.
5. E.G. Effros, Dimensions and C^{*}-algebras, CBMS Regional Conf. Ser. in Math. 461981.
6. R. Exel, Circle actions on C^{*}-algebras, partial automorphisms and a generalized Pinsner-Voiculescu exact sequence, preprint.
7. T. Giordana, I.F. Putnam and C.F. Skau, Topological orbit equivalence and C^{*}-crossed product, preprint.
8. V.F.R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25.
9. A. Kumjian, Preliminary algebras arising from local homeomorphisms, Math. Scand. 52 (1983), 269-278.
10. P.S. Muhly, J.N. Renault and D.P. Williams, Equivalence and isomorphism for groupoid C^{*}-algebras, J. Operator Theory 17 (1987), 3-22.
11. P.S. Muhly and B. Solel, Subalgebras of groupoid C^{*}-algebras, J. Reine Angew. Math. 402 (1989), 41-75.
12. G.K. Pedersen, C^{*}-algebras and their automorphism groups, London Math. Soc. Monographs 141979.
13. M. Pimsner and D. Voiculescu, Exact sequences for K-groups and ext-groups of certain crossed-product C^{*}-algebras, J. Operator Theory 4 (1980), 93-118.
14. I.F. Putnam, The C^{*}-algebras associated with minimal homeomorphisms of the Canto set, Pacific J. Math. 136 (1989), 329-353.
15. - An excision theorem for the K-theory of C^{*}-algebras, J. Operator Theory, to appear.
16. J. Renault, A groupoid approach to C^{*}-algebras, Lecture Notes in Math. 793 1980.
17. M.A. Rieffel, Morita equivalence for operator algebras, Proc. Sympos. Pure Math. 38 (1982), 285-298.
18. K. Schmidt, Algebraic ideas in ergodic theory, American Math. Soc., Providence, RI, 1990.
19. C. Schochet, Topological methods for C^{*}-algebras II: Geometric resolution and the Künneth formula, Pacific J. Math. 98 (1982), 443-458.
20. Y. Watatani, Index for C^{*}-subalgebras, Mem. Amer. Math. Soc. 4241990.
[^1]
[^0]: Received by the editors on May 10, 1996, and in revised form on December 7, 1996.

 Supported in part by an NSERC operating grant.

[^1]: Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3P4, Canada

