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TYPE, COTYPE AND
GENERALIZED RADEMACHER FUNCTIONS

GERALDO BOTELHO

ABSTRACT. The main goal of this paper is to show that
the traditional Rademacher functions can be replaced, up to a
change of constants, by the generalized Rademacher functions
in the definitions of type and cotype in complex Banach
spaces. It is also shown that there are standard type Kahane
inequalities for the generalized Rademacher functions. As an
application we prove the continuity of the tensor product of
certain multilinear mappings and homogeneous polynomials.

Introduction. The generalized Rademacher functions, which were
introduced by Aron and Globevnik [2], have been used by several au-
thors to prove new theorems and to provide simpler proofs of known
results, especially in the theory of multilinear mappings and homoge-
neous polynomials between Banach spaces, e.g., [1, 3, 8, 9, 12] and
[14]. An important result was obtained by Floret and Matos in [8]:
if we replace the traditional Rademacher functions by the generalized
ones in Khintchine’s inequalities, the resulting inequalities are still true
(we prove the same for Kahane’s inequalities in Section 5). Since the
notions of type and cotype in Banach spaces are usually introduced
with the help of the traditional Rademacher functions, it is natural
to ask what happens if we replace the Rademacher functions by the
generalized ones in such definitions. The main result of this paper,
Corollary 4.2, provides the answer: nothing happens. In other words,
given n ∈ N, n ≥ 2, if the n-Rademacher functions take the place of the
traditional Rademacher functions in the definitions of type and cotype
in complex Banach spaces, the resulting definitions are equivalent to
the original ones (up to a change of constants). The proof is an adapta-
tion of the proof of the equivalence between the notions of Rademacher
and Gaussian types and cotypes. The basic difficulty is the fact that, if
n > 2, the n-Rademacher functions are no longer real-valued symmetric
random variables. To solve this problem we must introduce the notion
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1228 G. BOTELHO

of n-symmetric random variables, Section 2, and consider a complex
version of the contraction principle, Proposition 3.1.

An application of the main result is obtained when we consider,
likewise, the case of linear operators, the tensor product of multilinear
mappings and homogeneous polynomials. If F is a Banach space and
1 ≤ p ≤ ∞, let ∆p be the natural norm induced on Lp(µ) ⊗ F
from Lp(µ, F ). With the help of the main result and the generalized
Kahane’s inequality, we shall prove the continuity of the tensor product
of certain multilinear mappings and homogeneous polynomials with
respect to ∆p.

1. Preliminaries. Throughout this paper n is an integer not smaller
than 2 and E1, . . . , En, E and F are complex Banach spaces. The
classical Rademacher functions will be denoted by (rj)∞j=1, that is, for
j ∈ N and t ∈ [0, 1], rj(t) = sign [sin(2jπt)].

Given 1 ≤ p ≤ 2, we say that E has type p if there is a C ≥ 0 such
that, for every k ∈ N and x1, . . . , xk ∈ E,

( ∫ 1

0

∥∥∥∥
k∑

j=1

rj(t)xj

∥∥∥∥
2

dt

)1/2

≤ C

( k∑
j=1

‖xj‖p

)1/p

.

Given 2 ≤ q ≤ ∞, we say that E has cotype q if there is a C ≥ 0 such
that, for every k ∈ N and x1, . . . , xk ∈ E,

( k∑
j=1

‖xj‖q

)1/q

≤ C

(∫ 1

0

∥∥∥∥
k∑

j=1

rj(t)xj

∥∥∥∥
2

dt

)1/2

.

Of course, if q = ∞ we consider the sup-norm. The main properties and
most important examples concerning type and cotype are summarized
in [7, Chapter 11].

For a fixed natural number n ≥ 2 we take the nth roots of unity
1 = λ1, λ2, . . . , λn considered in the order of their increasing argu-
ments. The n-Rademacher functions, denoted by (s(n)

k )∞k=1 are defined
similarly to the traditional Rademacher functions. Each s

(n)
k is a func-

tion from [0, 1] in the set {λ1, λ2, . . . , λn} ⊂ C. To define s
(n)
1 divide

[0, 1] in n intervals of equal length and assign s
(n)
1 (t) = λj if t belongs
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to the jth interval. The definition of s
(n)
2 is established by a repetition

of the previous procedure in each of the subintervals considered in the
definition of s

(n)
1 . The process continues indefinitely. Explicit descrip-

tions can be found in [3] and [8], and the most important properties of
these functions are:

(i) for every k ∈ N and j = 1, . . . , n, the set {t ∈ [0, 1] : s
(n)
k (t) = λj}

is a union of a finite number of intervals and its measure is 1/n. Of
course, |s(n)

k (t)| = 1 for every k ∈ N and t ∈ [0, 1].

(ii) Multiorthogonality.
∫ 1

0

s
(n)
i1

(t) · · · s(n)
in

(t) dt =
{

1 if i1 = · · · = in

0 otherwise.

(iii) The sequence (s(n)
k )∞k=1 is independent.

If p ∈ [1,∞), lp(E) denotes the Banach space of all sequences (xj)j∈N

in E which are absolutely p-summable with the norm ‖(xj)∞j=1‖p =
(
∑∞

j=1 ‖xj‖p)1/p.

If (Ω, µ) is a finite measure space, Lp(µ, E) is the Banach space of
(classes of) strongly µ-measurable functions f : Ω → E such that

‖f‖p =
( ∫

Ω

‖f‖p dµ

)1/p

< ∞.

For p = ∞ we make the usual modifications to define l∞(E) and
L∞(µ, E). If µ is the Lebesgue measure on the closed interval [0, 1], we
use the simplified notation Lp(E).

Assume now that (Ω, µ) is a probability space. We denote by
(gk)∞k=1 a sequence of independent standard Gaussian complex random
variables on (Ω, µ), i.e., each gk : Ω → C has distribution µ(gk ∈
B) = γ(B) for every Borel subset B ⊂ C, where γ is the standard
Gaussian measure on the complex plane. It is well known that, for
every 0 < p < ∞, the absolute moments

mp =
( ∫

C

|z|p dγ(z)
)1/p

exist and are finite (for precise values, see [17, p. 14]). Moreover,
mp = ‖gk‖Lp

for all k ∈ N.
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2. N-symmetric random variables. Let (Ω, P ) be a fixed proba-
bility space. Given a sequence (fj)∞j=1 of complex random variables on
Ω, define

(f1, . . . , fj , . . . )(ω) = (f1(ω), . . . , fj(ω), . . . ) for every ω ∈ Ω.

β(C) denotes the Borel σ-algebra on C and F is its product σ-algebra
on C∞:

F = β(C) ⊗ β(C) ⊗ · · · .

The joint distribution of (fj)∞j=1, denote by P(f1,... ,fj ,... ), is the follow-
ing probability measure on F :

P(f1,... ,fj ,... )(B) = P ((f1, . . . , fj , . . . )−1(B)), ∀B ∈ F .

The sequence (fj)∞j=1 is said to be n-symmetric if P(f1,... ,fj ,... ) =
P(θ1f1,... ,θjfj ,... ) for every sequence (θj)j∈N of nth roots of unity, i.e.,
for every j ∈ N, θj ∈ {λ1, . . . , λn}. The case n = 2 gives the classical
notion of symmetric sequences, see [10].

Examples. It is not difficult to see that, for every n ∈ N, the
n-Rademacher functions (s(n)

k )∞k=1 and the independent Gaussian vari-
ables (gk)∞k=1 on the probability space (Ω, P ) are n-symmetric (since
both of these sequences are independent, it is sufficient to check that
P(fj) = P(θjfj) for every j). Now it is easy to prove the following result:

Proposition 2.1. If E is a normed space, x1, . . . , xk ∈ E, p ∈ R,
n ∈ N and θ1, . . . , θk ∈ {λ1, . . . , λn}, then

∫ 1

0

∥∥∥∥
k∑

j=1

θjs
(n)
j (t)xj

∥∥∥∥
p

dt =
∫ 1

0

∥∥∥∥
k∑

j=1

s
(n)
j (t)xj

∥∥∥∥
p

dt

and

∫
Ω

∥∥∥∥
k∑

j=1

θjgj(w)xj

∥∥∥∥
p

dP (w) =
∫

Ω

∥∥∥∥
k∑

j=1

gj(w)xj

∥∥∥∥
p

dP (w).
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3. Preliminary results. Our purpose in this section is to study
the comparisons between the Gaussian and the n-Rademacher averages.
The results we shall prove show that the situation is identical to the
case n = 2, but the proofs are slightly different. First we need the
following complex version of the contraction principle:

Proposition 3.1. Let X1, . . . , Xk be independent E-valued p-
integrable random variables, where 1 ≤ p < ∞. If

∫
Xj = 0 for all

j = 1, . . . , k, then

∥∥∥∥
k∑

j=1

ajXj

∥∥∥∥
Lp(E)

≤ 4
∥∥∥∥

k∑
j=1

Xj

∥∥∥∥
Lp(E)

for all a1, . . . , ak ∈ C such that |aj | ≤ 1.

Proof. The result follows from a simple adaptation of the proof of [10,
Lemma 4.1]. We have only to consider the sets Lk = {(a1, . . . , ak) ∈
Ck : |aj | ≤ 1 for j = 1, . . . , k} and K2k = {(b1, β1, . . . , bk, βk) ∈ R2k :
|bj | ≤ 1 and |βj | ≤ 1 for j = 1, . . . , k}. The identification aj = (bj , βj)
shows that Lk ⊂ K2k. Now the result follows from a careful repetition
of the arguments used in the proof of [10, Lemma 4.1]. It should
be noted that, while the result we need is a corollary of the proof of
Hoffmann-Jørgensen’s, it is not a corollary of the lemma itself; if we
split each Xj into its real and imaginary parts, say Xj = Yj + iZj , the
new collection of real random variables Y1, . . . , Yk, Z1, . . . , Zk has no
need to be independent.

Proposition 3.2. Let n ∈ N, n > 1 and x1, . . . , xk ∈ E. Then

∥∥∥∥
k∑

j=1

s
(n)
j xj

∥∥∥∥
L2(E)

≤ 4
m1

∥∥∥∥
k∑

j=1

gjxj

∥∥∥∥
L2(E)

.

Proof. We know that |gj(w)| = gj(w)/ exp(i arg(gj(w))) for each
w ∈ Ω and j = 1, . . . , k. Putting aj = 1/ exp(i arg(gj(w))) and
Xj(t) = s

(n)
j (t)gj(w)xj , from Proposition 3.1 (with p = 2), we have



1232 G. BOTELHO

that, for every w ∈ Ω,

∫ 1

0

∥∥∥∥
k∑

j=1

s
(n)
j (t)|gj(w)|xj

∥∥∥∥
2

dt

=
∫ 1

0

∥∥∥∥
k∑

j=1

1
exp(i arg(gj(w)))

s
(n)
j (t)gj(w)xj

∥∥∥∥
2

dt

≤ 42

∫ 1

0

∥∥∥∥
k∑

j=1

s
(n)
j (t)gj(w)xj

∥∥∥∥
2

dt.

Now we use the inequality above, Proposition 2.1 and Fubini’s theorem
to obtain

( ∫ 1

0

∥∥∥∥
k∑

j=1

s
(n)
j (t)xj

∥∥∥∥
2

dt

)1/2

=
1

m1

( ∫ 1

0

∥∥∥∥
k∑

j=1

s
(n)
j (t)

[∫
Ω

|gj(w)| dw

]
xj

∥∥∥∥
2

dt

)1/2

≤ 1
m1

( ∫
Ω

∫ 1

0

∥∥∥∥
k∑

j=1

s
(n)
j (t)|gj(w)|xj

∥∥∥∥
2

dt dw

)1/2

≤ 4
m1

( ∫
Ω

∫ 1

0

∥∥∥∥
k∑

j=1

s
(n)
j (t)gj(w)xj

∥∥∥∥
2

dt dw

)1/2

=
4

m1

( ∫ 1

0

(∫
Ω

∥∥∥∥
k∑

j=1

s
(n)
j (t)gj(w)xj

∥∥∥∥
2

dw

)
dt

)1/2

=
4

m1

( ∫
Ω

∥∥∥∥
k∑

j=1

gj(w)xj

∥∥∥∥
2

dw

)1/2

.

In order to study the converse estimate we must deal with the concept
of finite representability: the Banach space E is finitely representable
in the Banach space F if, no matter how we choose ε > 0, for each finite
dimensional subspace E0 of E we can find a finite dimensional subspace
F0 of F and an isomorphism T : E0 → F0 such that ‖T‖·‖T−1‖ ≤ 1+ε.
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Proposition 3.3. Let n ∈ N, n > 1. If l∞ is not finitely
representable in E, then there is a constant C ≥ 0 such that

∥∥∥∥
k∑

j=1

gjxj

∥∥∥∥
L2(E)

≤ C

∥∥∥∥
k∑

j=1

s
(n)
j xj

∥∥∥∥
L2(E)

,

for every x1, . . . , xk ∈ E.

Sketch of the proof. Since the proof is an adaptation of the proof
of a theorem of Maurey and Pisier [13, Corollaire 1.3], we will only
sketch the proof, indicating the points where the differences arise. Since
l∞ is not finitely representable in E, combining some results of [13,
Théorème 1.2, Remarque 1.4 and Corollaire 1.2] we know that there
is a 2 < q < ∞ such that every linear operator from c0 to L2(E) is
q-summing. Hence there is a constant K ≥ 0 such that, for every linear
operator u : c0 → L2(E), if πq(u) denotes the q-summing of u, then

πq(u) ≤ K · ‖u‖.

Given x1, . . . , xk ∈ E, consider the operator

u : c0 → L2(E), u((cj)∞j=1) =
k∑

j=1

cjxjs
(n)
j (t).

Since u is bounded, it is also q-summing. A suitable use of Pietsch’s fac-
torization theorem yields the existence of positive numbers α1, . . . , αk

such that α1 + · · · + αk = 1 and

‖u((cj))‖ ≤ πq(u)
( k∑

j=1

αj |cj |q
)1/q

.

Therefore, for every w ∈ Ω,

( ∫ 1

0

∥∥∥∥
k∑

j=1

gj(w)xjs
(n)
j (t)

∥∥∥∥
2

dt

)1/2

= ‖u((gj(w))‖

≤ K‖u‖
( k∑

j=1

αj |gj(w)|q
)1/q

.
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An appeal to the last inequality, Fubini’s theorem and Proposition 2.1
yields (remember that q > 2)

( ∫
Ω

∥∥∥∥
k∑

j=1

gj(w)xj

∥∥∥∥
2

dw

)1/2

=
( ∫ 1

0

∫
Ω

∥∥∥∥
k∑

j=1

gj(w)xjs
(n)
j (t)

∥∥∥∥
2

dw dt

)1/2

≤ K‖u‖
( ∫

Ω

( k∑
j=1

αj |gj(w)|q
)2/q

dw

)1/2

≤ K‖u‖
( ∫

Ω

( k∑
j=1

αj |gj(w)|q
)

dw

)1/q

= K‖u‖
( ∫

Ω

|g1(w)|q dw

)1/q

= K‖u‖mq.

To complete the proof we use Proposition 3.1 with p = 2 and Xj(t) =
s
(n)
j (t)xj for j = 1, . . . , k, to establish that

‖u‖2 = sup
{∫ 1

0

∥∥∥∥
k∑

j=1

cjs
(n)
j (t)xj

∥∥∥∥
2

dt : |cj | ≤ 1
}

≤ 4
∫ 1

0

∥∥∥∥
k∑

j=1

s
(n)
j (t)xj

∥∥∥∥
2

dt.

Then

∫ 1

0

∥∥∥∥
k∑

j=1

s
(n)
j (t)xj

∥∥∥∥
2

dt ≥ 1
4
‖u‖2

≥ 1
4K2m2

q

∫
Ω

∥∥∥∥
k∑

j=1

gj(w)xj

∥∥∥∥
2

dw.

4. Main result. Let 1 ≤ p ≤ 2 ≤ q ≤ ∞. A complex Banach space
E has n-type p, respectively n-cotype q, if there is a constant C ≥ 0
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such that ∥∥∥∥
k∑

j=1

s
(n)
j xj

∥∥∥∥
L2(E)

≤ C‖(xj)k
j=1‖p

respectively,

‖(xj)k
j=1‖q ≤ C

∥∥∥∥
k∑

j=1

s
(n)
j xj

∥∥∥∥
L2(E)

,

for every x1, . . . , xk ∈ E.

E has Gaussian type p, respectively Gaussian cotype q, if there is a
C ≥ 0 such that

∥∥∥∥
k∑

j=1

gjxj

∥∥∥∥
L2(E)

≤ C‖(xj)k
j=1‖p

respectively,

‖(xj)k
j=1‖q ≤ C

∥∥∥∥
k∑

j=1

gjxj

∥∥∥∥
L2(E)

,

for every x1, . . . , xk ∈ E.

Theorem 4.1. Let E be a complex Banach space, n ∈ N, n > 1 and
1 ≤ p ≤ 2 ≤ q ≤ ∞.

(i) E has n-type p if and only if E has Gaussian type p.

(ii) E has n-cotype q if and only if E has Gaussian cotype q.

Proof. (i) If E has Gaussian type p, the result follows immediately
from Proposition 3.2. Assume now that E has n-type p. Using
Proposition 2.1, Fubini’s theorem, the fact that p ≤ 2, the assumption
that E has n-type p and that mp = ‖gj‖Lp

for every j (in this order),
we have

∫
Ω

∥∥∥∥
k∑

j=1

gj(w)xj

∥∥∥∥
p

dw =
∫ 1

0

∫
Ω

∥∥∥∥
k∑

j=1

s
(n)
j (t)gj(w)xj

∥∥∥∥
p

dw dt

=
∫

Ω

∥∥∥∥
k∑

j=1

s
(n)
j gj(w)xj

∥∥∥∥
p

Lp(E)

dw
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≤
∫

Ω

∥∥∥∥
k∑

j=1

s
(n)
j gj(w)xj

∥∥∥∥
p

L2(E)

dw

≤ Cp

∫
Ω

k∑
j=1

‖gj(w)xj‖p dw

= Cp

∫
Ω

k∑
j=1

|gj(w)|p‖xj‖p dw

= Cp · (mp)p ·
k∑

j=1

‖xj‖p.

With the help of Kahane’s inequalities for Gaussian variables [11,
Corollary 4.8] we know that there is a constant C ′, depending only on
p, such that ∥∥∥∥

k∑
j=1

gjxj

∥∥∥∥
L2(E)

≤ C ′
∥∥∥∥

k∑
j=1

gjxj

∥∥∥∥
Lp(E)

≤ C ′ · C · mp · ‖(xj)k
j=1‖p.

(ii) If E has n-cotype q the result follows (again) immediately from
Proposition 3.2. Assume now that E has Gaussian cotype q. Using the
equality λ1 + · · · + λn = 0 and the n-symmetry of the n-Rademacher
functions in the form of Proposition 2.1, the proof of the fact that
every Banach space has cotype ∞ can be adapted to prove that every
complex Banach space has n-cotype ∞. Thus we can assume q < ∞.
Since l∞ cannot be finitely representable in a Banach space having
Gaussian cotype q < ∞, the result follows from Proposition 3.3.

Corollary 4.2. Let E be a complex Banach space, m, n ∈ N,
m, n > 1 and 1 ≤ p ≤ 2 ≤ q ≤ ∞. If E has n-type p, respectively n-
cotype q, then E has m-type p, respectively m-cotype q. In particular,
in the definitions of type and cotype in complex Banach spaces, the
traditional Rademacher functions can be replaced (up to a change of
constants) by the n-Rademacher functions, (s(n)

k )∞k=1, for every n > 1.

Proof. Apply Theorem 4.1 in one direction for n and in the other
direction for m.
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Remarks 4.3. (i) Let us fix the following notations:

T(p,n)(E) = inf
{

C :
∥∥∥∥

k∑
j=1

s
(n)
j xj

∥∥∥∥
L2(E)

≤ C‖(xj)k
j=1‖p, x1, . . . , xk ∈ E

}
,

C(q,n)(E) = inf
{

C : ‖(xj)k
j=1‖q

≤ C

∥∥∥∥
k∑

j=1

s
(n)
j xj

∥∥∥∥
L2(E)

, x1, . . . , xk ∈ E

∥∥∥∥
}

.

It might be useful to know, especially in infinite dimensional holomor-
phy, that if E, p and q are fixed, then the sequences (T(p,n)(E))n∈N

and (C(q,n)(E))n∈N are bounded. It is easy to see that T(1,n)(E) = 1 =
C(∞,n)(E) for every n. If E has type p > 1, respectively cotype q < ∞,
then from the proof of Proposition 3.2, respectively Proposition 3.3, we
have

T(p,n)(E) ≤ (4/m1)T̃p(E)

respectively,
C(q,n)(E) ≤ KEC̃q(E),

for every n, where T̃p(E) is the Gaussian type p constant of E, C̃q(E)
is the Gaussian cotype q constant of E and KE is a constant depending
only on E. In fact, KE = 2Kmr where r > 2 is such that every operator
from c0 to L2(E) is r-summing and K is such that πr(u) ≤ K · ‖u‖ for
every u : c0 → L2(E).

(ii) We have been working with the notions of type and cotype for
spaces, not for operators. Not everything we did can be extended to
the case of operators. Given 1 ≤ p ≤ 2 ≤ q ≤ ∞, n ∈ N, n > 1 and
T : E → F a bounded linear operator between complex Banach spaces,
we say that T has n-type p, respectively n-cotype q, if there is a C ≥ 0
such that ∥∥∥∥

k∑
j=1

s
(n)
j T (xj)

∥∥∥∥
L2(F )

≤ C‖(xj)k
j=1‖p
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respectively,

‖(T (xj))k
j=1‖q ≤ C

∥∥∥∥
k∑

j=1

s
(n)
j xj

∥∥∥∥
L2(E)

,

for every x1, . . . , xk ∈ E.

The case n = 2 gives the classical operator ideals of all operators of
type p, respectively all operators of cotype q, (see [17, Section 25]). If
s
(n)
j is replaced by gj for every j ∈ N, we say that T has Gaussian type

p, respectively Gaussian cotype q. The proof of Theorem 4.1 can be
easily adapted to prove that:

(a) T has n-type p if and only if T has Gaussian type p.

(b) If T has n-cotype q then T has Gaussian cotype q.

(c) If l∞ is not finitely representable in E and T has Gaussian cotype
q, then T has n-cotype q.

Therefore, for every n ∈ N, n > 1, the n-Rademacher functions
can replace the traditional Rademacher functions in the definition of
operators of type p; and if l∞ is not finitely representable in E then
the same occurs with the definition of operators of cotype q.

5. Generalized Kahane’s inequality. We have already men-
tioned that Floret and Matos showed in [8] that there are Khintchine
inequalities for the generalized Rademacher functions. In this section
we prove that the same occurs with Kahane’s inequalities (this result
will be needed in the next section). The proof is an adaptation of the
proof of [18, Theorem III.A.18]. In that fashion we first have to prove
the following lemma.

Lemma 5.1. Let E be a complex Banach space and {x1, . . . , xk} be
a finite sequence of elements in E. If n ∈ N, n > 1, µ is the Lebesgue
measure on the closed interval [0, 1] and V (t) = ‖∑k

j=1 s
(n)
j (t)xj‖ for

every t ∈ [0, 1], then for every α > 0,

µ({t : V (t) > 2α}) ≤ n2µ({t : V (t) > α})2.

Proof. The proof of [18, Proposition III.A.19] still works if 2 is
replaced by n. We shall only sketch the steps that should be followed.
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The functions Vr(t) for r = 1, . . . , k, and the sets Am and Cm for
m = 1, . . . , k; A, B and C are defined analogously to the original
proof. The same for the functions a(t) and b(t). Consider now the
partition of [0, 1] formed by the intervals {Di : i = 1, . . . , nm}, where
s
(n)
1 , . . . , s

(n)
m are constants in each Di. Now define Em = {t ∈ Am :

‖a(t)‖ ≤ ‖a(t) + b(t)‖}. With the help of the two statements below:

(a) If D is an interval of the family {Di : i = 1, . . . , nm} and t ∈ D,
then there are t1, . . . , tn ∈ D such that b(ti) = λib(t) for i = 1, . . . , n,

(b) ‖x‖ ≤ max{‖x + λiy‖ : i = 1, . . . , n} for every x, y ∈ E,

we are able to prove that µ(Am) ≤ nµ(Em).

Since Em ⊂ (Am ∩ B) it follows that

µ(A) = µ

( k⋃
m=1

Am

)
=

k∑
m=1

µ(Am)

≤ n
k∑

m=1

µ(Am ∩ B) = nµ(A ∩ B) ≤ nµ(B).

Analogously µ(Cm) ≤ nµ(B).

Define the sets Am,1, . . . , Am,n and Cm,1, . . . , Cm,n by:

Am,1 = Am ∩ {t : sm(t) = λ1}, . . . , Am,n = Am ∩ {t : sm(t) = λn}

and

Cm,1 = Cm ∩ {t : sm(t) = λ1}, . . . , Cm,n = Cm ∩ {t : sm(t) = λn}.

For i = 1, . . . , n, the independence of the n-Rademacher functions
shows that

µ(Am,i ∩ Cm,i) = nµ(Am,i)µ(Cm,i),
µ(Am) = nµ(Am,i) and µ(Cm) = nµ(Cm,i).
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Now we have

µ(Am ∩ Cm) = µ

( n⋃
i=1

(Am,i ∩ Cm,i)
)

=
n∑

i=1

nµ(Am,i)µ(Cm,i)

= n2µ(Am,1)µ(Cm,1)

= n2 1
n

µ(Am)
1
n

µ(Cm),

then
µ(Am ∩ Cm) = µ(Am)µ(Cm).

Since C ⊂ B ⊂ A and (Am ∩ C) ⊂ (Am ∩ Cm) we can finish the proof
of the lemma

µ(C) = µ(A ∩ C) = µ

( k⋃
m=1

(Am ∩ C)
)

≤
k∑

m=1

µ(Am ∩ Cm) =
k∑

m=1

µ(Am)µ(Cm)

≤ sup{µ(Cm) : m = 1, . . . , k} ·
k∑

m=1

µ(Am)

≤ nµ(B)µ(A) ≤ n2µ(B)2.

Theorem 5.2. (Generalized Kahane’s inequalities). Let n ∈ N,
n > 1, and 0 < p < q < ∞. There exists a constant K(n, p, q) such
that, for every complex Banach space E, the inequalities

∥∥∥∥
k∑

j=1

s
(n)
j xj

∥∥∥∥
Lp(E)

≤
∥∥∥∥

k∑
j=1

s
(n)
j xj

∥∥∥∥
Lq(E)

≤ K(n, p, q)
∥∥∥∥

k∑
j=1

s
(n)
j xj

∥∥∥∥
Lp(E)

,

hold for every finite sequence x1, . . . , xk ∈ E.
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Proof. Of course, we only have to deal with the righthand side
inequality. We can assume

∫ 1

0
V (t)p dt = 1, so Chebyshev’s inequality

yields

µ({t : V (t) > n3/p}) ≤
(

1
n3/p

‖V (t)‖p

)p

=
1
n3

.

Applying Lemma 5.1 inductively for r = 1, 2, . . . , we obtain

µ({t : V (t) > 2rn3/p}) ≤ n2µ({t : V (t) > 2r−1n3/p})2
≤ (n2)4µ({t : V (t) > 2r−2n3/p})4
≤ (n2)2

r

µ({t : V (t) > n3/p})2r

≤ (n2)2
r

(n3)−2r

= n−2r

.

But [0, 1] = {t : V (t) ≤ n3/p} ∪ (∪∞
r=1{t : 2r−1n3/p < V (t) ≤ 2rn3/p}),

then
∫ 1

0

V (t)q dt ≤ (n3/p)qµ({t : V (t) ≤ n3/p})

+
∞∑

r=1

(2rqn3q/p)µ({t : V (t) > 2r−1n3/p})

≤ n3q/p + n3q/p ·
∞∑

r=1

(2rqn−2r−1
)

≤ n3q/p

[
1 +

∞∑
r=1

(2rq · 2−2r−1
)
]
.

Choose K(n, p, q) = n3/p[1 +
∑∞

r=1(2
rq · 2−2r−1

)]1/q.

Remark 5.3. It should be noted that, contrary to the proof that [8]
provides for the generalized Khintchine’s inequalities, the proof above
gives no hint whether the constants may be chosen independently from
n. If Kp,q denotes the constant that [18, Theorem III.A.18] results in
the classical Kahane’s inequality (the case n = 2) then all we have is
that K(n, p, q) ≤ (n3/8)Kp,q.

6. Application. The aim of this section is to show that the
previous results can be used to establish interesting results concerning
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tensor products of multilinear mappings and homogeneous polynomials
between complex Banach spaces.

6.1 Basic definitions and notations. n will be an integer not smaller
than 2 and E1, . . . , En, E and F will stand for complex Banach
spaces. The Banach space of all continuous n-linear mappings A from
E1 × · · · × En to F endowed with the norm

‖A‖ = sup{‖A(x1, . . . , xn)‖ : ‖xj‖ ≤ 1, j = 1, . . . , n}

will be denoted by L(E1, . . . , En; F ). If E1 = · · · = En = E, we
write L(nE; F ). P (nE; F ) is the Banach space of all continuous n-
homogeneous polynomials P from E to F with the norm

‖P‖ = sup{‖P (x)‖ : ‖x‖ ≤ 1} = inf{C : ‖P (x)‖ ≤ C‖x‖n, ∀x ∈ E}.

Remember that, for each P ∈ P (nE; F ), there is a unique symmetric n-
linear continuous mapping P̆ ∈ L(nE; F ) such that P (x) = P̆ (x, . . . , x)
for every x ∈ E (further details can be found in Mujica [15]).

Let La(E; F ) be the vector space of all (not necessarily continuous)
linear operators from E to F . Given T ∈ La(E1; F1) and U ∈
La(E2; F2), from the universal property of tensor products we know
that there is a (unique) linear operator

T ⊗ U : E1 ⊗ E2 → F1 ⊗ F2

such that T ⊗ U(x ⊗ y) = T (x) ⊗ U(y) for all x ∈ E1 and y ∈ E2. Let
us see that this notion can be naturally extended to multilinear and
polynomial cases.

Definition 6.2. Let La(E1, . . . , En; F ) be the vector space of all
(not necessarily continuous) n-linear mappings from E1 × · · · × En

to F . Pa(nE; F ) is defined analogously for polynomials. Given A ∈
La(E1, . . . , En; F ) and B ∈ La(G1, . . . , Gn; H), let AL and BL be
their linearizations, i.e.,

AL ∈ La(E1 ⊗ · · · ⊗ En; F ) and AL(x1 ⊗ · · · ⊗ xn)=A(x1, . . . , xn),
BL ∈ La(G1 ⊗ · · · ⊗ Gn; H) and BL(y1 ⊗ · · · ⊗ yn)=B(y1, . . . , yn).



GENERALIZED RADEMACHER FUNCTIONS 1243

Consider now the tensor product operator

AL ⊗ BL : (E1 ⊗ · · · ⊗ En) ⊗ (G1 ⊗ · · · ⊗ Gn) → F ⊗ H,

AL ⊗ BL((x1 ⊗ · · · ⊗ xn) ⊗ (y1 ⊗ · · · ⊗ yn))
= A(x1, . . . , xn) ⊗ B(y1, . . . , yn).

Since [(E1⊗· · ·⊗En)⊗(G1⊗· · ·⊗Gn)] and [(E1⊗G1)⊗· · ·⊗(En⊗Gn)]
are isomorphic as linear spaces, it can be rewritten as

AL ⊗ BL ∈ La((E1 ⊗ G1) ⊗ · · · ⊗ (En ⊗ Gn); F ⊗ H),
AL ⊗ BL((x1 ⊗ y1) ⊗ · · · ⊗ (xn ⊗ yn))

= A(x1, . . . , xn) ⊗ B(y1, . . . , yn).

The n-linear mapping associated with AL ⊗BL is called A⊗B. Then
A⊗B ∈ La(E1 ⊗G1, . . . , En ⊗Gn; F ⊗H) and for every xj ∈ Ej and
yj ∈ Gj ,

(∗) A ⊗ B(x1 ⊗ y1, . . . , xn ⊗ yn) = A(x1, . . . , xn) ⊗ B(y1, . . . , yn).

With the help of [16, Proposition 1.1] it is easy to see that A ⊗ B is
the unique n-linear mapping from E1 ⊗ G1 × · · · × En ⊗ Gn to F ⊗ H
satisfying (∗).

Given P ∈ Pa(nE; F ) and Q ∈ Pa(nG; H) the polynomial associated
with the symmetric n-linear mapping P̆ ⊗ Q̆ is called P ⊗ Q. Then
P ⊗ Q ∈ Pa(nE ⊗ G; F ⊗ H) and

P ⊗ Q(x ⊗ y) = P (x) ⊗ Q(y) for every x ∈ E and y ∈ G.

P ⊗ Q is unique in the following sense: if R is an n-homogeneous
polynomial from E ⊗ G to F ⊗ H such that

(∗∗) R̆(x1 ⊗ y1, . . . , xn ⊗ yn) = P̆ (x1, . . . , xn) ⊗ Q̆(y1, . . . , yn),

for every xj ∈ E and yj ∈ G, then R = P ⊗ Q.

If E and F are normed spaces, E⊗F can be normed in many different
ways. Once tensor norms are fixed in E1 ⊗ E2 and F1 ⊗ F2, given
continuous linear operators T : E1 → F1 and U : E2 → F2 it is
natural to ask whether T ⊗ U is continuous or not. Except for special
norms, including the projective norm, the tensor product operator is
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not always continuous. In Defant and Floret [6] the reader can find
numerous situations where the tensor product operator is continuous
and several examples where it is not. An important case arises when
we are working with tensor products of the form Lp(µ) ⊗ F : if µ is an
arbitrary measure and 1 ≤ p ≤ ∞, let ∆p be the natural norm induced
on Lp(µ)⊗F from Lp(µ, F ) and ∆p,t its natural transposition, i.e., for
fj ∈ Lp(µ) and yj ∈ F ,

∆p,t

( ∑
j

yj ⊗ fj

)
= ∆p

( ∑
j

fj ⊗ yj

)
=

∥∥∥∥
∑

j

fjyj

∥∥∥∥
Lp(µ,F )

.

It is not difficult to see that Lp(µ)⊗∆p
F and F⊗∆p,t

Lp(µ), respectively
lp ⊗∆p

F and F ⊗∆p,t
lp, can be viewed as dense subspaces of Lp(µ, F ),

respectively lp(F ), see [6, Sections 7 and 8]. The paper [5] is entirely
devoted to the study of the continuity of tensor product operators with
respect to ∆p (many important concepts in Banach space theory can
be defined by means of the continuity of certain operators with respect
to ∆p, e.g., absolutely summing operators, K-convexity and even type
and cotype). If ap is the constant from Khintchine’s inequality and Kp,q

is the constant from Kahane’s inequality, it is not difficult to prove the
following particular case where we have continuity with respect to ∆p.

Proposition 6.2. If E has type r, T is a bounded linear operator
from E to Lp(µ) and I denotes the canonical embedding lr ↪→ l2, then
the tensor product operator

I ⊗ T : lr ⊗∆r
E −→ l2 ⊗∆p,t

Lp(µ)

is continuous. Moreover, ‖I ⊗ T‖ ≤ ap · K · Tr(E) · ‖T‖, where K = 1
if p ≤ 2 and K = Kp,2 if p < 2.

Next we prove multilinear and polynomial versions of Proposition 6.2.
At the heart of our argument are the following inequalities.

Lemma 6.3. Let n be an integer not smaller than 2 and 1 ≤ p < ∞.

(i) If E1 has type r1, . . . , En has type rn and A∈L(E1, . . . , En; Lp(µ))
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then there exists a constant KA such that the inequality

( ∫
Ω

( k∑
j=1

|A(x1
j , . . . , xn

j )(w)|2
)p/2

dµ(w)
)1/p

≤ KA ·
n∏

m=1

( k∑
j=1

‖xm
j ‖rm

)1/rm

holds for every finite sequence x1
1, . . . , x1

k ∈ E1, . . . , xn
1 , . . . , xn

k ∈ En.

(ii) If E has type r and P ∈ P (nE; Lp(µ)), then there exists Kp such
that the inequality

( ∫
Ω

( k∑
j=1

|P (xj)(w)|2
)p/2

dµ(w)
)1/p

≤ Kp ·
( k∑

j=1

‖xj‖r

)n/r

holds for every finite sequence x1, . . . , xk ∈ E.

Proof. Since the proofs of (i) and (ii) are quite similar, we shall prove
only (i). ap will denote the constant from Khintchine’s inequality and
K(n, 2, np) is the constant from the generalized Kahane’s inequality,
Theorem 5.2, (remember that np ≥ 2). From the multiorthogonality of
the generalized Rademacher functions we have that

k∑
j=1

A(x1
j , . . . , xn

j ) =
∫ 1

0

A

( k∑
j=1

s
(n)
j (t)x1

j , . . . ,

k∑
j=1

s
(n)
j (t)xn

j

)
dt.

For every t ∈ [0, 1] and j = 1, . . . , k, the symbol rj(t)1/n will be used
to denote a fixed nth root of the number rj(t); for example, we can
fix rj(t)1/n as the nth root of rj(t) of the smallest argument. So
|rj(t)1/n| = 1. At this point Hölder’s inequality and Corollary 4.2
can be applied to show that

( ∫
Ω

( k∑
j=1

|A(x1
j , . . . , xn

j )(w)|2
)p/2

dµ(w)
)1/p

≤ ap

( ∫
Ω

∫ 1

0

∣∣∣∣
k∑

j=1

rj(t)A(x1
j , . . . , xn

j )(w)
∣∣∣∣
p

dt dµ(w)
)1/p
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= ap

( ∫
Ω

∫ 1

0

∣∣∣∣
[ ∫ 1

0

A

( k∑
j=1

rj(t)1/ns
(n)
j (z)x1

j ,

· · · ,
k∑

j=1

rj(t)1/ns
(n)
j (z)xn

j

)
dz

]
(w)

∣∣∣∣
p

dt dµ(w)
)1/p

≤ ap

( ∫
Ω

∫ 1

0

∫ 1

0

∣∣∣∣A
( k∑

j=1

rj(t)1/ns
(n)
j (z)x1

j ,

· · · ,
k∑

j=1

rj(t)1/ns
(n)
j (z)xn

j

)
(w)

∣∣∣∣
p

dz dt dµ(w)
)1/p

= ap

( ∫ 1

0

∫ 1

0

∥∥∥∥A

( k∑
j=1

rj(t)1/ns
(n)
j (z)x1

j ,

· · · ,

k∑
j=1

rj(t)1/ns
(n)
j (z)xn

j

)
(·)

∥∥∥∥
p

Lp(µ)

dz dt

)1/p

≤ ap‖A‖
( ∫ 1

0

∫ 1

0

n∏
m=1

(∥∥∥∥
k∑

j=1

rj(t)1/ns
(n)
j (z)xm

j

∥∥∥∥
p)

dz dt

)1/p

≤ ap‖A‖
( ∫ 1

0

n∏
m=1

( ∫ 1

0

∥∥∥∥
k∑

j=1

rj(t)1/ns
(n)
j (z)xm

j

∥∥∥∥
np

dz

)1/n

dt

)1/p

≤ ap‖A‖
( ∫ 1

0

n∏
m=1

K(n, 2, np)p ·
∥∥∥∥

k∑
j=1

rj(t)1/ns
(n)
j (·)xm

j

∥∥∥∥
p

L2(Em)

dt

)1/p

≤ ap‖A‖K(n, 2, np)n

[ n∏
m=1

T(rm,n)(Em)
]
·

n∏
m=1

( k∑
j=1

‖xm
j ‖rm

)1/rm

.

The above computations can be easily adapted for polynomials, for this
reason we did not write A(rj(t)x1

j , x
2
j , . . . , xn

j ) instead of A(rj(t)1/nx1
j ,

. . . , rj(t)1/nxn
j ). If all the details are filled in, we get

Kp = ap‖P‖K(n, 2, np)n(T(r,n)(E))n.

Theorem 6.4. Let n be an integer not smaller than 2 and 1 ≤ p <
∞.
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(i) Given 1 ≤ r1, . . . , rn ≤ 2, consider the continuous n-linear
mapping

Jn : lr1 × · · · × lrn
−→ l2;

Jn((ξ1
j )∞j=1, . . . , (ξn

j )∞j=1) = (ξ1
j · · · ξn

j )∞j=1.

If E1 has type r1, . . . , En has type rn, then for every continuous n-
linear mapping A ∈ L(E1, . . . , En; Lp(µ)) the n-linear mapping

Jn ⊗ A : lr1 ⊗∆r1
E1 × · · · × lrn

⊗∆rn
En −→ l2 ⊗∆p,t

Lp(µ)

is also continuous. Moreover, ‖Jn ⊗ A‖ ≤ apK(n, 2, np)n[
∏n

m=1

T(rm,n)(Em)]‖A‖.
(ii) Given r ∈ [1, 2] consider the continuous n-homogeneous polyno-

mial
In : lr → l2; In((ξj)j∈N) = ((ξj)n)j∈N.

If E has type r then, for every continuous n-homogeneous polynomial
P ∈ P (nE; Lp(µ)) the n-homogeneous polynomial

In ⊗ P : lr ⊗∆r
E −→ l2 ⊗∆p,t

Lp(µ)

is also continuous. Moreover, ‖In⊗P‖≤apK(n, 2, np)n(T(r,n)(E))n‖P‖.

Proof. Again (i) and (ii) have similar proofs. Now let us prove (ii).
Let lfr (E) be the space of all finite sequences of elements in E endowed
with ‖ · ‖r. It is clear from Lemma 6.3 that the following map

P : lfr (E) −→ Lp(µ, l2) : P ((xj)m
j=1)(w) = (P (xj)(w))m

j=1, ∀w ∈ Ω,

is a continuous n-homogeneous polynomial; of course, we are identifying
a finite sequence {α1, . . . , αm} with the infinite sequence {α1, . . . ,
αm, 0, 0, . . . }). Since lfr (E) is dense in lr(E) we can consider the
extension

P : lr(E) −→ Lp(µ, l2) : P ((xj)∞j=1)(w) = (P (xj)(w))∞j=1, ∀w ∈ Ω.

Then P ∈ P (nlr(E); Lp(µ, l2)) and ‖P‖ ≤ Kp. Now all we have to do
is to prove that the restriction of P to lr ⊗∆rE coincides with In ⊗P ,
because in this case In ⊗ P will inherit from P the continuity and the
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estimate for the norm. To prove this consider
∑

j αj ⊗ xj ∈ lr ⊗∆r
E

with αj = (ξi
j)

∞
i=1 ∈ lr and xj ∈ E:

In ⊗ P

( ∑
j

αj ⊗ xj

)
= Ĭn ⊗ P̆

( ∑
j

αj ⊗ xj , · · · ,
∑

j

αj ⊗ xj

)

=
∑
j1

· · ·
∑
jn

Ĭn ⊗ P̆ (αj1 ⊗ xj1 , . . . , αjn
⊗ xjn

)

=
∑
j1

· · ·
∑
jn

Ĭn(αj1 , . . . , αjn
) ⊗ P̆ (xj1 , . . . , xjn

)

=
∑
j1

· · ·
∑
jn

(ξi
j1 · · · ξi

jn
)∞i=1 ⊗ P̆ (xj1 , . . . , xjn

)

=
∑
j1

· · ·
∑
jn

(ξi
j1 · · · ξi

jn
· P̆ (xj1 , . . . , xjn

))∞i=1

=
( ∑

j1

· · ·
∑
jn

P̆ (ξi
j1xj1 , . . . , ξi

jn
xjn

))∞i=1

=
(

P̆

(∑
j

ξi
jxj , . . . ,

∑
j

ξi
jxj

))∞

i=1

=
(

P

(∑
j

ξi
jxj

))∞

i=1

= P

((∑
j

ξi
jxj

)∞

i=1

)

= P

( ∑
j

αjxj

)
= P

( ∑
j

αj ⊗ xj

)
.

Remark 6.5. Thinking of E as a (complemented) subspace of lr(E)
through the “inclusion” x ∈ E → (x, 0, 0, . . . ) ∈ lr(E), and of Lp(µ)
as a (complemented) subspace of Lp(µ, l2) through the “inclusion”
f ∈ Lp(µ) → (f, 0, 0, . . . ) ∈ Lp(µ, l2), Theorem 6.4 can be viewed
as an “extension theorem” in the following sense:

Theorem. Let n be an integer not smaller than 2 and 1 ≤ p < ∞.

(i) If E1 has type r1, . . . , En has type rn, then every n-linear map-
ping A ∈ L(E1, . . . , En; Lp(µ)) induces an n-linear mapping A ∈
L(lr1(E1), . . . , lrn

(En); Lp(µ, l2)) which extends A and satisfies

A((ξ1
j , x1)∞j=1, . . . , (ξn

j xn)∞j=1) = (ξ1
j · · · ξn

j )∞j=1 · A(x1, . . . , xn),
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for every (x1, . . . , xn) ∈ E1 × · · · × En and (ξm
j )∞j=1 ∈ lrm

(Em),
m = 1, . . . , n. Moreover,

‖A‖ ≤ ‖A‖ ≤ apK(n, 2, np)n

[ n∏
m=1

T(rm,n)(Em)
]
‖A‖.

(ii) If E has type r, then every n-homogeneous polynomial P ∈
P (nE; Lp(µ)) induces an n-homogeneous polynomial P ∈ P (nlr(E);
Lp(µ, l2)) which extends P and satisfies

P ((ξjx)∞j=1) = ((ξj)n)∞j=1 · P (x),

for every x ∈ E and (ξj)∞j=1 ∈ lr. Moreover,

‖P‖ ≤ ‖P‖ ≤ apK(n, 2, np)n(T(r,n)(E))n‖P‖.
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Ciênc. 68 (1996), 1 13.
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