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POLYNOMIAL COMPACTNESS IN BANACH SPACES

PETER BISTRÖM, JESÚS A. JARAMILLO AND MIKAEL LINDSTRÖM

ABSTRACT. We investigate infinite dimensional Banach
spaces equipped with the initial topology with respect to the
continuous polynomials. We show nonlinear properties for
this topology in both the real and the complex case. A
new property for Banach spaces, polynomial Dunford-Pettis
property, is introduced. For spaces with this property the
compact sets in the topology induced by the polynomials are
shown to be invariant under the summation map. For most
real Banach spaces we characterize the polynomially compact
sets as the bounded sets that are separated from zero by the
positive polynomials.

Denote a Banach space X equipped with the topology induced by
its continuous polynomials by XP(X). This article investigates the
topological space XP(X) with a focus on its compact sets. In [3] Aron
et al. prove that XP(X) has a nonlinear topology if X is an infinite
dimensional complex Hilbert space. We show that there are also real as
well as entirely other complex Banach spaces, e.g., �∞, with nonlinear
polynomial topologies. Although XP(X) is not linear in general, we
show that the compact sets in XP(X) form an invariant class under the
sum operation for large classes of spaces X. This is shown to be the
case when X has the property (P) studied in [2] by Aron et al., or
when X is a P-Dunford-Pettis space, a new class of spaces containing
all the Dunford-Pettis spaces and all the Λ-spaces. We investigate
this class of P-Dunford-Pettis spaces with emphasis on its connections
with the polynomial Dunford-Pettis properties studied by Farmer and
Johnson [16] as well as the Dunford-Pettis-like properties of Castillo
and Sánchez [9].

For real Banach spacesX, we give an almost covering characterization
of the relatively compact sets in XP(X) as those bounded sets that
are separated from zero by all strictly positive polynomials in P(X).
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This characterization holds when Pf (NX) is dense in P(NX) for
the compact-open topology, for all N (the case when X has the
approximation property), when the polynomials on X are weakly
sequentially continuous, when the dual X ′ doesn’t contain �1 and every
null sequence in X ′ has a subsequence with an upper p-estimate, or
when the separable subspaces are contained in separable complemented
ones. We do not know whether there is any real Banach space X that
doesn’t satisfy any of the listed conditions above.

It is known that relatively compact sets in initial topologies with
respect to some function classes, e.g., the C∞-function on real Banach
spaces, are characterized as those bounded sets that are separated from
zero by the strictly positive functions in the inducing class, see [4]. On
the other hand, any bounded set in a real Banach space X is separated
from zero by the strictly positive polynomials in Pf (X). The bounded
sets are relatively weakly compact if and only if the space X is reflexive.
Hence there seems to be a big difference between the algebras Pf (X)
and P(X) with respect to their ability to measure relative compactness
in their induced topologies with such an elementary method as the
testing with strictly positive functions is.

Preliminaries. In the sequel X will always be an infinite dimen-
sional Banach space over K = R or C. For any N ∈ N := {1, 2, . . . }
the set of all N -homogeneous continuous polynomials P : X → K is
denoted by P(NX). Given P ∈ P(NX), we denote by P the N -linear
symmetric continuous map associated with P . The topology on P(NX)
will be the usual normed one. The set P(X) stands for the union of all
P(NX) where N runs through N together with the constant K-valued
functions on X. The finite type polynomials on X, i.e., the algebra
generated by the dual X ′, will be denoted by Pf (X). Also, for any
N ∈ N, the set Pf (NX) stands for all the N -homogeneous polyno-
mials in Pf (X). The set of all P ∈ P(X) taking weakly convergent
sequences into convergent sequences in K is denoted by Pwsc(X). By
an operator we mean a bounded linear map.

Let Xσ denote X endowed with the weak topology σ(X,X ′), and
let XP(X), respectively XP(≤N X), be the set X endowed with the
weakest topology making all P ∈ P(X), respectively P ∈ ∪N

m=1P(mX),
continuous. Then the polynomial topology XP(X) and alsoXP(≤N X) are
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regular Hausdorff topologies such that (X, ‖·‖) ≥ XP(X) ≥ XP(≤N X) ≥
Xσ. Further, since XP(X) and XP(≤N X) are regular and Xσ is angelic,
it follows that both XP(X) and XP(≤N X) are angelic, see [17]. This
means that the concepts (relatively) countably compact, (relatively)
sequentially compact and (relatively) compact all agree in these spaces.

We will say that a sequence in X is w-null, respectively pol-null, if it
is convergent to zero in Xσ, respectively in XP(X). In the same way a
sequence (xn) ⊂ X is P≤N -convergent to x ∈ X if xn → x in XP(≤N X).
A space X is said to be P≤N -Schur if id : XP(≤NX) → X is sequentially
continuous and, more generally, a Λ-space if the pol-null sequences all
converge in norm. AlsoX is said to have the Dunford-Pettis property,X
is D.P., if for w-null sequences (xn) and (ln) in X and X ′, respectively,
it holds that ln(xn) → 0. All superreflexive spaces and �1 are Λ-spaces
[24]. In Λ-spaces the norm compact and the polynomially compact
sets agree. Spaces with the Dunford-Pettis property are, e.g., C(K),
�1 and c0. If X is D.P., then P(X) = Pwsc(X), see [7] and [32], and
therefore the weakly compact and the polynomially compact sets in X
agree. Recall that Xσ �= XP(X) for any infinite dimensional Banach
space X, see [27].

Since a central idea in the paper is to investigate the sum of two
compact sets in the polynomial topology, we start in the first section by
showing that at least for most Banach spaces the polynomial topology
is nonlinear. In Section 2 we investigate the new class of polynomial
Dunford-Pettis spaces. In the third section we show that, for these
spaces, the class of polynomially compact sets is invariant under the
sum map. In the last section we give, for the real case, an almost
covering description of the compact sets in the polynomial topology,
as those closed and bounded sets that are separated from zero by all
strictly positive polynomials.

1. Nonlinear polynomial topologies. Given P ∈ P(NX) and
x ∈ X, the map y �→ P (x + y) is a bounded polynomial on X of
degree N and therefore the topologies of XP(≤N X) and XP(X) are
semilinear. Also, for spaces X like c0, the Tsirelson space T ∗ and
C(K) for scattered compacts K, the topologies of XP(X) and Xσ agree
on bounded sets, and thus XP(X) has a linear topology on bounded sets
for these spaces X. On the other hand, in [3] Aron et al. prove that,
for any infinite dimensional complex Hilbert space X, the space XP(X)
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does not have a linear topology even when restricted to the unit ball
of X. If Y is a superspace of an infinite dimensional complex Hilbert
space X, with XP(X) a topological subspace of YP(Y ), then of course
also YP(Y ) has a nonlinear topology. (Recall that if X and Y are two
Banach spaces with X ⊂ Y then XP(X) is a topological subspace of
YP(Y ) if, for each P ∈ P(X) there is an extension P̃ ∈ P(Y ). This is the
case if Y = X ′′ or when X is complemented in Y ; in fact, it is enough
that there is a linear Hahn-Banach extension operator X ′ → Y ′.)

The real case is different from the complex one; if X is a real Hilbert
space, then obviously X = XP(X). We now provide new examples
of both real and complex Banach spaces X such that XP(X) is not a
topological vector space. Much inspired by [25], we obtain the following
result.

Theorem 1.1. Assume that X is not a Λ-space and that Y is a
Banach space such that there is a bounded sequence (yn) ⊂ Y and a
continuous linear operator T : Y → �2m for some m ∈ N such that the
sequence {T (yn)} is the unit vector basis of �2m. Then ZP(Z), where
Z := X × Y , is not a topological vector space.

Proof. Since X is not a Λ-space, there is a pol-null sequence in X
not converging in norm. By the Bessaga-Pelczynski selection principle,
there is a basic subsequence (xn) which is associated with a bounded
biorthogonal sequence (ψn) in X ′. Let (φn) in �′2m be the biorthogonal
sequence to the unit vector basis in �2m. Define

P (z) :=
∞∑

n=1

(ψn ◦ prX)(z) · (φ2m
n ◦ T ◦ prY )(z),

where prX and prY are the natural projections. Since P (z) is well-
defined for each z ∈ Z, the Banach-Steinhaus theorem assures that
P ∈ P(2m+1Z). Let U := {z ∈ Z : |P (z)| < 1}. Assume that ZP(Z)

has a linear topology. Since U 
 0 is open, there is an open set V 
 0
in ZP(Z) with V + V ⊂ U . The sequence (0, yn) is bounded in Z and
hence there is an ε > 0 such that ε(0, yn) ∈ V for all n. Take k > 0 with
kε2m > 1. Since (k(xn, 0)) is a pol-null sequence in Z, there is some n0

such that k(xn0 , 0) ∈ V . Therefore, k(xn0 , 0) + ε(0, yn0) ∈ V + V ⊂ U .
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However,

P (k(xn0 , 0) + ε(0, yn0)) = ε2m · ψn0(k(xn0)) = k · ε2m > 1,

which is a contradiction.

Remark. For spaces X and Y as in the above theorem, we have that
(X × Y )P(X×Y ) �= XP(X) × YP(Y ). Indeed, otherwise the polynomial
P would be continuous on XP(X) × YP(Y ) and (W1,W2) ⊂ U for some
open sets W1 
 0 and W2 
 0 in XP(X) and YP(Y ), respectively. But
then (kxn0 , εyn0) ∈ (W1,W2) ⊂ U gives a contradiction.

Corollary 1.2. Assume that X is not a Λ-space and that Y is a
Banach space containing a copy of �1. Then ZP(Z), where Z � X×Y ′,
has a nonlinear topology. Especially, for any infinite set Γ the topology
of �∞(Γ)P(�∞(Γ)) is nonlinear.

Proof. Clearly there is a continuous linear map from Y ′ onto �∞.
According to [30], there exists a continuous, linear map from �∞ onto
�2([0, 1]), hence there is an onto operator T : Y ′ → �2([0, 1]). Since [0, 1]
is uncountable, we can find a bounded infinite sequence in Y ′ that is
mapped by T into the set of unit vectors in �2([0, 1]). By Theorem 1.1,
the topology of ZP(Z) is nonlinear. The space �∞ = (�1)′ is not a Λ-
space, so the last statement follows by considering �∞ � �∞ × �∞ and
the fact that �∞ is complemented in any �∞(Γ) if Γ is infinite.

The space c0 is not a Λ-space and therefore, by Theorem 1.1, the
spaces c0 ⊕ �p, 1 ≤ p < ∞, have a nonlinear polynomial topology.
For the case 1 < p < ∞, there is the generalization below. Recall
that, by [26], a Banach space X is said to have property Sp (for some
1 < p <∞) if every weakly null sequence (xn) in X has a subsequence
(yn) with an upper p-estimate; that is, (x′(yn)) ∈ �p∗ for every x′ ∈ X ′

where 1/p∗ + 1/p = 1.

Corollary 1.3. Assume that X is not a Λ-space and that Y is
a Banach space with an infinite dimensional quotient π(Y ) such that
�1 �⊂ π(Y )′ and π(Y )′ has property Sp for p∗ ∈ N with 1/p+ 1/p∗ = 1.
Then ZP(Z), where Z � X × Y , has a nonlinear topology.
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Proof. The quotient π(Y ) is not a Schur space, since otherwise
�1 ⊂ π(Y ), contradicting the fact �1(2N) �⊂ π(Y )′ [12, p. 211]. Again,
using the Bessaga-Pelczynski selection principle, we find a normalized
sequence (yn) in π(Y ) with an associated bounded biorthogonal se-
quence (ln) in π(Y )′. Since �1 �⊂ π(Y )′, we have l2m+1− l2m =: um → 0
in σ(π(Y )′, π(Y )′′). Put vk := y2k+1. Then um(vk) = δmk. Now, by the
Sp-property of π(Y )′, there is a subsequence (umn

) with (umn
(x)) ∈ �p∗

for each x ∈ π(Y ). Thus we obtain a well-defined operator T : π(Y ) →
�p∗ , x �→ (umn

(x)) with T (vk) = ek for all k. The rest follows from
Theorem 1.1.

Remark. If Y is any superreflexive space, the dual Y ′ has property
Sp for some 1 < p < ∞, see [10] or [23], and �1 �⊂ Y ′. Now if
Z � X × Y , where X is not a Λ-space, we obtain that ZP(Z) has
a nonlinear topology.

Open problem. Is the polynomial topology of X nonlinear if
X �= XP(X)?

2. Polynomial Dunford-Pettis property. In order to study
sequences and compactness in the polynomial topology, we introduce
the P-Dunford Pettis property. This can be described as an analogue
of the classical Dunford-Pettis property, where the weak topology on
the space is replaced by the polynomial topology. This property is
obtained as a weakening of the polynomial Dunford-Pettis properties
studied by Farmer and Johnson [16], where polynomials of a fixed
degree are considered. We also study the connections between all these
properties.

Definition. Let P : X → Y be an m-homogeneous polynomial.
We say that P is pol-compact, respectively P≤N -compact if, for each
bounded sequence (xn) in X, there exists a subsequence (xnj

) so that
(P (xnj

)) converges in YP(Y ), respectively in YP(≤N Y ).

An operator (or a polynomial) is of course P≤1-compact if and only
if it is weakly compact.

Theorem 2.1. For a Banach space X, the following are equivalent.
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(1) For every Y , each pol-compact operator T : X → Y maps
convergent sequences in XP(X) into norm convergent sequences in Y .

(1′) For every Y , each pol-compact polynomial P : X → Y maps
convergent sequences in XP(X) into norm convergent sequences in Y .

(2) For every Y , each weakly compact operator T : X → Y maps
convergent sequences in XP(X) into norm convergent sequences in Y .

(2′) For every Y , each weakly compact polynomial P : X → Y maps
convergent sequences in XP(X) into norm convergent sequences in Y .

(3) For every w-null sequence (ln) in X ′ and every pol-null sequence
(xn) in X, we have ln(xn) → 0.

(3′) For each m, for every w-null sequence of m-homogeneous polyno-
mials (Pn) ⊂ P(mX), and every pol-null sequence (xn) in X, we have
Pn(xn) → 0.

Proof. (2′) ⇒ (1′) is trivial since pol-compactness implies weak
compactness.

(1′) ⇒ (3′). Let (xn) and (Pn) be as in (3′). Since Pn
w→ 0 we can

define P : X → c0 by P (x) := (Pn(x)). In order to show that P is
weakly compact, it is sufficient by [31] to check that P t : �1 → P(mX)
is weakly compact, and this follows from the fact that P t(en) = Pn

w→ 0,
see, e.g., [12, p. 114]. Now P : X → c0 is pol-compact since c0 is D.P.
Thus ‖P (xn)‖∞ → 0 by (1′) and then |Pn(xn)| ≤ ‖P (xn)‖∞ → 0.

(3′) ⇒ (2′). Let P be an m-homogeneous weakly compact polyno-
mial, let (xn) ⊂ X be pol-null, and suppose that ‖P (xn)‖ ≥ ε > 0 for
all n. For each n, choose y∗n ∈ Y ′ with ‖y∗n(P (xn))‖ = ‖P (xn)‖; and
define Pn := y∗n ◦P ∈ P(mX). By [31] we have that P t : Y ′ → P(mX)
is weakly compact, so there exists a subsequence (y∗nj

) such that
(Pnj

) = (P t(y∗nj
)) is weakly convergent in P(mX) to some Q ∈ P(mX).

Then by (3′), (Pnj
− Q)(xnj

) → 0, but Q(xnj
) → 0 since xnj

→ 0 in
XP(X), and we obtain that Pnj

(xnj
) → 0. This is a contradiction since

Pnj
(xnj

) = y∗nj
(P (xnj

)) = ‖P (xnj
)‖ ≥ ε.

Hence (1′) ⇔ (2′) ⇔ (3′). In the same way it can be shown that
(1) ⇔ (2) ⇔ (3). On the other hand, it is clear that (1′) ⇒ (1). So the
proof is complete if we show that (2) yields (3′).

(2) ⇒ (3′). We use induction on m. For m = 1, we have (2) ⇒ (3),
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which already has been established. Now suppose that the result is true
for polynomials of degree m, and we are going to prove it for m+ 1.

So let (xn) ⊂ X be pol-null, and let (Pn) ⊂ P(m+1X) be w-null. For
each n, define Qn := Pn(xn; ·, . . . , ·) ∈ P(mX). We show that (Qn) ⊂
P(mX) is w-null. Define P : X → c0 as before by P (x) := (Pn(x)) and
consider P t : �1 → P(m+1X); since P t(en) = Pn

w→ 0 we have that P t

is weakly compact and, therefore, the bitranspose P tt is also weakly
compact. It is not difficult to check that P tt : P(m+1X)′ → c0 is given
by P tt(φ) = (φ(Pn)) for every φ ∈ P(m+1X)′. Now, given ξ ∈ P(mX)′,
we define ξ̃ : X → P(m+1X)′ by ξ̃(x)(R) := ξ(R(x; ·, . . . , ·)). Then
P tt ◦ ξ̃ : X → c0 is a weakly compact operator, since P tt is, and then,
by (2), ‖P tt(ξ̃(xn))‖∞ → 0. Since P tt(ξ̃(xn)) = (ξ̃(xn)(Pj))j∈N, we
obtain that

|ξ(Qj)| = |ξ̃(xj)(Pj)| ≤ ‖P tt(ξ̃(xj))‖∞ → 0.

This shows that (Qn) ⊂ P(mX) is w-null and then, by the induction
hypothesis, Pn(xn) = Pn(xn, . . . , xn) = Qn(xn) → 0.

Definition. A Banach space X is said to have the P-Dunford-
Pettis property, X is P-D.P., if X satisfies the equivalent conditions of
Theorem 2.1.

It is clear that the class of P-D.P. spaces contains all the D.P. spaces
and the Λ-spaces. Conversely, by using (2) and (3) in Theorem 2.1, we
get

Corollary 2.2. If X is a P-D.P. space and X is reflexive, then X
is a Λ-space. If X is a P-D.P. space and P(X) = Pwsc(X), then X is
a D.P. space.

Remark. No reflexive space is D.P., and hence there are spaces such
as T ∗, the Tsirelson space, failing to be P-D.P., note that P(T ∗) =
Pwsc(T ∗), according to [1]. To be more specific, X is polynomially
reflexive, see [15], if it is reflexive ad P(X) = Pwsc(X); the converse
holds if X, in addition, has the approximation property. So it follows
from Corollary 2.2 that an infinite dimensional polynomially reflexive
space with the approximation property is not P-D.P.
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Clearly the P-Dunford-Pettis property cannot be closed under for-
mation of subspaces, although the property is hereditary with respect
to complemented subspaces.

Definition. Following [16], X is said to be P≤N -Dunford Pettis
if, for each P≤N -null sequence (xn) ⊂ X and every w-null sequence
(Pn) ⊂ P(NX), it holds that Pn(xn) → 0.

Theorem 2.3. For a Banach space X and N ∈ N fixed, the following
are equivalent:

(1) For every Y , each P≤N -compact operator T : X → Y maps P≤N -
convergent sequences in X into norm convergent sequences in Y .

(1′) For every Y , each P≤N compact polynomial P : X → Y maps
P≤N -convergent sequences in X into norm convergent sequences in Y .

(2) For every Y , each weakly compact operator T : X → Y maps
P≤N -convergent sequences in X into norm convergent sequences in Y .

(2′) For every Y , each weakly compact polynomial P : X → Y maps
P≤N -convergent sequences in X into norm convergent sequences in Y .

(3) For every w-null sequence (ln) in X ′ and every P≤N -null sequence
(xn) in X, we have ln(xn) → 0.

(3′) For each m, for every w-null sequence of m-homogeneous poly-
nomials (Pn) ⊂ P(mX), and every P≤N -null sequence (xn) we have
Pn(xn) → 0.

(4) X is P≤N -D.P.

Proof. The first six cases can be treated as in Theorem 2.1, only the
step (3′) to (2′) needs some light. Assume that (3′) holds. We only
need to show that P (xn) → P (x) for every P ∈ P(mX) and every
sequence (xn) that is P≤N -convergent to x. If m ≤ N this is true
by definition. We proceed by induction. Assume that it holds for m.
Take Q ∈ P(m+1X) and a P≤N -null sequence (xn). Consider the linear
operator T : X → P(mX) defined by T (x) := Q(x; ·, m. . ., ·). Now T (xn)
is w-null and by (3′) we have Q(xn) = T (xn)(xn) → 0.

(3′) ⇒ (4). We choose m = N and we obtain that X is P≤N -D.P.
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(4) ⇒ (3). Let (xn) ⊂ X be P≤N -null, and let (ln) ⊂ X ′ be w-null.
Define Pn := lNn ∈ Pf (NX) ⊂ P(NX), and it is enough to prove that
(Pn) is w-null. Consider φ ∈ P(NX)′. By [13], Pf (NX)′ is isomorphic
to the space of integral polynomials PI(NX ′) on X ′. In particular,
there exists a regular, countably additive Borel measure of bounded
variation µ on the compact set (BX′′ , w∗) such that

φ(lN ) =
∫

BX′′
〈l, z〉N dµ(z), ∀ l ∈ X ′.

Now (Pn) is a sequence of continuous functions on (BX′′ , w∗) which is
uniformly bounded and pointwise null on BX′′ . Therefore

φ(Pn) =
∫

BX′′
Pn(z) dµ(z) −→ 0.

By definition, X satisfies the P≤1-Dunford-Pettis condition precisely
when it is a Dunford-Pettis space.

Corollary 2.4. D.P. ⇒ · · · ⇒ P≤N -D.P. ⇒ P≤N+1-D.P. ⇒ · · · ⇒
P-D.P.

Next we give some stability properties of P-D.P. and P≤N -D.P.
spaces.

Proposition 2.5. Let (Xn) be a sequence of Banach spaces with
the P-Dunford-Pettis property, respectively P≤N -D.P. Then the spaces
(⊕nXn)c0 and (⊕nXn)�p

for 1 ≤ p < ∞, respectively for 1 ≤ p ≤ N ,
have the P-Dunford-Pettis property, respectively P≤N -D.P.

Proof. The proof can be carried out as in results by [5] and [8]. We
restrict to the case when the spaces Xn are P-D.P., the other case being
similar. Let X either be the �p-sum or the c0-sum, and take a weakly
compact operator T : X → Y . Further, let Tn : Xn → Y be the weakly
compact operators determined by T so that

T (x) =
∞∑

n=1

Tn(xn), if x = (xn) ∈ X.
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Take a pol-null sequence (xm) in X. If X is the c0-sum, then Theo-
rem 1.7 in [5] yields that

(†) sup
m∈N

∥∥∥∥
N∑

n=1

Tn(xn
m) − T (xm)

∥∥∥∥ N→ 0.

Since the spaces Xn are P-D.P., the sequences {Tn(xn
m)}m∈N are

norm-null in Y by Theorem 2.1 (2). Therefore the sequence {T (xm)}
is norm-null in Y , and the statement concerning c0-sums is proved by
Theorem 2.1 (2). We are finished if we show that (†) holds also for the
case X = (⊕nXn)�p

. According to Lemma 1.3 in [5], this is the case if
the following claim holds.

Claim. sN = supm∈N

∑
n>N ‖xn

m‖p N→ 0.

Indeed, otherwise there is a strictly increasing unbounded sequence
(Ni) so that sNi

> ε > 0. Thus, there exists a sequence (mi) such that

Ni+1∑
n=Ni+1

‖xn
mi

‖p > ε for each i ∈ N.

For each i, n ∈ N, choose y∗i,n ∈ X ′
n with ‖y∗i,n‖ = 1 and y∗i,n(xn

mi
) =

‖xn
mi

‖. Let Mi := Ni+1 −Ni and consider the operator

R : X −→
( ⊕

n

�Mn
p

)
� �p,

R(x) := ((y∗i,n(xn))Ni<n≤Ni+1)i∈N.

Now R(xm) is a pol-null sequence in (⊕n�
Mn
p )�p

� �p and therefore
‖R(xm)‖ → 0 since �p is a Λ-space. Nevertheless, this is a contradiction
establishing the claim since ‖R(xmi

)‖p > ε for every i ∈ N.

The spaces �p, �p ⊕ c0 and �p ⊕ �∞ are P≤N -D.P. spaces for N ≥ p.
Also the James space J is P≤2-D.P. according to [21]. If �1 �⊂ X ′

and X ′ has property Sp∗ , where 1/p + 1/p∗ = 1, then X is P≤N -D.P.
for N ≥ p, see Proposition 3.5 below. On the other hand, it follows
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from [16] that every space with nontrivial type is P-D.P. Some more
examples of P-D.P. and P≤N -D.P. spaces are provided in the following.

Proposition 2.6. If X is a Λ-space, respectively P≤N -Schur, then
for each compact set K we have that C(K,X) is P-D.P., respectively
P≤N -D.P.

Proof. The proof is as in Proposition 3.4 in [9]. Assume that X
is a Λ-space, the other case is analogous. Let T : C(K,X) → Y
be a weakly compact operator, and let (fn) be a pol-null sequence in
C(K,X). Then, for each t ∈ K, (fn(t)) is a pol-null sequence in X,
and thus ‖fn(t)‖ → 0. Now by Theorem 2.1 in [6], we conclude that
‖T (fn)‖ → 0 in Y .

According to Castillo and Sánchez in [9], a Banach space X is said
to have the Dunford-Pettis property of order p, in short (D.P.)p, if, for
every w-null sequence (ln) inX ′ and every sequence (xn) inX such that
(x′(xn)) ∈ �p for every x′ ∈ X ′, we have that ln(xn) → 0. This property
is related to the P≤N -D.P. property as follows. If X is P≤N -D.P., then
X is also (D.P.)p for every p with 1 ≤ p < N∗, where 1/N+1/N∗ = 1.
Indeed, let (ln) ⊂ X ′ be a w-null sequence, and (xn) ⊂ X be a sequence
with an upper-p∗-estimate, where 1/p+ 1/p∗ = 1. If 1 ≤ p < N∗, then
p∗ > N . Now if P is a polynomial on X of degree ≤ N , by [20] we have
that P (xn) → 0. That is, (xn) is P≤N -null. Since X has the P≤N -D.P.
property, we obtain that ln(xn) → 0.

Talagrand has given examples of spaces C(K,X) that are not D.P.
Using Example 3.7 in [9] we find a compact space K and a sequence
(XN ) of D.P. spaces such that each C(K,XN ) fails the P≤N -D.P.
property.

3. The sum of polynomially compact sets. In [19], González
and Gutiérrez ask the question if the sum operation +:XP(X) ×
XP(X) → XP(X) is sequentially continuous. By means of the linear-
ity for the weak topology and the angelic property for the polynomial
topology, the question actually asks whether the sum of two compact
sets in XP(X) is again a compact set in XP(X). If one of the sets is
norm compact, there is always the following affirmative answer.
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Proposition 3.1. Let X be a Banach space, K ⊂ X norm-compact
and B ⊂ X compact in XP(X). Then K +B is compact in XP(X).

Proof. SinceXP(X) is angelic we have to show that (xn+yn) converges
to x+y in XP(X) whenever (xn) is a sequence in K that converges to x
in norm and (yn) is a sequence in B that converges to y ∈ B in XP(X).
Set zn := x− xn and z′n := y − yn. Let P ∈ P(NX). Then

P (zn + z′n) = P (zn) + P (z′n) +
N−1∑
j=1

(
N

j

)
P (zn,

j. . ., zn, z
′
n,

N−j. . . , z′n).

Clearly the first two terms tend to zero. Also, since ‖zn‖ → 0, the last
term converges to zero.

When P(X) = Pwsc(X) or when X is a Λ-space, the compact sets
in XP(X) are compact either in the weak or in the norm topologies.
Hence, by linearity of these topologies, the sum of compact sets in
XP(X) is a compact set in XP(X) under these conditions. However,
for some spaces X not satisfying these conditions such as c0 ⊕ �2, we
still know that the sum of compact sets in XP(X) is again compact in
XP(X), because of the following result.

Theorem 3.2. Suppose that X has the P-Dunford-Pettis property.
Then the sum of two polynomially compact sets in X is again polyno-
mially compact.

Proof. Without loss of generality, we need only to prove that if (xn)
and (yn) are pol-null, then P (xn + yn) → 0 for an N -homogeneous
polynomial P on X. For a fixed j ≤ N , consider the j-homogeneous
polynomials Pn := P (·, j. . ., ·, yn,

N−j. . . , yn). In order to see that (Pn) is
w-null, consider a functional φ ∈ P(jX)′. Since the map

Q : X → P(jX), Q(y) := P (·, j. . ., ·, y,N−j. . . , y)

is an (N − j)-homogeneous polynomial, we have φ ◦ Q ∈ P(N−jX).
Thus, (φ◦Q)(yn) = φ(Pn) → 0, and therefore Pn(xn)=P (xn,

j. . ., xn, yn,
N−j. . . , yn) → 0 by the P-Dunford-Pettis property of X. Hence, P (xn +
yn) = P (xn) + P (yn) +

∑N−1
j=1

(
N
j

)
Pn(xn) converges to zero.
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Remark. In [19] González and Gutiérrez also ask if xn ⊗ yn is w-null
in X⊗̂πX, whenever (xn) and (yn) are pol-null in X. If X or Y has
the P-D.P. property, then we can even show that xn ⊗ yn is pol-null
in X⊗̂πY , whenever (xn) and (yn) are pol-null sequences in X and Y ,
respectively. Indeed, let B : X × Y → Z be a continuous bilinear map.
Take P ∈ P(NX) and let Q : Y → P(NX) be the polynomial defined
by Q(y)(x) := P (B(x, y)). Then Q(yn) is w-null in P(NX) and hence,
if X is P-D.P., Q(yn)(xn) → 0 by (3′) in Theorem 2.1. The statement
follows if we consider Z := X⊗̂πY and B(x, y) = x⊗ y.

The sum of two compact sets in XP(X) is of course compact in Xσ

since that topology is a linear one. For some spaces, although not
necessarily P-D.P. spaces, the sum is also compact in the finer topology
XP(≤2X).

Proposition 3.3. Let X be a Banach space such that every sym-
metric operator T : X → X ′ factors through a P-Dunford-Pettis
space. Suppose that (xn) and (yn) are pol-null sequences in X. Then
P (xn + yn) → 0 for all P ∈ P(2X).

Proof. Take P ∈ P(2X). Then there is a symmetric operator
T : X → X ′ such that P (x) = 〈x, Tx〉 for all x ∈ X. Thus, we
have

|〈xn + yn, T (xn + yn)〉| ≤ |P (xn)| + |P (yn)| + 2|〈xn, T yn〉|.

The first two terms converge to zero. Now 〈xn, T (yn)〉 converges to zero
since T factors through a P-Dunford-Pettis space. Hence the statement
is proved.

Corollary 3.4. The sum of two polynomially compact sets in a C∗-
algebra X is compact in XP(≤2X).

Proof. The dual of any C∗-algebra is of cotype 2, see [29]. Since any
operator T : X → F , where F has cotype 2, factors through a Hilbert
space [29], the statement follows from Proposition 3.3.
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According to [2], a Banach space X has property (P ) if P (un−vn) →
0 for all P ∈ P(X) whenever (un) and (vn) are bounded sequences in
X such that P (un) − P (vn) → 0 for all P ∈ P(X). Clearly each X
with P(X) = Pwsc(X) has property (P ). On the other hand, if a
Banach space X has property (P ), then the sum of two polynomially
compact sets in X is polynomially compact; indeed, if (xn) and (yn)
are pol-null sequences in X, then (−yn) is also pol-null; therefore,
P (xn) − P (−yn) → 0 for all P ∈ P(X), and (xn + yn) is then pol-
null.

Our next result is similar to Theorem 1.7 in [2].

Proposition 3.5. Assume that �1 �⊂ X ′ and that X ′ has property Sp

and p∗ ∈ N with 1/p+ 1/p∗ = 1. Then X is a P≤p∗
-Schur space with

property (P ).

Proof. We only show that X has property (P ); the other statement
can be proved in the same way. Suppose that (xi) and (yi) are bounded
sequences in X such that P (xi)−P (yi) → 0 for all P ∈ P(NX), N ≥ 1.
We claim that ‖xi − yi‖ → 0. If not, then there is an ε > 0 and a w-
null sequence (zk) of form zk := xik

− yik
such that ‖zk‖ ≥ ε for all k.

Proceeding as in Corollary 1.3, we find a subsequence (vk) of (zk) and an
operator T : X → �p∗ , x �→ (umn

(x)), with T (vk) = ek for all k. Take
P ∈ P(N�p∗). Then P ◦T ∈ P(NX) and thus P (T (xi))−P (T (yi)) → 0.
Now we conclude from the proof of Theorem 1.7 in [2] about �q that
‖T (xi) − T (yi)‖ → 0. Hence, ek → 0 in norm, giving a contradiction.

Proposition 3.6. If X and Y have property (P ) and X, in addition,
is a P-D.P. space, then X × Y has property (P ).

Proof. Let (xn, yn) and (x′n, y′n) be bounded sequences in the space
X×Y such that P (xn, yn)−P (x′n, y

′
n) → 0 for all P ∈ P(X×Y ). Since

X and Y have property (P ), we have that (xn − x′n) and (yn − y′n) are
pol-null sequences in X and Y , respectively. For any P ∈ P(NX × Y ),
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it follows that

P ((xn, yn) − (x′n, y
′
n)) = P (xn − x′n, 0) + P (0, yn − y′n)

+
N−1∑
j=1

(
N

j

)
P ((xn − x′n, 0), j. . ., (xn − x′n, 0),

(0, yn − y′n),N−j. . . , (0, yn − y′n)).

The first two terms clearly tend to zero. Fix j and consider the
j-homogeneous polynomials Pn = P ((·, 0), j. . ., (·, 0), (0, yn − y′n),N−j. . . ,
(0, yn − y′n)). Take φ ∈ P(jX)′. Since the map

Q : Y −→ P(jX), Q(y) := P ((·, 0), j. . ., (·, 0), (0, y),N−j. . . , (0, y))

is an (N − j) homogeneous polynomial, we have φ ◦ Q ∈ P(N−jY ).
Thus, (φ ◦ Q)(yn − y′n) = φ(Pn) → 0 and therefore Pn(xn − x′n) → 0
by the P-Dunford-Pettis property of X. Hence, P ((xn, yn) − (x′n, y′n))
converges to zero.

Now P(T ∗) = Pwsc(T ∗) for the Tsirelson space, and hence T ∗ ⊕ �2
is a Banach space with property (P ) that fails the P-Dunford-Pettis
property.

Although we have not been able to show that the sum operation for
every separable or every reflexive Banach space would be sequentially
continuous for the polynomial topology, we know at least the following.
If the sum of two polynomially compact sets in X is polynomially
compact in X for every separable Banach space X, then the same holds
for all WCG Banach spaces X. Indeed, let X be WCG and take two
pol-null sequences (xn) and (yn) in X. Let S0 ⊂ X be the space
spanned by these sequences. Since X is WCG, the separable space S0

is contained into a complemented separable subspace S ⊂ X, see [12],
and thus we have that (xn) and (yn) are pol-null sequences in SP(S) as
well. Then also (xn + yn) is pol-null in S by the assumption and hence
also in X.

When is the topology of XP(X) metrizable? At least it is not
metrizable (even on bounded sets) for Λ-spaces X with X �= XP(X),
e.g., if X is any infinite dimensional complex Λ-space, see Theorem 4.3
in [3]. On the other hand, for spaces like c0 where the weak and the
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polynomial topologies agree on the unit ball, the polynomial topology
is metrizable on bounded sets. When the summation operation is
sequentially continuous in XP(X) and XP(X) has a nonlinear topology,
then the polynomial topology is not metrizable. An example of this
situation isX = �∞, and some other examples are given in the following
result.

Corollary 3.7. Assume that X is a Banach space with property (P ),
but not a Λ-space, and that Y ′ does not contain a copy of �1 but has
property Sp for some 1 < p <∞. Then ZP(Z) is not metrizable, where
Z = X × Y .

Proof. By Proposition 3.5, Y is a P-D.P. space with property (P ).
Then Proposition 3.6 gives that Z = X × Y has property (P ) and
therefore the summation operation is sequentially continuous in ZP(Z).
On the other hand, ZP(Z) has a nonlinear topology by Corollary 1.3.

4. Polynomially compact sets in real Banach spaces. In
[14], the case X = XP(X) was studied in terms of the existence
of a polynomial in P(X) separating 0 ∈ X from the unit sphere
{x : ‖x‖ = 1}. Our objective in this section is to characterize the
compact sets in XP(X) in terms of another separating condition for
the polynomials on X. Now, no complex Banach space X can have
a polynomial P ∈ P(X) with 0 /∈ P (X). However, if X is real there
exist a lot of polynomials P ∈ P(X) with P > 0. It is trivial that any
relatively compact set in XP(X) is bounded and separated from zero
by any such strictly positive P ∈ P(X). How about the converse? Are
the relatively compact sets in XP(X) precisely those bounded sets B
that can be separated from zero by all strictly positive polynomials on
X; that is, those bounded sets that satisfy

(∗) inf
x∈B

P (x) > 0 for all strictly positive P ∈ P(X)?

It is clear that we cannot leave out the assumption on B to be
bounded since the set B := {nx : n ∈ N} satisfies the condition (∗)
above for any x �= 0 in X.
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Obviously a bounded set satisfies (∗) if and only if every rational
form of polynomials on X is bounded on the set. We can then
give an affirmative answer to our question if we know that the set
Hom R(X) of all nonzero real valued homomorphisms on the algebra
R(X) := {P/Q : P,Q ∈ P(X), 0 /∈ Q(X)} only consists of the point
evaluations δx, x ∈ X. Indeed,

XP(X) ↪→ HomR(X) ↪→ RR(X)

and HomR(X) is closed in RR(X). Hence, any bounded set satisfying
(∗) is relatively compact in RR(X) by the Tychonoff theorem and hence
also in HomR(X). If X = HomR(X), a bounded set with (∗) has to
be relatively compact in XP(X).

Proposition 4.1. Let X be a real Banach space such that either X ′ is
σ(X ′, X)-separable or each closed separable subspace of X is contained
into a closed complemented separable subspace of X, e.g., X is a WCG
Banach space. Then a bounded subset of X is relatively compact in
XP(X) if and only if it is separated from zero by all strictly positive
polynomials on X.

Proof. According to [18], X = HomR(X) if X ′ is σ(X ′, X)-
separable, and hence the first statement follows from the discussion
above. Now each separable space has a weak∗ separable dual. So let X
be such that its separable subspaces are contained into separable and
complemented ones. Take a set B ⊂ X satisfying (∗), and suppose that
it is not relatively compact in XP(X). Then there is a sequence (xn)
in X such that F := {xn : n ∈ N} satisfies (∗) and the set F is not
relatively compact in XP(X). By assumption, there is a separable and
complemented space S in X that contains F . Then infx∈F P (x) > 0
for all P > 0 in P(S). Since S is separable, the set F is relatively
compact in SP(S) and hence also in XP(X), a contradiction.

There is, in fact, a large class of Banach spaces that satisfy the
assumptions in Proposition 4.1. Recall that a projectional resolution
of identity (PRI) on a Banach space X is a collection Pα : ω0 ≤ α ≤ µ,
where µ is the smallest ordinal such that its cardinality |µ| = dens (E),
of projections of X into X that satisfy, for every α, ω0 ≤ α ≤ µ, the
following five conditions:
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(i) ‖Pα‖ = 1,

(ii) PαPβ = PβPα = Pα if ω0 ≤ α ≤ β ≤ µ,

(iii) dens (Pα(X)) ≤ |α|,
(iv) ∪Pβ+1(x); β < α is norm-dense in Pα(X),

(v) Pµ = IdX .

If a Banach space X has a PRI, then not every separable subspace
need be contained in a complemented separable subspace, see [22, p.
154]. However, if X has a PRI and, in addition, each Pα(X) has a
PRI whenever α is a limit ordinal, ω0 ≤ α ≤ µ, then each separable
subspace of X is contained in a complemented separable subspace.
Indeed, proceeding by transfinite induction over the density number
|µ| of X, if dens (X) = ℵ0, the statement is obviously true. Suppose
the statement holds for all X in the assumption with a density number
smaller than µ. Take a separable space S in X and let (xn) be a dense
sequence in S. Let αn be the smallest ordinal with xn ∈ Pαn

(X). Set
α = supn αn. Then α is a limit ordinal strictly smaller than µ. Hence
S is a separable subspace of Pα(X). By the induction hypothesis, there
is a complemented separable subspace Sα of Pα(X) containing S. But
then Sα is a separable complemented subspace of X as well.

Examples of Banach spaces with such a strong PRI are all C(K)-
spaces with K Valdivia compact, WCD-spaces and all duals of Asplund
spaces, see [11].

Remark. Also following the proof of Proposition 3.5, one can show
that if the dual X ′ of a real Banach space X has property Sp for some
p > 1 and �1 �⊂ X ′, then any bounded set satisfying (∗) is in fact
relatively compact in the norm topology of X.

The key in showing that bounded sets with (∗) are relatively compact
in XP(X) has been the study of HomR(X). In order to obtain our main
result in this section we use the properties of HomR(X) for showing
that the bounded set in X with (∗) have the interchangeable double
limit property (IDLP) with the equicontinuous sets in all P(NX).
Recall that, if Z is a topological space, X is a set and M ⊂ ZX ,
then X and M have the IDLP (in Z) if, for every sequence (xk) in
X and every sequence (fm) in M , we have that limm limk fm(xk) =
limk limm fm(xk) whenever all involved limits exist. We need the
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following result, see [17].

Lemma 4.2. Let X be a countably compact space, Z a compact
metric space and M ⊂ C(X,Z). Then X and M have the IDLP if and
only if the pointwise limit of functions in M is continuous.

We now state our main result in this section. In what follows, we
denote by τs and τco the pointwise and the compact-open topologies,
respectively.

Theorem 4.3. Let X be a real Banach space such that Pf (NX) is
τco-dense in P(NX) for every N ∈ N. Then a bounded subset of X is
relatively compact in XP(X) if and only if it is separated from zero by
all P > 0 in P(X).

Proof. Let B ⊂ X be bounded and separated from zero by all P > 0
in P(X).

Step 1. We first show that B and the set EN := {P ∈ P(NX) : ‖P‖ ≤
1} have the IDLP for each N ∈ N. The set EN is equicontinuous
and hence, by the Ascoli theorem, compact in (P(NX), τs). Fix
N ∈ N. Take sequences (xk) in B and (Pm) in EN . By Tychonoff’s
theorem, and the fact that HomR(X) is closed in RR(X), the set B
is also relatively compact in the induced topology on HomR(X). Let
φ ∈ HomR(X) and P0 ∈ P(NX) be cluster points to the sequences
(xk) and (Pm), respectively. Choose a sequence (αm) ∈ R+ such that
the sums f :=

∑∞
m=0 αm(Pm −φ(Pm))2 and g :=

∑∞
m=0(αm/m)(Pm −

φ(Pm))2 are pointwise convergent and therefore belong to P(X) by the
Banach-Steinhaus theorem. Since the maps in Hom R(X) are strictly
monotone, for each n ∈ N we have 0 ≤ n · φ(g) ≤ φ(f), by which
φ(g) = 0. Hence, there is some point a ∈ X with φ(Pm) = Pm(a) for
all m ∈ {0, 1, 2, . . . }. If all limits involved exist, then

lim
m

lim
k
Pm(xk) = lim

m
φ(Pm)

= lim
m
Pm(a) = P0(a) = φ(P0)

= lim
k
P0(xk) = lim

k
lim
m
Pm(xk).
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Step 2. Since B is bounded, there is a λ > 0 such that B ⊂ λBX .
Fix again N ∈ N. Hence |P (B)| ≤ λN for all P ∈ EN . As
we noticed before, EN is compact for the pointwise topology. Now
consider the evaluation mapping ev : B → C(EN , [−λN , λN ]) defined
by ev(x)(P ) = P (x). Since B and EN have the IDLP by Step 1, also
ev(B) and EN have the IDLP. Now Lemma 4.2 gives that the pointwise
limit on EN of functions ev(x)|EN

, x ∈ B, is pointwise-continuous for
each N ∈ N.

Step 3. By Tychonoff’s theorem B is relatively compact in the
induced topology on HomR(X). In order to prove that B is relatively
compact in XP(X), we must show that B

HomR(X) ⊂ X. Therefore,

let ψ ∈ B
Hom R(X)

. Hence there is a net (xα) ⊂ B such that
P (xα) → ψ(P ) for all P ∈ P(X). For every N ∈ N we have
that P (xα) → ψ|EN

(P ) for all P ∈ EN ⊂ P(NX). This means by
Step 2 that, for every N ∈ N the restriction map ψ|EN

is pointwise-
continuous. Now P(NX) = ∪ρ>0ρEN and the compact-open topology
τco is the finest topology on P(NX) which coincide with τs on each
equicontinuous subset of P(NX) by Theorem 2.1 in [28]. Hence, for all
N ∈ N, the restriction map ψ|P(N X) : (P(NX), τco) → R is continuous.
Since ψ|X′ : (X ′, τco) → R is continuous, there is a ∈ X such that
ψ(l) = l(a) for all l ∈ X ′. Thus, for all N ∈ N, ψ(P ) = P (a) for
all P ∈ Pf (NX). By assumption and continuity of the restriction
maps ψ|P(N X) we conclude that ψ(P ) = P (a) for all P ∈ P(NX)
and all N ∈ N. Hence, there exists a unique point a ∈ X such that
ψ(P ) = P (a) for all P ∈ P(X). This means that ψ is represented by a
point in X, and the proof is complete.

It is well-known, see [28], that if X is a Banach space with the
approximation property, then Pf (NX) is τco-dense in P(NX) for every
N ∈ N. Does there exist a Banach space X such that Pf (NX) is not
τco-dense in P(NX) for some N ∈ N?

We now obtain the following result from [4] as a consequence of
Theorem 4.3.

Corollary 4.4. In real Banach spaces X, every bounded set B ⊂ X
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that is separated from zero by all P > 0 in P(X) is relatively weakly
compact.

Proof. Since X is isomorphic to a subspace of C(BX′ ,weak∗) and
also since Y := C(BX′ ,weak∗) has the approximation property, every
bounded set B in X satisfying (∗) is relatively compact in YP(Y ). Hence
B is a relatively weakly compact set in X.

It should be pointed out that it is of no interest to study (∗) if P(X)
is replaced by Pf (X). Indeed, any P ∈ Pf (X) with P > 0 is of the
form P = P̂ ◦ (l1, . . . , ln), where li ∈ X ′, i = 1, . . . , n, are linearly
independent and P̂ is a polynomial on Rn with P̂ > 0. Hence it is
obvious that infx∈kBX

P (x) > 0 for all k.
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Akademi, to which thanks are due for its hospitality. We are also
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