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CONSTRAINED CONVERGENCE

ROBERT E. HARTWIG AND PETER SEMRL

ABSTRACT. The convergence of PANQ is investigated.
The results are then used to obtain information about the
convergence of constrained Picard iteration Yy = PXy,
where Xn41 = AXn + B. In particular, it is shown that, for
given P, A and B there exists an initial condition X¢ = C for
which Yy converges, exactly when J}?B] C R[¥(I—A)], where
9 = [PT,ATPT ..., (A" )HTPTIT and m is the degree of
the minimal polynomlal of A.

1. Introduction. One of the most basic iterations in matrix theory
is the Picard iteration (PI) [1]:

(11) Xn41 = AXy+ B with Xo=C,

where A, B and C are constant complex matrices and A is n X n.
In practice, however, it may be that only the constrained matrix
Yy = PXy is “observable.” Since the PI iterations admits the exact
solution

N—1

(1.2) XN:[§2A13+ANQ
=0

we see that
N-1

(1.3) Yy = P[ > Ai] B+ PANC,
=0

and, hence, that the convergence of both Sy = P[Zf\:ol AYB as well as
that of PANC (as N — oo) ensures that of Y. The converse may not

be true, however, as seen by taking A = [é i], B = [g”, C= [g 701}

and P = I. On the other hand, if we set U = B — (I — A)C, then

(1.4) P[IZE:A’]U:P[I:;:N]BP(IAN)C

= PXy — PC,
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which shows that Yy = PXy converges exactly when P [Zf\:ol A’} U
converges.

In this note we shall therefore examine the convergence of

(i) the constrained powers PANQ and
(ii) the constrained sum Sy = P [vazgl Ai] Q,

as N — oo for general matrices P and . The case where P has a
left inverse P~ or PA = AP can be investigated entirely by means
of polynomial ideals [1]. We shall refer to this case as the one sided
case. Needless to say, the one-sided case could also mean that @ has a
right inverse or commutes with A. Unfortunately, however, this theory
only partially extends to the case of a two-sided constraint, and linear
independence cannot be used. This is not really surprising since we
must be able to use simultaneously global (all matrices are of full size)
as well as local (PT and @ are n x 1) convergence, when we are at the
entry level.

We are interested in computing expressions of the form Pfy(A)Q
for some polynomial fy(A). This suggests that we consider the vector
space

I' =span{PA'Q;i=0,1,2,...}.

In general, some of these will vanish or may be linearly dependent.
We could construct a basis for I' simply by starting with the lowest
nonzero link in the chain {PQ, PAQ, PA%Q,...}, say PA“Q, after
which we pick PA®() as the next link that is independent of the first
one, followed by PA®(Q as the first link that is independent of the
previous two links, and so on. This gives us a basis

(1.5) Br = {PA"Q,... ,PA"Q}, i1 <iy<---<iqg

where d = dim (I"). Clearly d < dp,d,, which are the respective
dimensions of the Krylov spaces spanned by

{P,PA,PA% ...} and {Q,AQ,A%Q,...}.
In general the powers of A in a basis for I' need not be unique nor

consecutive, as seen from the case where PAQ is a scalar, i.e., when
PT and Q are n x 1 column vectors. Now, for any polynomial f(A),
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we have
d .
(1.6) PFAQ = ak(f)PA™Q,
k=1
and, in particular,
d
(1.7) PANQ =Y oM PARQ.
k=1

But, as always, the problem is to find the coefficients a,(cN), which may

be prohibitive. In the one-sided case, the key to finding the coefficients
is to use annihilating polynomials and the associated ideal theory. To
extend these concepts to the two sided case, however, is a nontrivial
task, which we now shall undertake.

Suppose that the minimal polynomial of A has the form
(1.8) Ya(A) = H()\ — ;)™ with degree m.
i=1
The ideal that we shall need is the vector space
(1.9a) W ={f(\); PA'f(A)Q =0 for i =0,1,... ,m —1}.
It is easily seen to be an ideal if we rewrite W as

(1.9b) W = {f(\); Pg(A) f(A)Q = 0 for all g(A) € C[\]}.

We shall further need the following characterization which holds for
each fixed value of scalar a:

(1.9¢) W ={f(A\);P(A—al)'f(A)Q =0fori=0,1,...,m— 1},

which is an immediate consequence of the binomial theorem.

We note that W C K = {f(\); Pf(A)Q = 0}, which is a vector space
but will not be an ideal except in very special cases such as where P
(Q) has a left (right) inverse or commutes with A.
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Since C[)] is a principal ideal domain, we know there exists a monic
generator for W, say ¢(\) = ¢dpgo(A\) which necessarily must divide
¥a(X\). Apart from the case where ¢(\) = 1, we can without loss of
generality assume that ¢ has the form

t
(1.10) ¢(A) = [[(A = X)P* with degree I,
i=1

where t < s and 1 < p; < m;. We may think of ¢ as the “minimal
annihilating polynomial” relative to the two spaces, R(Q) and RS(P).
The case where ¢ = 1 can only trivially happen in the one sided case.
For notational convenience we shall also exclude it in the discussion
that follows. The final results, however, will also hold in this special
case. We now stress that

fNeW = o¢l|f <= PAf(AQ=0

(1.11) )
fori=0,1,... ,m—1,

while
(1.12)
h(A) ¢ W <= ¢th <= PAR(A)Q#O0 for some i

< P(A-al)’h(A)Q #0 for some j.

For convenience, we define the effective spectrum of A, relative to P
and @, by

(1.13) G =opq(A) = {M; (A= A) [ #(N)}
and call the numbers p; the P-Q effective indices of A.

Needless to say, we can also speak of the effective spectral radius

(114) ﬁ:pPQ :max{|/\k|;)\k E&}.

We may now capitalize on our new ideal. Indeed, if PA'f(A)Q =
PA*g(A)Q for all 4, then PA*[f(A) —g(A)]Q = 0 for all i and ¢|(f —g).
This can again be characterized via differentiation.

Let us next introduce the spectral components, which are nothing
but a convenient way of writing down the powers of the Jordan form.
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2. The spectral components. A convenient way of handling
convergence is by using the spectral theorem [2]:

s mp—1
(2.1) =3 > P04,
k=1 j=0
where the spectral components {Zi;k =1,...,87=0,...,mp— 1}
form a canonical basis for (I, A, A%,...), the span of the powers of A.
Let us next consider the constrained components PZ,ZQ, k=1,...,s,
7 =0,...,mg — 1. We shall first show that for ineffective eigenvalues

the constrained components drop out. And as such we can speak of
the effective spectral components.

Lemma 2.1. If \, ¢ &, then PA'ZIQ =0 for all 4,5 =0,1,... .

Proof. Recall that, if 4 (X) = (A=Ag)"™*-Wr(A), then ged (T1(N),. ..,
U, (A)) = 1 and hence that there exist gi(\) such that 1 = g; (A\)¥1(\)+
coo 4 gs(N)Ws(N). It is well known that ZP = hi(A) where h;(A) =
9i(A)¥;(X). Now, for A\, ¢ &, i.e., for r > t, we see that ¢ | ¥,.(A) and
thus ¢ | (A — A.)7h,(X). This means that PA*ZIQ = 0 for all i. In
particular, PZiQ = 0. O

We next turn to the effective spectral components.
Lemma 2.2. If \x € G, then PA'ZP*Q =0 # PZP* ' Q for all i.

Proof. Again we claim that @|(A — Ag)P* - hy(N), since (A — X )Pm|(A—
)™ |y, for v # k. Since ZE* = (A — NI)Px - Z)) /py! we see that
PA'ZP*Q = 0 for all i. Next observe that ¢ { (A — Ag)Px 1 hyi(N),
and hence (A — A\g)P =1 - hi(\) ¢ W. This means that, for some i,
PA(A—-XI)Pe=1.Z9Q +# 0, or equivalently that some P(A—Ag])*(A—
AeI)Pe=1. Z0Q) £ 0 for some i. But, by the first part, we know that the
terms with ¢ = 1,2,..., all vanish. Consequently, the only term that
can be nonzero is P(A — \,J)7* 1. Z9Q = (py, — 1)!- PZP*'Q # 0.
We shall refer to these nonzero components as the “maximal links”
corresponding to Ag.
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Since the spectral components {Z,z;k =1,...,87 =0,...,mp —
1} form a basis for (I,A,A?,...), we know that the constrained
components {PZ]Q} span I'. Now, based on the above two lem-
mas, we see that in this list only effective components survive and
that, on the other hand, we only know that inside the Ag-block
{PZ)Q,PZ}Q,... ,PZE*'Q} of effective constrained components
corresponding to Ag, only the highest term, PZ,S’“_IQ, is guaranteed
to be nonzero. Some of the lower terms may vanish! Moreover, the
nonzero terms may be linearly dependent. This is in stark contrast
to the one sided case where this cannot happen. Indeed, in the scalar
case, where both PT and Q are single columns, each block is a string
of scalars, which must be dependent if there is a second nonzero term
besides the last term. On account of this, it seems difficult to find
dim I" using the spectral components.

6 22
Example. If A = —220],then¢_()\—4)2(>\—2) and, with
002
A1 =4 and Ay = 2, the spectral components are
1 0 0
Z?=10 1 1],
10 0 0
[2 2 2
Zi=1-2 -2 -2,
10 0 O
and
[0 0 0
Zg=10 0 -1
|10 0 1
100 000
Now, if P = [000] and Q = [010], then PZ?Q = 0, yet PZ{Q =
001 001

[833] # 0 and PZJQ = [ggg} # 0. The maximal links are
in(ziglgendent here. oot
We do know that the set {PZ]Q} contains a basis for T, of the form
(2.2) {PZ1Q,PZ>Q,...,PZi"Q|PZ}'Q,PZQ,... ,PZi*Q)
.. |PZFQ,...},
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which only contains effective components. On account of the scalar
case, where PT and Q are single columns, we observe that

(i) a basis need not contain the highest links PZz’“_lQ £ 0.

(ii) Different bases can use links from different blocks, and the “holes”
need not match.

The conclusion is that there is no point in expanding Pf(A)Q in
terms of this basis, since we would not know how to characterize the
coefficients.

In any case we may expand a given function fy(\) again as

s mp—1

(2.3) Pin(AQ =Y fw) - (PZQ),

k=1 j=0

which, when dropping ineffective eigenvalues, reduces to

t pr—1
(2.4) Pin(A)Q =" fh(w) - (PZQ).
k=1 j=0
In particular,
t pr—1
(2.5) PANQ =) Di]AY] - (PZ]Q),
k=1 j=0 A=Ak
and
N-1 N—1 t pp—1 '
(2.6) P[ A"]Q => > Y D[N (PZ1Q).
i=0 i=0 k=1 j=0 A=A

If the constrained components PZZQ were linearly independent, then
the convergence of Pfy(A)Q immediately reduces to a study of the
coefficients f% (Ax). In our case, however, this cannot be done.

Let us now tackle this problem in its simplest form by first considering
the bilinear forms QTANQ and Zf\:ol QTAZQ, as N — oo.

The method that we shall use is a variation of that used in interpo-
lation and coding [4].
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3. A special case. It is clear that PAN(Q converges if and only if
]_);TFAN 4, converges for all 4 and j, where ;2;7'1 and q; are the 7th row and

jth column in P and @), respectively. As such, let us first focus on the

bilinear form z7 AN y. From the spectral theorem, we know that

s mp—1 )
(31) LAYy =303 DI ()

k=1 j=0 A=Ak
which we may write as
s mp—1 N ) ]
2 eaty =305 (T ol
k=1 j=0

where ﬂi =(j !gTZ,]c'g). It is clear from this that the zero eigenvalue,
say Az, does not contribute to this sum, as long as N > my. Therefore,
in what follows, we shall assume that the matrix is invertible.

To avoid the dependency of ﬁi on z and y, we shall keep our

summation running from £ = 1,...,s and j = 0,... ,mr_1, even
though some of the terms will vanish.
Now 2T ANy converges as N — oo if and only if {ETANQ, gTAN“g,

,QTAN*""__lg} all converge as N — oo. Before we write this in
matrix form, let us first define the matrices

b = B Bis - BT =1, s,

We also need the m X mj matrix

R(A, N)
53 MY =M Nm = | 0T ,
ROw, N +m — 1) (o)
where
(3.4)

N — N - N
R(A, N) = [AkN. (0>,A;N 1>.<1>,... A Mk+1>.<mk_l>].
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Further, set

M®™ = [M(\,N,mi), M(Aa, N,ms);... , M(\s, N, ms)]
=M™, .

S

Using these matrices, we may stack the terms 7 ANty as

ETANQ Ql
TAN+
(3.5) - Yol Z o [ 2| 2 v
ETAN‘erfly b.s

Thus z” ANy converges if and only if M ()b converges. The aim of what
follows is to show that we may uncouple the eigenvalue dependency and,
as such, solve the convergence problem.

Our first step is to simplify M (Ag, IV, my) and to factor out the powers
of \g. This gives

(3.6) M (M, Nymyg) = F(k,m) - B(m,mg, N) - (A\Y - F, 1Y),
where
(3.7) F(k,N) = diag (1, \g,... , \p "),  Fg = F(k,mg)

and

R(1,N)
R(1,N +1)
(38) Bk = B(m, mk,N) = .

R(1,N +m —1)

(mXxmy)

We now recall the combinatorial identity

(- 00 B0 ()

39) {(ﬁ) () tkzr,
+ N
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obtained by drawing r objects from a set of N + k elements. These
identities may be written in matrix form as

s (5[0 Cod | |

which then precisely gives the LU factorization of the (N +1) x (N +1)
matrix B(N + 1, N + 1, N). Indeed,

M (7Y
311 | ("7 (P

() ()
©) SR R
HIEH ollo )

N E I I ()
: : 0) :
A @) oW ()

From (3.11), we immediately obtain, for N > m as a submatrix

product, the nonsquare LU factorization of B(m,my, N) as LkT,gN),

)

. . N) .
in which By and L are m X r and T,g is 7 X r, where my = r.
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Moreover, Ly is independent of N. Consequently,

() @) - (M)

G2 | (9 ()
(Y (Y
O -
B 0
D 0 0

and we arrive at M™Mp = [F(1,m)By,F(2,m)Bs,... ,F(s,m)B,] -
diag ANF L, ... ) ANF-Y)b = [F(1,m)Ly, F(2,m)La, ..., F(s,m)L] -
diag ANV FY, .. )ANT,F71)b.  The key observation now is that

F(k,m)Ly = QF},, where, for i > j,

(3.13) ()i = <;_>>\;';j, i=0,...,m—1,§=0,... m—1,
and zero otherwise. We then have

M(N)b: [Qla"' aQs] dla‘g(Fla 7Fs)
x diag MYV FTY o AT, FE b

The matrix [1,...,] is (a multiple of) the confluent Vandermonde
matrix (or Wronskian) [3] and as such is constant and invertible. Like-
wise, the matrix diag (F},... ,Fs) is independent of N and invertible

since the zero eigenvalue had been excluded earlier.
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(N)

Hence, we have uncoupled the convergence of M **/b into the conver-

gence of each of the matrix sequences:

(3.14) GN =T ANF by, k=1,...,s.
Setting A\, = a, my = 7 and b, = [bo, b1, ... ,b._1]T, we have
IS
N 0 (0) (]{r) ’
GV = (o)
0] :
N
(3.15) (o)
oV
0 alN-1 O bo
V-2 :
br—l
aNfrJrl

Let us now analyze the various cases that can occur. From Lemma
(2.1) and (2.2), we recall that b, # 0, k=1,...,s, exactly when )\ is
an effective eigenvalue with respect to z and y, and that in particular

z"*l # 0 where pr = p(z,y). As such, we focus on an effective
eigenvalue A\, with effective index py. There are two cases that can
occur.

Case 1. pr, = 1. (A has effective index 1.) In this case by = ) # 0,

and from (3.15), we see that (G,(CN))H = ANby. We may now conclude
that

(i) (GN)11 converges if and only if either |A\;| < 1 or Ay = 1.

(ii) On the other hand, (G,(QN))H = AYby converges to zero if and
only if [Ag] < 1.

Case 2. py > 1. The pith entry in G,(CN) is )\,Icv_p’“H - 8P, Now,
since ,BZ’FI # 0, we see that if this converges then either |[Ax| < 1 or
Ar = 1. But, if |Ag| < 1, then all the remaining terms automatically
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converge to zero. On the other hand, if Ay = 1, then the convergence
of the (pr, — 1)st entry in GSCN) shows that

PE=2 L NBPETY converges with  BPFT £ 0.

This is impossible, and hence this case cannot occur. We may conclude
that, in Case 2,

G,(CN) converges <= |\ <1 <= it converges to zero.

Combining the two cases, we see that for each effective Ag:

(a) G,(CN) converges if and only if either [Ax] < 1 or Ay = 1 with
pr = 1.

(b) G,(CN) converges to zero if and only if |Agx| < 1.

We stress again that we did not make use of the possible linear
independence of the nonzero effective constrained components. For
the one sided case, the independence of the Z](Q is easily established
and allows us to jump from matrix to scalar convergence. For the two
sided case no such short cut seems to be available.

Because PAN(Q converges (to zero) exactly when each pTAN g; con-

verges (to zero) we are in a position to apply the above for each row
Bi and each column q;

4. The general case. For convenience, let us start with the zero
convergence case first.

Theorem 1. The following are equivalent:
(i) PANQ — 0,
(i) ppq(4) <1,

(iil) the roots of ppg(A) lie inside the unit circle,
(iv) [Ak| > 1= P(A'Z))Q =0 for all i =0,1,...,
) P

(v

equals

[ZN ! Al} Q converges to a limit L, in which case the limit

(4.1) L=P(I-A)PQ.
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Proof. The equivalence of (i), (ii) and (iii) follows directly from (3.16).

(ii))=(iv). If [Ag| > 1, then Ay is not an effective eigenvalue and thus,
by Lemma 1, part (iv) follows.

(iv)=(iii). If (iv) holds, and recalling that Z9 = hy(A), we see from
(1.9a) that [Ag] > 1= ¢|hg(N). But (A — Ag) { hg(N). This means that
all roots of ¢ must be inside the unit circle.

(v)=(i). Since PANQ is the Nth term in a convergent series, it must
tend to zero.

(iv)=-(v). The easiest way to do this is to make use of the following
identity from [1]:

Lemma 3. For any matriz A with \y = 1 and index my, we have

(4.2) iAi:(I—A)D(I—AN)+ 2 ( N >Z{,

= \j+1
where (-)P is the Drazin inverse of (-).

It follows at once that

=0

(4.3) P[NZIAi] Q=PI-A)PI-AM)Q+ %; <ji\[l> PZIQ,

where p; > 0 is the effective P-Q) index of Ay = 1. Hence, when Ay = 1
is not an effective eigenvalue, then the last summation in (4.3) vanishes.
Now, by the equivalence of (i) and (iv), we also know that PANQ — 0,
and because (I — A)P is a polynomial in A, we may conclude that

PN AQ — P(I - A)PQ.

It should be remarked here that, when ¢pg(A) = 1, then PANQ =0
for all N € N, in which case condition (iii) is vacuously true.

Next, let us return to the convergence of the Picard iteration (1.3).

Theorem 2. The following are equivalent.

(i) The Picard iteration (1.3) converges to limit L'.
(it) P[SN " AU converges.
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(iii) PANU — 0.

(iv) ppu(4) < 1.

(v) The roots of ppy(N) lie inside the unit circle.

(vi) [Ak| > 1 = P(A*Z))U =0 for alli =0,1,..., in which case the

limit equals

(4.4) L'=P(I-APB+PZC.

Proof. The equivalence of (i) and (ii) was observed just after (1.4).
The equivalence of (ii)—(vi) follows from Theorem 1 with @ replaced
by U. To obtain the actual limit L', we apply (4.1) to U. This gives

N-—1
Yy = PXy = P[ Z A’]U+Pc — P(I-A)P[B—(I-A)C]+ PC,
i=0

from which (4.4) follows. o

As a special case we set B =0 and U = (A — I)C in Theorem 2 and
(1.3), which will finally give us the constrained power convergence.

Corollary 1. The following are equivalent.

(i) PANC converges to a limit L".

(i) [ZN YA{(A = I)]C converges.
(iii) PAN(A - 1)C — 0.
(iv) ppa-nc(4) < 1.

(v) A=) |ppc(N) = [N <1 or \p =1 with pr, = 1.
(vi) |\k| > 1, = P[AY(A—1)Z))C =0 for all i = 0,1,..., in which

case the limit equals

(4.5) L" =PZ)C.

Proof. We only need to show (v). From (vi), the fact that ZP = hy(A)
and (1.9a), we know that |Ax| > 1 = ¢pc|(A — 1)hg()). But, since
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hi(Ar) # 0, we see that none of the Ay outside or on the unit circle,
except 1, can be roots of ¢pc. For A\; = 1, we can have at most
an effective index of one. Alternatively, we could use the convergence
result of Section 3 directly.

We note that in (vi) we may separate out the eigenvalue 1. Indeed, if
[Ak| > 1, # 1, then it is not effective and @|hk()\). In other words,
P[A'Z?]C = 0 for all ¢ = 0,1,.... For A\; = 1, the condition
P[AY(A — 1)Z9C = 0 for all i = 0,1,..., does not seem to allow
simplification.

Let us now use the above results to address the related problem, in
which we are given P, A and B and wish to find out when there exists
an initial matrix C' for which the Picard iteration converges.

5. Existence of suitable initial conditions. Suppose we are given
P, A and B and wish to find out if we can and how we should pick our
starting C', in order to ensure convergence. This we now address.

Theorem 3. Suppose P, A and B are given. There exists an initial
condition Xo = C, for which the Picard iteration (1.3) converges, if
and only if

(5.1) R[9B] C RI9(I - )],
P
PA
where ¥ = . and m is the degree of the minimal polynomial of
pam—1
A.

Proof. Suppose first that such a C' exists. By Theorem 2, we know
that the roots of the relative minimal polynomial ¢py () all lie inside
the unit circle. This means that (A — 1) is coprime to ¢py(A). Hence,
by Euclid’s algorithm there exist r(\) and s()) such that

(5.2) ¢pu(A) -r(A) + (1= A)s(A) = 1.
Consequently, Xgpy(\) - 7(A) + A1 — X)s(A) = X for all i =
0,1,.... Replacing A by A and pre-multiplying by P followed by post-

multiplying by U, we arrive at
(5.3) PA'¢py(A)-r(A)U + PA(I — A)s(A)U = PA'U,
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in which the first term vanishes by the definition of ¢py ().
Replacing U by B — (I — A)C, we then see that

(5.4) PAY(I — A)[s(A)U + O] = PA'B.

Stacking these identities shows that 9(I — A)F = ¢¥B, where F =
s(A)U + C'is a fixed matrix, thus ensuring the necessity.

Conversely, if R[9B] C R[Y(I — A)], then there exists an F such that
9(I — A)F = 9B, which in turn implies that PA*(I — A)F = PA'B
and hence that PA[B — (I — A)F] = 0. If we select C = F, then the
Picard iteration now reduces to

P[ZAi] [B—(I—-A)F] = EPAi[B—(I—A)F] =0,

which converges.

Having established existence, let us conclude by examining the set of
all such initial conditions C' for which the PI converges. In fact, we
have

Proposition 1. Given P, A and B. The set of all C such that the
Picard iteration converges is given by

{C;C = F + D, where (I — A)F = 9B, and PAND converges}.

Proof. If C = F + D, with 9(I — A)F = 9B and PAN D convergent,
then PAIU = PAI[B — (I — A)(F + D)] = [PA'B — PAI(I — A)F] —
PAY(I — A)D. Summing this yields

N-1 N-1
Y PAU=-) PA(I-A)D=-P(I-A")D,
i=0 =0

which converges. Conversely, let C — F = D. Then Zil\;_ol PA'B —
(I - A)C] = S, PAY(A - D(C = F) = ¥ L' PAA - I)D =
P(AN —I)D converges. Thus, PAN D converges as desired. o



194 R.E. HARTWIG AND P. SEMRL

Remarks. (i) We have seen that ppg, < 1 and ppg, < 1 imply
PP(Q:1+Q2) < 1. Without Theorem 1, this is not easily seen.

(ii) The matrix T of (3.12) is a triangular Toeplitz matrix [a; 1]
with a; = (IZV) Its inverse 71 is of the same type as [b;_1], where
b; = (—=1)*(Y7?). This may be seen by inverting p(\) = (1 + \)V.

(iii) We may use Corollary 1 to characterize the set 7 = {Q; PAN x
@ converges}. Indeed, this shows that

R(Q) C N[W(A—1)Z))] for all |\g| > 1.

When P = T this reduces to R(Q) C E1 & Z&Kl W;, where Eq is
the span of all the eigenvectors corresponding to Ay = 1 and W; is the
generalized eigenspace corresponding to ;. However, it seems to be
difficult to characterize the nullspace of N[J(A — I)Z})] in general.
(iv) We have seen that 27 ANy = 0 for all N exactly when ¢, = 1.
It would be of interest to find suitable range/rowspace conditions for
this to hold.

We close with some open questions:
(i) Can we use the above splitting to find dim(W) or dim(K)?

(ii) When exactly does the two sided case reduce to the one sided
case? That is, when does PANQ convergent imply ANQ or PAYN
convergent?

(i) How are the spaces W and T related?
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