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ON THE ESSENTIAL SPECTRA
OF REGULARLY SOLVABLE OPERATORS

IN THE DIRECT SUM SPACES

SOBHY EL-SAYED IBRAHIM

ABSTRACT. The problem of investigation of the spectral
properties of the operators which are regularly solvable with
respect to minimal operators T0(Mp) and T0(M+

p ) generated
by a general quasi-differential expression Mp and its formal

adjoint M+
p on any finite number of intervals Ip = (ap, bp),

p = 1, . . . , N , are studied in the setting of the direct sums of
L2

wp(ap, bp)-spaces of functions defined on each of the separate
intervals. These results extend those of formally symmetric
expression M studied in [1] and [15] in the single-interval
case, and also extend those proved in [10] and [13] in the
general case.

1. Introduction. Akhiezer and Glazman [1] and Naimark [15]
showed that the self-adjoint extensions of the minimal operator T0(M)
generated by a formally symmetric differential expression M with
maximal deficiency indices have resolvents which are Hilbert-Schmidt
integral operators and consequently have a wholly discrete spectrum.
In [10], Ibrahim extended their results for general ordinary quasi-
differential expression M of nth order with complex coefficients in the
single-interval case with one singular endpoint.

The minimal operators T0(M) and T0(M+) generated by a general
ordinary quasi-differential expression M and its formal adjoint M+,
respectively, form an adjoint pair of closed, densely-defined operators in
the underlying L2

w-space, that is, T0(M) ⊂ [T0(M+)]∗. The operators
which fulfill the role that the self-adjoint and maximal symmetric
operators play in the case of a formally symmetric expression M are
those which are regularly solvable with respect to T0(M) and T0(M+).
Such an operator S satisfies T0(M) ⊂ S ⊂ [T0(M+)]∗ and, for some
λ ∈ C, (S−λI) is a Fredholm operator of zero index, this means that S
has the desirable Fredholm property that the equation (S − λI)u = f
has a solution if and only if f is orthogonal to the solution space of
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(S − λI)v = 0 and, furthermore, the solution spaces of (S − λI)u = 0
and (S∗ − λ̄I)v = 0 have the same finite dimension. This notion
was originally due to Visik in [18]. In [6] and [7], Everitt and Zettl
considered the problem of characterizing all self-adjoint operators which
can be generated by a formally symmetric Sturm-Liouville differential
(quasidifferential) expression Mp, defined on a finite or countable
number of intervals Ip, p = 1, . . . , N .

Our objective in this paper is to extend the results concerning the
spectral properties of the operators in [1, 10, 13 and 15] for the case
when the quasi-differential expressions Mp are arbitrary and there is
any finite number of intervals Ip, p = 1, . . . , N when all solutions of the
equations Mp[u]−λwpu = 0 and M+

p [v]− λ̄wpv = 0 are in L2
wp(ap, bp),

p = 1, . . . , N , for some, and hence all, λ ∈ C.

The operators involved are no longer symmetric but direct sums

T0(M) =
N⊕

p=1

T0(Mp)

and

T0(M+) =
N⊕

p=1

T0(M+
p )

where T0(Mp) and T0(M+
p ) form an adjoint pair of closed operators in

N⊕
p=1

L2
wp(ap, bp).

We deal throughout with a quasi-differential expression Mp of arbi-
trary order n defined by a general Shin-Zettl matrix, and the minimal
operator T0(Mp) generated by w−1

p Mp[.] in L2
wp(Ip), p = 1, . . . , N ,

where wp is a positive weight function on the underlying interval Ip.
The endpoints of Ip may be regular or singular.

2. Preliminaries. We begin with a brief summary of adjoint pairs
of operators and their associated regularly solvable operators; a full
treatment may be found in [2, Chapter 3], [3] and [13].
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The domain and range of a linear operator T acting in a Hilbert
space H will be denoted by D(T ) and R(T ), respectively, and N(T ) will
denote its null space. The nullity of T , written nul (T ), is the dimension
of N(T ) and the deficiency of T , def (T ), is the codimension of R(T ) in
H if T is densely defined and R(T ) is closed, then def (T ) = nul (T ∗).
The Fredholm domain of T is (in the notation of [2]) the open subset
∆3(T ) of C consisting of those values λ ∈ C which are such that
(T − λI) is a Fredholm operator, where I is the identity operator in
H. Thus, λ ∈ ∆3(T ) if and only if (T − λI) has closed range and
finite nullity and deficiency. The index of (T − λI) is the number
ind (T − λI) = nul (T − λI) − def (T − λI), this being defined for
λ ∈ ∆3(T ).

Two closed densely-defined operators, A,B in H, are said to form
an adjoint pair if A ⊂ B∗ and consequently B ⊂ A∗, equivalently.
(Ax, y) = (x,By) for all x ∈ D(A) and y ∈ D(B), where (. , .) denotes
the inner-product on H.

The joint field of regularity Π(A,B) of A and B is the set of λ ∈ C
which is such that λ ∈ Π(A), the field of regularity of A, λ̄ ∈ Π(B) and
def (A − λI) and def (B − λ̄I) are finite. An adjoint pair A,B is said
to be compatible if Π(A,B) �= ∅. Recall that λ ∈ Π(A) if and only if
there exists a positive constant K(λ) such that

‖(A− λI)x‖ ≥ K(λ)‖x‖ for all x ∈ D(A),

or equivalently, on using the Closed-Graph Theorem, nul (A− λI) = 0
and R(A− λI) is closed.

A closed operator S in H is said to be regularly solvable with
respect to the compatible adjoint pair A,B if A ⊂ S ⊂ B∗ and
Π(A,B) ∩ ∆4(S) �= ∅, where

∆4(S) = {λ : λ ∈ ∆3(S), ind (A− λI) = 0}.

If A ⊂ S ⊂ B∗ and the resolvent set ρ(S), see [2], of S is nonempty,
S is said to be well-posed with respect to A and B. Note that, if
A ⊂ S ⊂ B∗ and λ ∈ ρ(S), then λ ∈ Π(A) and λ̄ ∈ ρ(S∗) ⊂ Π(B)
so that if def (A − λI) and def (B − λ̄I) are finite, then A and B
are compatible; in this case S is regularly solvable with respect to A
and B. The terminology “regularly solvable” comes from Visik’s paper
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[18], while the notion of “well-posed” was introduced by Zhikhar in his
work on J-self-adjoint operators in [22]. The complement of ρ(S) in
C is called the spectrum of S and written σ(S). The point spectrum
σp(S), continuous spectrum σc(S) and residual spectrum σr(S) are the
following subsets of σ(S):

(i) λ ∈ σp(S) if and only if R(S − λI) = R(S − λI) ⊂ H,

(ii) λ ∈ σc(S) if and only if R(S − λI) ⊂ R(S − λI) = H,

(iii) λ ∈ σr(S) if and only if R(S − λI) ⊂ R(S − λI) ⊂ H.

For a closed operator S we have

σ(S) = σp(S) ∪ σc(S) ∪ σr(S).

An important subset of the spectrum of a closed densely-defined
operator T in H is the so-called essential spectrum. The various
essential spectra of T are defined as in [2, Chapter 9] to be the sets,

(2.1) σek(T ) = C\∆k(T ), k = 1, 2, 3, 4, 5,

∆3(T ) and ∆4(T ) have been defined earlier.

The sets σek(T ) are closed and σek(T ) ⊂ σej(T ) if k < j, the inclusion
being strict in general. We refer the reader to [2, Chapter 9] for further
information about the sets σek(T ).

We now turn to the quasi-differential expressions defined in terms
of a Shin-Zettl matrix Fp on an open interval Ip, where Ip denotes
an open interval with left end-point ap and right end-point bp, −∞ ≤
ap < bp ≤ ∞, p = 1, . . . , N . The set Zn(Ip) of Shin-Zettl matrices on
Ip consists of (n × n)-matrices Fp = {fp

rs} whose entries are complex-
valued functions on Ip which satisfy the following conditions:

(2.2)

fp
rs ∈ L1

loc(I), 1 ≤ r, s ≤ n, n ≥ 2; p = 1, . . . , N

fp
r,r+1 �= 0, a.e. on I, 1 ≤ r ≤ n− 1

fp
rs = 0, a.e. on I, 2 ≤ r + 1 < s ≤ n.
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For Fp ∈ Zn(Ip), the quasi-derivatives associated with Fp are defined
by

(2.3)

y[0] := y

y[r] := (fp
r,r+1)

−1

{
(y[r−1])′ −

r∑
s=1

fp
rsy

[s−1]

}
, 1 ≤ r ≤ n− 1

y[n] := (y[n−1])′ −
n∑

s=1

fp
nsy

[s−1],

where the prime ′ denotes differentiation.

The quasi-differential expression Mp associated with Fp is given by

(2.4) Mp[y] := iny[n], p = 1, . . . , N,

this being defined on the set

(2.5) V (Mp) := {y : y[r−1] ∈ ACloc(Ip), r = 1, . . . , n; p = 1, . . . , N},

where ACloc(Ip) denotes the set of functions which are absolutely
continuous on every compact subinterval of Ip.

The formal adjoint M+
p of Mp is defined by the matrix F+

p ∈ Zn(Ip)
given by

(2.6) F+
p = −J−1

n×nF
∗
p Jn×n,

where F ∗
p is the conjugate transpose of Fp and Jn×n is the nonsingular

n× n-matrix.

(2.7) Jn×n = ((−1)rδr,n+1−s), 1 ≤ r, s ≤ n,

δ being the Kronecker delta. If F+
p = {fp

rs}+, then it follows that

(2.8) {fp
rs}+ = (−1)r+s+1fp

n−s+1,n−r+1.
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The quasi-derivatives associated with F+
p are therefore

(2.9)

y
[0]
+ := y,

y
[r]
+ := (fp

n−r,n−r+1)
−1

·
{

(y[r−1]
+ )′ −

r∑
s=1

(−1)r+s+1fp
n−s+1,n−r+1y

[s−1]
+

}

y
[n]
+ := (y[n−1]

+ )′ −
n∑

s=1

(−1)n+s+1fp
n−s+1,1y

[s−1]
+ ,

1 ≤ r ≤ n− 1,

and

M+
p [y] := iny

[n]
+ , p = 1, . . . , N for all y ∈ V (M+

p );
(2.10)

V (M+) := {y : y[r−1]
+ ∈ ACloc(Ip), r = 1, . . . , n; p = 1, . . . , N}.

(2.11)

Note that (F+
p )+ = Fp and so (M+

p )+ = Mp. We refer to [2, 3, 5,
8 and 13] for a full account of the above and subsequent results on
quasi-differential expressions.

For u ∈ V (Mp), v ∈ V (M+
p ) and α, β ∈ Ip, we have Green’s formula,

(2.12)
∫ β

α

{v̄Mp[u] − uM+
p [v]} dx = [u, v]p(β) − [u, v]p(α),

where

(2.13)

[u, v]p(x) =
(
in

n−1∑
r=0

(−1)n+r+1u[r](x)v̄[n−r−1]
+ (x)

)
p

,

=

⎛
⎜⎝(−i)n(u, . . . , u[n−1])Jn×n

⎛
⎜⎝

v̄+(x)
...

v̄
[n−1]
+ (x)

⎞
⎟⎠

⎞
⎟⎠

p

,

p = 1, . . . , N , see [10, 12] and [20, Corollary 1].
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Let the interval Ip have end-points ap, bp, −∞ ≤ ap < bp ≤ ∞, and
let wp be a function which satisfies

(2.14) wp > 0 a.e. on Ip, wp ∈ L1
loc (Ip).

The equation

(2.15) Mp[y] − λwpy = 0, p = 1, . . . , N, λ ∈ C

on Ip is said to be regular at the left end-point ap if ap is finite, and
for all X ∈ (ap, bp),

(2.16)
ap ∈ R, wp, f

p
rs ∈ L1[ap, X],

r = 1, . . . , n; p = 1, . . . , N.

Otherwise (2.15) is said to be singular at ap. Similarly, we define the
terms regular and singular at bp. If (2.15) is regular on (ap, bp), then
we have

(2.17)
ap, bp ∈ R, wp, f

p
rs ∈ L1(ap, bp),

r, s = 1, . . . , n; p = 1, . . . , N.

Note that, in view of (2.8), an endpoint of Ip is regular for (2.15) if and
only if it is regular for the equation

(2.18) M+
p [y] − λ̄wpy = 0, p = 1, . . . , N, λ ∈ C on Ip.

Let Hp = L2
wp

(ap, bp) denote the usual-weighted L2-space with inner-
product,

(2.19) (f, g)p =
∫

Ip

f(x)g(x)wp(x) dx, p = 1, . . . , N,

and ‖f‖p := (f, f)1/2: this is a Hilbert space on identifying functions
which differ only on null sets. Set

(2.20)

D(Mp) := {u : u ∈ V (Mp), u and w−1
p Mp[u] ∈ L2

wp(ap, bp)},
p = 1, . . . , N,

D(M+
p ) := {v : v ∈ V (M+

p ), v and w−1
p M+

p [v] ∈ L2
wp(ap, bp)},

p = 1, . . . , N.
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Note that, at a regular endpoint, ap say, u[r−1](ap){v[r−1]
+ (ap)} is

defined for all u ∈ V (Mp) (v ∈ V (M+
p )), r = 1, 2, . . . , n. The

manifolds, D(Mp), D(M+
p ) of L2

wp(ap, bp) are the domains of the so-
called maximal operators T (Mp), T (M+

p ), respectively, defined by

T (Mp)u : = w−1
p Mp[u], u ∈ D(Mp)

and

T (M+
p )v = w−1

p M+
p [v], v ∈ V (M+

p ).

For the regular problem, the minimal operators T0(Mp), T0(M+
p ) are

the restrictions of w−1
p Mp[.] and w−1

p M+
p [.] to the subspaces,

(2.21)

D0(Mp) := {u : u ∈ D(Mp), u[r−1](ap)=u[r−1](bp)=0, r=1, . . . , n, }
D0(M+

p ) := {v : v ∈ D(M+
p ), v[r−1]

+ (ap)=v[r−1]
+ (bp)=0,

r = 1, . . . , n, p = 1, . . . , N, }

respectively. The subspaces D0(Mp) and D0(M+
p ) are dense in

L2
wp(ap, bp) and T0(Mp), T0(M+

p ) are closed operators, see [20, Sec-
tion 3]. In the singular problem we first introduce operators T ′

0(Mp),
T ′

0(M+
p ), where T ′

0(Mp) is the restriction of w−1
p Mp[.] to

(2.22) D′
0(Mp) := {u : u ∈ D(Mp), supp (u) ⊂ (ap, bp)},

and with T ′
0(M+) defined similarly. These operators are densely-

defined and closable in L2
w(ap, bp), and we define the minimal operators

T0(Mp), T0(M+
p ) to be their respective closures, cf. [13] and [20,

Section 5]. We denote the domains of T0(Mp) and T0(M+
p ) by D0(Mp)

and D0(M+
p ), respectively. It can be shown that, if (2.15) is regular at

ap,

(2.23)
u ∈ D0(Mp) =⇒ u[r−1](ap) = 0, r=1, . . . , n; p=1, . . . , N

v ∈ D0(M+
p ) =⇒ v

[r−1]
+ (ap) = 0, r=1, . . . , n; p=1, . . . , N.

Moreover, in both the regular and singular problems we have

(2.24) T ∗
0 (Mp) = T (M+

p ), T ∗(Mp) = T0(M+
p ), p = 1, . . . , N,
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see [20, Section 5] in the case when Mp = M+
p , and compare with the

treatment in [2, Section 3] in the general case.

In the case of two singular endpoints, the problem on (ap, bp) is
effectively reduced to the problems with one singular endpoint on
the intervals (ap, cp] and [cp, bp), where cp ∈ (ap, bp). We denote by
T (Mp; ap), T (Mp; bp) the maximal operators with domains D(Mp; ap)
andD(Mp; bp), and denote by T0(Mp; ap) and T0(Mp; bp) the closures of
the operators T ′

0(M ; a) and T ′
0(Mp; bp) defined in (2.22) on the intervals

(ap, cp] and [cp, bp), respectively, see [5, 11, 14, 15 and 19].

Let T̃ ′
0(Mp) be the orthogonal sum,

T̃ ′
0(Mp) = T ′

0(Mp; ap) ⊕ T ′
0(Mp; bp)

in

L2
wp

(ap, bp) = L2
wp

(ap, cp) ⊕ L2
wp

(cp, bp),

T̃ ′
0(Mp) is densely-defined and closable in L2

wp
(ap, bp) and its closure is

given by

T̃0(Mp) = T0(Mp; ap) ⊕ T0(Mp; bp), p = 1, . . . , N.

Also
nul [T̃0(Mp) − λI] = nul [T0(Mp; ap) − λI]

+ nul [T0(Mp; bp) − λI],

def [T̃0(M0) − λI] = def [T0(Mp; ap) − λI]
+ def [T0(Mp; bp) − λI],

and R[T̃0(Mp) − λI] is closed if and only if R[T0(Mp; ap) − λI] and
R[T0(Mp; bp) − λI] are both closed. These results imply in particular
that

Π[T̃0(Mp)] = Π[T0(Mp; ap)] ∩ Π[T0(Mp; bp)], p = 1, . . . , N.

We refer to [2, Section 3.10.4], [7] and [11] for more details.

Remark 2.1. If Sap
p is a regularly solvable extension of T0(Mp; ap) and

S
bp
p is a regularly solvable extension of T0(Mp; bp), then Sp = S

ap
p ⊕Sbp

p
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is a regularly solvable extension of T̃0(Mp). We refer to [2, Section
3.10.4], [7] and [11] for more details.

Next we state the following results; the proof is similar to that in [2,
Section 3.10.4], [11] and [15].

Theorem 2.2. T̃0(Mp) ⊂ T0(Mp), T (Mp) ⊂ T (Mp; ap) ⊕ T (Mp; bp)
and

dim {D[T0(Mp)]/D[T̃0(Mp)]} = n, p = 1, . . . , N.

If λ ∈ Π[T̃0(Mp)] ∩ ∆3[T0(Mp) − λI], then

ind [T0(Mp) − λI] = n− def [T0(Mp; ap) − λI]
− def [T0(Mp; bp) − λI],

and in particular, if λ ∈ Π[T0(Mp)],

(2.25)
def [T0(Mp) − λI] = def [T0(Mp; ap) − λI]

+ def [T0(Mp; bp) − λI] − n.

Remark 2.3. It can be shown that

(2.26)

D[T̃0(Mp)] = {u : u ∈ D[T0(Mp)] and u[r−1](cp) = 0,
r = 1, . . . , n},

D[T̃0(M+
p )] = {v : v ∈ D[T0(M+

p )] and v[r−1]
+ (cp) = 0,

r = 1, . . . , n}
p = 1, . . . , N , see [2, Section 3.10.4].

Lemma 2.4. For λ ∈ Π[T0(Mp), T0(M+
p )], p = 1, . . . , N ,

def [T0(Mp) − λI] + def [T0(M+
p ) − λ̄I] is constant and

0 ≤ def [T0(Mp) − λI] + def [T0(M+
p ) − λ̄I] ≤ 2n.

In the problem with one singular endpoint,

n ≤ def [T0(Mp) − λI] + def [T0(M+
p ) − λ̄I] ≤ 2n

for all λ ∈ Π[T0(Mp), T0(M+
p )].
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In the regular problem,

def [T0(Mp) − λI] + def [T0(M+
p ) − λ̄I] = 2n

for all λ ∈ Π[T0(Mp), T0(M+
p )].

Proof. See [4], [11, Lemma 3.1].

Let H be the direct sum,

(2.27) H =
N⊕

p=1

Hp =
N⊕

p=1

L2
wp

(ap, bp).

The elements of H will be denoted by f = {f1, . . . , fN} with f1 ∈
H1, . . . , fN ∈ HN .

When Ii ∩ Ij = ∅, i �= j, i, j = 1, 2, . . . , N , the direct sum space
⊕N

p=1L
2
wp

(ap, bp) can be naturally identified with the space L2
w(∪N

p=1Ip),
where w = wp on Ip, p = 1, . . . , N . This remark is of particular
significance when ∪N

p=1Ip may be taken as a single interval; see [6] and
[7].

We now establish by [2, 6] and [11] some further notation.

(2.28)

D0(M) =
N⊕

p=1

D0(Mp), D(M) =
N⊕

p=1

D(Mp),

D0(M+) =
N⊕

p=1

D0(M+
p ), D(M+) =

N⊕
p=1

D(M+
p ),

(2.29)

T0(M)f = {T0(M1)f1, . . . , T0(MN )fN},
f1 ∈ D0(M1), . . . , fN ∈ D0(MN )

T0(M+)g = {T0(M+
1 )g1, . . . , T0(M+

N )gN},
g1 ∈ D0(M+

1 ), . . . , gN ∈ D0(M+
N ).

Also,

(2.30)

T (M)f = {T (M1)f1, . . . , T (MN )fN},
f1 ∈ D(M1), . . . , fN ∈ D(MN )

T (M+)g = {T (M+
1 )g1, . . . , T (M+

N )gN},
g1 ∈ D(M+

1 ), . . . , gN ∈ D(M+
N )
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(2.31)
[f, g] =

N∑
p=1

{[fp, gp]p(bp) − [fp, gp]p(ap)},

f ∈ D(M), g ∈ D(M+);

(2.32) (f, g) =
N∑

p=1

(fp, gp)p,

where f = (f1, . . . , fN ), g = (g1, . . . , gN ) and (. , .)p the inner-product
defined in (2.19). Note that T0(M) is a closed densely-defined operator
in H.

We summarize a few additional properties of T0(M) in the form of a
lemma.

Lemma 2.5. We have (a)

[T0(M)]∗ =
N⊕

p=1

[T0(Mp)]∗ =
N⊕

p=1

T (M+
p )

[T0(M+)]∗ =
N⊕

p=1

[T0(M+
p )]∗ =

N⊕
p=1

T (Mp).

In particular,

D[T0(M)]∗ = D[T (M+)] =
N⊕

p=1

D[T (M+
p )],

D[T0(M+)]∗ = D[T (M) =
N⊕

p=1

D[T (Mp)].

(b)

nul [T0(M) − λI] =
N∑

p=1

nul [T0(Mp) − λI],

nul [T0(M+) − λ̄I] =
N∑

p=1

nul [T0(M+
p ) − λ̄I].
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(c) The deficiency indices of T0(M) are given by

def [T0(M) − λI] =
N∑

p=1

def [T0(Mp) − λI],

for all λ ∈ Π[T0(M)],

def [T0(M+) − λ̄I] =
N∑

p=1

def [T0(M+
p ) − λ̄I],

for all λ̄ ∈ Π[T0(M+)].

Proof. Part (a) follows immediately from the definition of T0(M) and
from the general definition of an adjoint operator. The other parts are
either direct consequences of part (a) or follow immediately from the
definitions.

Lemma 2.6. Let T0(M) = ⊕N
p=1T0(Mp) be a closed densely-defined

operator on H. Then

(2.33) Π[T0(M)] =
N⋂

p=1

Π[T0(Mp)].

Proof. The proof follows from Lemma 2.4 and since R[T0(M) − λI]
is closed, if and only if R[T0(Mp) − λI], p = 1, . . . , N) are closed.

Lemma 2.7. If Sp, p = 1, . . . , N , are regularly solvable with respect
to T0(Mp) and T0(M+

p ), then

S =
N⊕

p=1

Sp,

is regularly solvable with respect to T0(M) and T0(M+).

Proof. The proof follows from Lemmas 2.4 and 2.5.
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Remark 2.8. Let S = ⊕N
i=1Si be an arbitrary closed operator on H

and, since λ ∈ ρ(S), if and only if nul (S − λI) = def (S − λI) = 0, see
[2, Theorem 1.3.2], we have ρ(S) = ∩N

i=1ρ(Si), and hence

(2.34)

σ(S) =
N⋂

i=1

σ(Si), σp(S) =
N⋂

i=1

σp(Si) and

σr(S) =
N⋂

i=1

σr(Si).

Also,

(2.35) σek(S) =
N⋃

p=1

σek(Sp), k = 2, 3.

We refer to [2, Chapter 9] for more details.

Lemma 2.9. Letting T0(M) = ⊕N
i=1T0(Mi) and T0(M+) =

⊕N
i=1T0(M+

i ), then the point spectra σp[T0(M)] and σp[T0(M+)] of
T0(M) and T0(M+) are empty.

Proof. From [12, Theorem 4.1], we have σp[T0(Mi)] = ∅ and
σp[T0(M+

i )] = ∅, i = 1, . . . , N . Hence, by (2.34), σp[T0(M) =
∩N

i=1σp[T0(Mi)] = ∅, and σp[T0(M+) = ∩N
i=1σp[T0(M+

i )] = ∅.

3. Some technical lemmas. Let φk(t, λ) for k = 1, . . . , n be the
solutions of the homogeneous equation M [u] − λwu = 0 satisfying

φ
[k−1]
j (t0, λ) = δjk, j, k = 1, . . . , n

for fixed t0, a < t0 < b.

Then φ[k−1]
j (t, λ) is continuous in (t, λ) for a < t < b, |λ| <∞, and for

fixed t it is entire in λ. Let φ+
k (t, λ) for k = 1, . . . , n be the solutions

of the homogeneous equation (2.18) satisfying

(φ+
k )[r](t0, λ) = (−1)k+rδk,n−r,

for fixed t0 ∈ [a, b),
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k = 1, . . . , n, r = 1, . . . , n− 1.

Suppose a < c < b. According to Gilbert in [9, Section 3] and
Ibrahim in [13, Section 4], a solution of M [u]−λwu = wf , f ∈ L1

w(a, b)
satisfying φ[r](c) = 0, r = 0, . . . , n− 1, is given by

(3.1) φ(t) = ((λ− λ0)/(in))
n∑

j,k=1

ξjkφj(t, λ)
∫ t

c

φ+
k (s, λ)f(s)w(s) ds,

where φ+
k (t, λ) stands for the complex conjugate of φk(t, λ) and for each

j and k, ξjk is a constant which is independent of t and λ (but does
depend in general on t0).

The variation of parameters formula for general ordinary quasi-
differential equations is given by the following lemma:

Lemma 3.1. For f locally integrable, the solution φ(t, λ) of the
quasi-differential equation M [u] − λwu = wf satisfying

φ[r](t0, λ) = αr+1(λ)

for all r = 0, 1, . . . , n− 1, t0 ∈ [a, b) is given by

(3.2)

φ(t, λ) =
n∑

j=1

αj(λ)φj(t, λ0) + ((λ− l0)/(in))

·
( n∑

j,k=1

ξjkφj(t, λ0)
∫ t

a

φ+
k (s, λ0)f(s)w(s) ds

)
,

for some constants α1(λ) · · ·αn(λ) ∈ C.

Proof. See [4, 10, 13, 15] and [20].

Lemma 3.1 contains the following lemma as a special case.

Lemma 3.2. Suppose f is a locally L1
w(a, b) function and φ(t, λ) is

the solution of M [u] − λwu = wf satisfying

φ[r](t0, λ) = αr+1(λ)
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for all r = 0, 1, . . . , n− 1, t0 ∈ [a, b). Then

(3.3)

φ[r](t, λ) =
n∑

j=1

αj(λ)φ[r]
j (t, λ0) + ((λ− λ0)/(in))

·
( n∑

j,k=1

ξjkφ
[r]
j (t, λ0)

∫ t

a

φ+
k (s, λ0)f(s)w(s) ds

)
,

for r = 0, 1, . . . , n− 1, see [21].

Lemma 3.3 [10, Proposition 3.24]. Suppose that, for some λ0 ∈ C,
all solutions of

M [φ] − λ0wφ = 0 and M+[φ+] − λ̄0wφ
+ = 0

are in L2
w(a, b). Then, all solutions of

M [φ] − λwφ = 0 and M+[φ+] − λ̄wφ+ = 0

are in L2
w(a, b) for every complex number λ ∈ C.

Lemma 3.4. Suppose that, for some complex number λ0 ∈ C, all
solutions of the equations

(3.4) M [φ] − λ0wφ = 0 and M+[φ+] − λ̄0wφ
+ = 0,

are in L2
w(a, b). Suppose f ∈ L2

w(a, b). Then all solutions of the
equation M [φ] − λwφ = wf are in L2

w(a, b) for all λ ∈ C.

Proof. Let {φ1(., λ0), . . . , φn(., λ0)} and {φ+
1 (., λ0), . . . , φ+

n (., λ0)} be
two sets of linearly independent solutions of the equations in (3.4).
Then, for any solution φ(t, λ) of M [φ] − λwφ = wf which may be
written as follows M [φ] − λ0wφ = (λ − λ0)wφ + wf , it follows from
(3.2) that

(3.5)

φ(t, λ) =
n∑

j=1

αj(λ)φj(t, λ0)

+
1
in

( n∑
j,k=1

ξjkφj(t, λ0)

·
∫ t

a

φ+
k (s, λ0)[(λ− λ0)φ(s, λ) + f(s)]w(s) ds

)
.
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Hence,

(3.6)

|φ(t, λ)| ≤
n∑

j=1

|αj(λ)| |φj(t, λ0)| +
n∑

j,k=1

|ξjk| |φj(t, λ0)|

·
∫ t

a

|φ+
k (s, λ0)|(|λ− λ0| |φ(s, λ)| + |f(s)|)w(s) ds.

Since f ∈ L2
w(a, b) and φ+

k (t, λ0) ∈ L2
w(a, b) for some λ0 ∈ C, k =

1, . . . , n, then φ+
k (t, λ0)f ∈ L1

w(a, b) for some λ0 ∈ C and k = 1, . . . , n.
Setting

(3.7)
Ck(λ) =

∫ b

a

φ+
k (s, λ0)f(s, λ)w(s) ds,

k =, 1 . . . , n,

then

(3.8)

|φ(t, λ)| ≤
n∑

j,k=1

(|αj(λ)| + Ck(λ)|ξjk|)|φj(t, λ0)|

+ |λ− λ0|
n∑

j,k=1

|ζjk|

·
(
|φj(t, λ0)|

∫ t

a

|φ+
k (s, λ0)| |φ(s, λ)|

)
w(s) ds.

On application of the Cauchy-Schwartz inequality to the integral in
(3.8), we get

|φ(t, λ)| ≤
n∑

j,k=1

(|αj(λ)| + Ck(λ)|ξjk|)φj(t, λ0)

+ |λ− λ0|
n∑

j,k=1

|ξjk|

· |φj(t, λ0)|
(∫ t

a

|φ+
k (s, λ0)|2w(s) ds

)1/2

·
( ∫ t

a

|φ(s, λ)|2w(s) ds
)1/2

.
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From the inequality,

(3.9) (u+ v)2 ≤ 2(u2 + v2),

it follows that

|φ(t, λ)|2 ≤ 4
n∑

j,k=1

(|αj(λ)|2 + C2
k(λ)|ξjk|2)

· |φj(t, λ0)|2 + 4|λ− λ0|2
n∑

j,k=1

|ξjk|2

· |φj(t, λ0)|2
( ∫ t

a

|φ+
k (s, λ0)|2w(s) ds

)

·
( ∫ t

a

|φ(s, λ)|2w(s) ds
)
.

By hypothesis there exist positive constants K0 and K1 such that

‖φj(., λ0)‖L2
w(a,b) ≤ K0(3.10)

and

‖φ+
k (., λ0)‖L2

w(a,b) ≤ K1,

j, k = 1, . . . , n. Hence,

|φ(t, λ)|2 ≤ 4
n∑

j,k=1

(|αj(λ)|2 + C2
k(λ)|ξjk|2)|φj(t, λ0)|2

+ 4K2
1 |λ− λ0|2(3.11)

·
n∑

j,k=1

|ξjk|2
(
|φj(t, λ0)|2

∫ t

a

|φ(s, λ)|2w(s) ds
)
.

Integrating the inequality in (3.11) between a and t, we obtain∫ t

a

|φ(s, λ)|2w(s) ds

≤ K2 +
(

4K2
1 |λ− λ0|2

n∑
j,k=1

|ξjk|2
)

·
∫ t

a

|φj(s, λ0)|2
[ ∫ s

a

|φ(τ, λ)|2w(τ ) dτ
]
w(s) ds,
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where

K2 = 4K2
0

n∑
j,k=1

{|αj(λ)|2 + C2
k(λ)|ξjk|2).

Now, on using Gronwall’s inequality, it follows that
∫ t

a

|φ(s, λ)|2w(s) ds

≤ K2 exp
(

4K2
1 |λ− λ0|2

n∑
j,k=1

|ξjk|2
∫ t

a

|φj(s, λ0)|2w(s) ds
)
.

Since φj(., λ0) ∈ L2
w(a, b) for some λ0 ∈ C and for j = 1, . . . , n, then,

φ(t, λ) ∈ L2
w(a, b).

Remark. Lemma 3.4 also holds if the function f is bounded on [a, b].

Lemma 3.5. Let f ∈ L2
w(a, b). Suppose, for some λ0 ∈ C, that

(i) all solutions of M+[φ] − λ̄wφ = 0 are in L2
w(a, b),

(ii) φ[r]
j (t, λ0), j = 1, . . . , n, are bounded on [a, b) for some r =

0, 1, . . . , n−1. Then φ[r](t, λ) ∈ L2
w(a, b) for any solution φ(t, λ) of the

equation M [φ] − λwφ = wf for all λ ∈ C.

Proof. On using Lemma 3.2, the proof is similar to that in Lemma
3.4 and therefore omitted.

Lemma 3.6 [10, Proposition 3.23]. Suppose that, for some complex
number λ ∈ C, all solutions of M+[v] − λ̄0wv = 0 are in L2

w(a, c),
where a < c < b. Suppose f ∈ L2

w(a, b). Then

∫ t

a

φ+
j (s, λ)w(s)f(s) ds, j = 1, . . . , n,

is continuous in (t, λ) for a < t < b, for all λ.

4. The case of intervals with one singular end-point. We
see from (2.24) that T0(Mp) ⊂ T (Mp) = [T+

0 (M∗
p )] and hence T0(Mp)
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and T0(M+
p ) form an adjoint pair of closed, densely-defined operators

in L2
w(ap, bp). By Lemma 2.4, def (T0,Mp) − λI] + def [T0(M+

p ) − λ̄I]
is constant on the joint field of regularity Π[T0(Mp), T0(M+

p )], p =
1, . . . , N , and we have that, for λ ∈ Π[T0(Mp), T0(M+

p )]

(4.1) n ≤ def [T0(Mp) − λI] + def [T0(M+
p ) − λ̄I] ≤ 2n.

For λ ∈ Π[T0(M), T0(M+)], we define r, s and m as follows.

r = r(λ) = def [T0(M) − λI]

=
N∑

p=1

def [T0(Mp) − λI]

=
N∑

p=1

nul [T (M+
p ) − λ̄I] =

N∑
p=1

rp

s = s(λ) = def [T0(M+) − λ̄I](4.2)

=
N∑

p=1

def [T0(M+
p ) − λ̄I]

=
N∑

p=1

nul [T (Mp) − λI] =
N∑

p=1

sp

and

m := r + s =
N∑

p=1

(rp + sp) =
N∑

p=1

mp.

By Lemma 2.4, m is constant on Π[T0(M), T0(M+)] and

(4.3) nN ≤ m ≤ 2nN.

For Π[T0(M), T0(M+)] �= ∅ the operators which are regularly solv-
able with respect to T0(M) and T+

0 (M) are characterized by the fol-
lowing theorem.
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Theorem 4.1. For λ ∈ Π[T0(M), T0(M+)], let r and m be defined
by (4.2) and let ψj, j = 1, . . . , r, φk, k = r + 1, . . . ,m, be arbitrary
functions satisfying

(i) {ψj : j = 1, . . . , r} ⊂ D(M) is linearly independent modulo
D0(M) and {φk : k = r + 1, . . . ,m} ⊂ D(M+) is linearly independent
modulo D0(M+).

(ii)

([ψj , φk])b
a =

N∑
p=1

([ψjp, φkp](bp) − [ψjp, φkp](ap)) = 0,

k = 1, . . . , r, k = r + 1, . . . ,m.

Then the set

(4.4)
{
u : u ∈ D(M), ([u, φk])b

a

=
N∑

p=1

[up, φkp](bp) − [up, φkp](ap) = 0, k = r + 1, . . . ,m
}

is the domain of an operator S which is regularly solvable with respect
to T0(M) and T0(M+) and

(4.5)
{
v : v ∈ D(M+), ([ψj , v])b

a

=
N∑

p=1

[ψjp, vp](bp) − [ψjp, vp](ap) = 0, j = 1, . . . , r
}

is the domain of S∗, moreover, λ ∈ ∆4(S).

Conversely, if S is regularly solvable with respect to T0(M) and
T0(M+) and λ ∈ Π[T0(M), T0(M+)]∩∆4(S), then with r and m defined
by (4.2), there exist functions ψj, j = 1, . . . , r, φk, k = r + 1, . . . ,m,
which satisfy (i) and (ii) and are such that (4.4) and (4.5) are the
domains of S and S∗, respectively.

S is self-adjoint if and only if M = M+, r = s and φk = ψk−r,
k = r + 1, . . . ,m; S is J-self-adjoint if and only if M = JM+J , r = s
and φk = ψ̄k−r, k = r + 1, . . . ,m.
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Proof. The proof is entirely similar to that in [4, Theorem 3.2] and
[11, Theorem 3.2] and is therefore omitted.

We shall now investigate in the case of the intervals Ip, p = 1, . . . , N ,
with one singular end-points that the resolvents which are direct sums
of resolvents of all well-posed extensions of the minimal operators
T0(Mp) and we show that, in the maximal case, i.e., when rp = sp = n,
p = 1, . . . , N in (4.2), these resolvents are integral operators; in fact,
they are Hilbert-Schmidt integral operators by considering that the
function f to be in L2

w(a, b), i.e., is quadratically integrable over the
interval [a, b).

The following theorem is an extension of that proved in Akhiezer
and Glazman [1, Vol. 2] and in Naimark [15, Vol. 2], namely, the
case of self-adjoint extensions of the minimal operator and the function
f has compact support interior to the interval [a, b) and also extends
that proved in [10, Theorem 3.27] for the general case with compact
support of the function f , to the case of finite number of intervals
[ap, bp), p = 1, . . . , N .

Theorem 4.2. Suppose, for an operator T0(M) with one singular
endpoint that def [T0(M) − λI] = def [T0(M+) − λ̄I] = nN for all
λ ∈ Π[T0(M), T0(M+)], and let S be an arbitrary closed operator which
is a well-posed extension of the minimal operator T0(M) and λ ∈ ρ(S).
Then the resolvents Rλ and R∗

λ of S and S∗, respectively, are Hilbert-
Schmidt integral operators, i.e., for λ ∈ ρ(S),

(4.6)
(S − λI)−1f(x) =

∫ b

a

K(x, t, λ)w(t)f(t) dt,

a.e. x ∈ [a, b),

(4.7)
(S∗ − λ̄I)−1g(x) =

∫ b

a

K+(t, x, λ̄)w(x)g(x) dx,

a.e. t ∈ [a, b),

where the kernels K(x, t, λ) = {K1(x, t, λ), . . . ,KN (x, t, λ)} and K+(t,
x, λ̄) = {K+

1 (t, x, λ̄), . . . ,K+
N (t, x, λ̄)} are continuous functions on

[a, b) × [a, b) and satisfy

K(x, t, λ) = K+(t, x, λ̄), for all x, t ∈ [a, b),
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and ∫ b

a

∫ b

a

|K(x, t, λ)|2w(x)w(t) dx dt <∞.

Remark. An example of a closed operator which is well-posed with
respect to a compatible adjoint pair is given by the Visik extension,
see [2, Theorem 3.3.3] and [18, Theorem 1]. Note that if S is well-
posed then T0(M) and T0(M+) are a compatible adjoint pair and S is
regularly solvable with respect to T0(M) and T0(M+).

Proof. Let

def [T0(Mp) − λI] = def [T0(M+
p ) − λ̄I] = n

for all λ ∈ Π[T0(Mp), T0(M+
p )],

then we choose a fundamental system of solutions {φ1p(t, λ), . . . ,
φnp(t, λ)}, {ψ1p(t, λ), . . . , ψnp(t, λ)}, p = 1, . . . , N , of the equations

(4.8)
Mp[φjp] − λφjpw = 0, M+

p [ψjp] − λ̄ψjpw = 0,
j = 1, . . . , n on [ap, bp),

so that {φ1p(t, λ), . . . , φnp(t, λ)} and {ψ1p(t, λ), . . . , ψnp(t, λ)} belong
to L2

w(ap, bp), i.e., they are quadratically integrable in the intervals
[ap, bp), p = 1, . . . , N .

Let Rλp = (Sp − λI)−1 be the resolvent of any well-posed extensions
Sp of the minimal operator T0(Mp), p = 1, . . . , N . For fp ∈ L2

w(ap, bp),
we put φp(t, λ) = Rλpfp. Then Mp[φp] − λwφp = wfp, p = 1, . . . , N ,
and consequently has a solution φp(t, λ), p = 1, . . . , N , in the form

(4.9) φp(t, λ) =
n∑

j=1

αjp(λ)φjp(t, λ0)

+ ((λ− λ0)/in)
( n∑

j,k=1

ζjk
p φjp(t, λ0)

·
∫ t

a

φ+
kp(s, λ0)fp(s)w(s) ds

)
,
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for some constants α1p(λ), . . . , αnp(λ) ∈ C, see Lemma 3.1. Since
fp ∈ L2

w(ap, bp) and φ+
kp(., λ0) ∈ L2

w(ap, bp), k = 1, . . . , n, for some
λ0 ∈ C, then φ+

kp(., λ0)fp ∈ L1
w(ap, bp), k = 1, . . . , n, for some λ0 ∈ C,

and hence the integral in the righthand side of (4.9) will be finite.

To determine the constants αjp(λ), j = 1, . . . , n, let ψ+
kp(t, λ),

k = 1, . . . , n, be a basis for {D(S∗
p)/D0(M+

p )}, then because φp(t, λ) ∈
D(Sp) ⊂ ρ(Sp) ⊂ ∆4(Sp), p = 1, . . . , N , we have from Theorem 4.1
that

(4.10) ([φ, ψ+
k ])b

a =
N∑

p=1

([φp, ψ
+
kp](bp) − [φ+

p , ψkp](ap)) = 0, on (a, b),

k = 1, . . . , n, and hence, from (4.9), (4.10) and using Lemma 3.2, we
have

[φp, ψ
+
kp](bp) =

( n∑
j=1

αjp(λ) + ((λ− λ0)/in)
n∑

j,k=1

ξjk
p

·
∫ bp

ap

φ+
kp(s, λ0)fp(s)w(s) ds

)
[φjp, ψ

+
kp](bp),

[φp, ψ
+
kp](ap) =

∑n
j=1 αjp(λ)[φ+

jp, ψkp](ap), k = 1, . . . , n, p = 1, . . . , N .
By substituting these expressions into the conditions (4.10), we get

N∑
p=1

( n∑
j=1

αjp(λ) + ((λ− λ0)/in)

·
n∑

j,k=1

ξjk
p

∫ bp

ap

φ+
kp(s, λ0)fp(s)w(s) ds

)
[φjp, ψ

+
kp](bp)

=
N∑

p=1

( n∑
j=1

αjp(λ)[φjp, ψ
+
kp](ap)

)
,
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p = 1, . . . , N . This implies the system

(4.11)
N∑

p=1

( n∑
j=1

αjp(λ)([φjp, ψ
+
kp]

bp
ap

)

= −((λ− λ0)/in)
N∑

p=1

( n∑
j,k=1

ξjk
p [φjp, ψ

+
kp](b)

·
∫ bp

ap

φ+
kp(s, λ)fp(s)w(s) ds

)
,

in the variables αjp(λ), j = 1, . . . , n. The determinant of this system
does not vanish, see [10, Theorem 3.27] and [15]. If we solve the system
(4.11), we obtain

αjp(λ) = ((λ− λ0)/in)
(∫ bp

ap

hjp(s, λ)fp(s)w(s) ds
)
,

j = 1, . . . , n, p = 1, . . . , N,
where hjp(s, λ), p = 1, . . . , N , is a solution of the system

(4.12)
N∑

p=1

( n∑
j=1

hjp(s, λ)([φjp, ψ
+
kp]

bp
ap

)

= −
N∑

p=1

( n∑
j,k=1

ξjk
p [φjp, ψ

+
kp](bp)φ

+
kp(s, λ0)

)
.

Since the determinant of the above system (4.12) does not vanish, and
the functions φ+

kp(s, λ0), k = 1, . . . , n, are continuous in the intervals
[ap, bp), p = 1, . . . , N , then the functions hjp(s, λ) are also continuous
in these intervals. By substituting in formula (4.9) for the expressions
αjp, j = 1, . . . , n; p = 1, . . . , N , we get

(4.13)

Rλf = φ(t, λ)

= ((λ− λ0)/in)
N∑

p=1

( n∑
j,k=1

φjp(t, λ0)

·
∫ t

ap

[ξjk
p φ+

kp(s, λ0) + hjp(s, λ)]fp(s)w(s) ds

+
n∑

j=1

φjp(t, λ0)
∫ bp

t

hjp(s, λ)fp(s)w(s) ds
)
.
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Now we put
(4.14)

K(t, s, λ)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

((λ−λ0)/in)
∑N

p=1

(∑n
j=1 φjp(t, λ0)hjp(s, λ)

)
for t < s,

((λ−λ0)/in)
∑N

p=1

(∑n
j,k=1 φjp(t, λ0)

·(ξjk
p φ+

jp(s, λ0) + hjp(s, λ))
)

for t > s,

formula (4.13) then takes the form

(4.15) Rλf(t) =
∫ b

a

K(t, s, λ)f(s)w(s) ds for all t ∈ [a, b),

i.e., Rλ is an integral operator with the kernel K(t, s, λ) operating
on the function f ∈ L2

w(a, b). Similarly, the solution φ+
p (s, λ) of the

equation M+
p [ψp] − λ̄wψp = wgp, p = 1, . . . , N , has the form

(4.17)

φ+
p (s, λ) =

n∑
j=1

βjp(λ)φ+
jp(s, λ0) + ((λ̄− λ̄0)/in)

·
( n∑

j,k=1

ξjk
p φ+

jp(s, λ0)
∫ s

a

φkp(t, λ0)gp(t)w(t) dt
)
,

where φkp(t, λ0) and φ+
jp(s, λ0), j, k = 1, . . . , n, p = 1, . . . , N , are

solutions of the equations in (4.8). The argument, as before, leads
to

(4.19) R∗
λg =

∫ b

a

K+(s, t, λ̄)g(t)w(t) dt for g ∈ L2
w(a, b),

i.e., R∗
λ is an integral operator with the kernel K+(s, t, λ̄) operating on

the function g ∈ L2
w(a, b), where

(4.20)

K+(s, t, λ̄)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

((λ̄−λ̄0)/in)
∑N

p=1

(∑n
j=1 φ

+
jp(s, λ0)h+

jp(t, λ)
)

for s < t,

((λ̄−λ̄0)/in)
∑N

p=1

(∑n
j,k=1 φ

+
jp(s, λ0)

·(ξjk
p φkp(t, λ0) + h+

jp(t, λ))
)

for s > t,
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and h+
jp(t, λ), p = 1, . . . , N , is a solution of the system

(4.21)
N∑

p=1

( n∑
j=1

h+
jp(t, λ)([ψkp, φ

+
jp])

bp
ap

)

= −
N∑

p=1

( n∑
j,k=1

ζjk
p [ψkp, φ

+
jp](bp)φkp(t, λ0)

)
.

From definitions of Rλ and R∗
λ, it follows that

(4.22)

(Rλ, f, g) =
∫ b

a

{∫ b

a

K(t, s, λ)f(s)w(s) ds
}
g(t)w(t) dt

=
∫ b

a

{∫ b

a

K(t, s, λ)g(t)w(t)
}
f(s)w(s) ds

= (f,R∗
λg)

for any continuous functions f, g ∈ H, and by construction, see
(4.14) and (4.20), K(t, s, λ) and K+(s, t, λ̄) are continuous functions
on [a, b) × [a, b), and (4.22) gives us

(4.23)
K(t, s, λ) = K+(s, t, λ̄)

for all t, s ∈ [a, b) × [a, b).

Since φj(t, λ) = {φj1(t, λ), . . . , φjN (t, λ)} and φ+
k (s, λ) = {φ+

k1(s, λ),
. . . , φ+

kN (s, λ)} are in L2
w(a, b) for j, k = 1, . . . , n, and for fixed s,

K(t, s, λ) is a linear combination of φj(t, λ) while, for fixed t, K+(s, t, λ̄)
is a linear combination of φ+

k (s, λ). Then we have∫ b

a

|K(t, s, λ)|2w(t) dt <∞,

∫ b

a

|K+(s, t, λ̄)|2w(s) ds <∞,

a < s, t < b

and (4.23) implies that∫ b

a

|K(t, s, λ)|2w(s) ds =
∫ b

a

|K+(s, t, λ̄)|2w(s) ds <∞,

∫ b

a

|K+(s, t, λ̄)|2w(t) dt =
∫ b

a

|K(t, s, λ)|2w(t) dt <∞.
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Now it is clear from (4.12) that the functions hj(s, λ) = {hj1(s, λ),
. . . , hjN (s, λ)}, j = 1, . . . , n, belong to L2

w(a, b), since hjp(s, λ) is a
linear combination of the functions φ+

jp(s, λ) which lie in L2
w(ap, bp)

and hence hj(s, λ) belong to L2
w(a, b). Similarly, h+

j (t, λ) belong to
L2

w(a, b). By the upper half of formulas (4.14) and (4.20), we have

∫ b

a

w(t) dt
∫ b

a

|K(t, s, λ)|2w(s) ds <∞,

for the inner integral exists and is a linear combination of products
φjp(t, λ)φ+

kp(s, λ), j, k = 1, . . . , n, p = 1, . . . , N , and these products
are integrable because each of the factors belongs to L2

w(ap, bp). Then,
by (4.23), and by the upper half of (4.14),

∫ b

a

w(t) dt
∫ t

a

|K(t, s, λ)|2w(s) ds

=
∫ b

a

w(t) dt
∫ t

a

|K+(s, t, λ̄)|2w(s) ds <∞.

Hence, we also have∫ b

a

∫ b

a

|K(t, s, λ)|2w(t)w(s) dt ds <∞,

and the theorem is completely proved for any well-posed extension.

Remark 4.3. It follows immediately from Theorem 4.2 that, if
for an operator T0(Mp), p = 1, . . . , N , with one singular end-
point, def [T0(Mp) − λI] = def [T0(M+

p ) − λ̄I] = n for all λ ∈
Π[T0(Mp), T0(M+

p )], and Sp is well-posed with respect to T0(Mp) and
T0(M+

p ) with λ ∈ ρ(Sp), then Rλp = (Sp − λI)−1 is a Hilbert-Schmidt
integral operator. Thus, it is a completely continuous operator, and,
consequently, its spectrum is discrete and consists of isolated eigenval-
ues having finite algebraic (so geometric) multiplicity with zero as the
only possible point of accumulation. Hence, the spectra of all well-
posed operators Sp are discrete, i.e.,

(4.24)
σek(Sp) = ∅, p = 1, . . . , N

for k = 1, 2, 3, 4, 5,
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and hence, by (2.35) and (4.24),

(4.25) σek(S) =
N⋃

p=1

σek(Sp) = ∅, for k = 2, 3,

for any well-posed extension S of the minimal operator T0(M). We
refer to [2, Theorem 9.3.1] for more details.

5. The case of intervals with two singular endpoints. For the
case of two singular endpoints, we consider our interval to be I = (a, b)
and denote by T0(M) and T (M) the minimal and maximal operators.
We see from (2.24) and (2.28) that T0(M) ⊂ T (M) ⊂ [T0(M+)]∗,
and hence, T0(M) and T0(M+) form an adjoint pair of closed densely-
defined operators in L2

w(a, b).

From (2.25) and (4.2) we have that, for λ ∈ Π[T0(M), T0(M+)],

r = r(λ) := def [T0(M) − λI]

=
N∑

p=1

rp =
N∑

p=1

(r1p + r2p − n)

s = s(λ) := def [T0(M+) − λ̄I]

=
N∑

p=1

sp =
N∑

p=1

(s1p + s2p − n)(5.1)

and

m := r + s =
N∑

p=1

{
(r1p + s1p) + (r2p + s2p) − 2n

}

=
N∑

p=1

(m1
p +m2

p − 2n).

Since n ≤ mi
p ≤ 2n, i = 1, 2, then 0 ≤ m ≤ 2nN .

For an operator T0(Mp), p = 1, . . . , N , with two singular endpoints,
Theorem 4.2 remains true in its entirety, that is, all well-posed ex-
tensions of the minimal operator T0(Mp) in the maximal case, i.e.,
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when r1p = r2p = n and s1p = s2p = n in (5.1) have resolvents which are
Hilbert-Schmidt integral operators and consequently have a wholly dis-
crete spectrum and hence Remark 4.3 also remains valid. This implies
as in Corollary 5.1 below that all the regularly solvable operators have
standard essential spectra to be empty. We refer to [1, 2, 15] and [18]
for more details. Now we prove Theorem 4.2 in the case of the intervals
(ap, bp), p = 1, . . . , N with singular endpoints.

Proof. Let

def [T0(Mp) − λI] = def [T0(M+
p ) − λ̄I] = n

for all λ ∈ Π[T0(Mp), T0(M+
p )],

p = 1, . . . , N , then we choose a fundamental system of solutions

φjp(t, λ) =

{
φ

ap

jp (t, λ) on (ap, cp]

φ
bp

jp(t, λ) on [cp, bp)

and

ψjp(t, λ) =

{
ψ

ap

jp (t, λ) on (ap, cp]

ψ
bp

jp(t, λ) on [cp, bp)

p = 1, . . . , N , of the equations

(5.2)
Mp[φjp] − λwφjp = 0,
M+

p [ψjp] − λ̄wψjp = 0,
j = 1, . . . , n on (ap, bp),

so that {φ1p(t, λ), . . . , φnp(t, λ)} and {ψ1p(t, λ), . . . , ψnp(t, λ)} belong
to L2

w(ap, bp), i.e., they are quadratically integrable in the intervals
(ap, bp), p = 1, . . . , N .

Let Rλp = (Sp − λI)−1 be the resolvent of any well-posed extension
Sp = S

ap
p ⊕ S

bp
p of the minimal operator T0(Mp). For f ∈ L2

w(ap, bp),
we put φp(t, λ) = Rλpf(t), then Mp[φp] − λwφp = wf , p = 1, . . . , N ,
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and hence as in (4.9), we have

(5.3) Rλpf(t) = φp(t, λ) =
n∑

j=1

αjp(λ)φjp(t0, λ)

+ ((λ− λ0)/in)
( n∑

j,k=1

ξjk
p φjp(t0, λ)

·
∫ t

a

φ+
kp(s, λ0)f(s)w(s) ds

)
,

for some constants α1p(λ) · · ·αnp(λ) ∈ C, p = 1, . . . , N , where

φp(t, λ) =

{
φ

ap
p (t, λ) on (ap, cp]

φ
bp
p (t, λ) on [cp, bp),

and

αjp(λ) =

{
α

ap

jp (t, λ) on (ap, cp]

α
bp

jp(t, λ) on [cp, bp),

j = 1, . . . , n, p = 1, . . . , N . By proceeding as in Theorem 4.2, we find
that αjp(λ) = ((λ − λ0)/in)(

∫ bp

ap
hjp(s, λ)f(s)w(s) ds), j = 1, . . . , n,

p = 1, . . . , N , where hjp(t, λ) are continuous functions on the intervals
(ap, bp),

hjp(t, λ) =

{
h

ap

jp (t, λ) on (ap, cp]

h
bp

jp(t, λ) on [cp, bp),
j = 1, . . . , n, p = 1, . . . , N.

By substituting in (5.3) for the constants αjp(λ), j = 1, . . . , n, we get

Rλf =
∫ b

a

K(t, s, λ)f(s)w(s) ds,

where

K(t, s, λ) =
{
Ka(t, s, λ) on (a, c]
Kb(t, s, λ) on [c, b),
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and K(.)(t, s, λ) can be obtained as in (4.14). Similarly,

R∗
λg =

∫ b

a

K+(s, t, λ̄)g(s, λ)w(s) ds,

K+(s, t, λ̄) =

{
K+(a)(s, t, λ̄) on (a, c],

K+(b)(s, t, λ̄) on [c, b),

and K+(.)(s, t, λ̄) can be obtained as in (4.20).

From (4.14) and (4.20), we have that

∫ b

a

|K(t, s, λ)|2w(t) dt <∞,

∫ b

a

|K+(s, t, λ̄)|2w(s) ds <∞,

a < s, t < b

and (4.23) implies that

∫ b

a

|K(t, s, λ)|2w(s) ds =
∫ b

a

|K+(s, t, λ̄)|2w(s) ds <∞,

∫ b

a

|K+(s, t, λ̄)|2w(t) dt =
∫ b

a

|K(t, s, λ)|2w(t) dt <∞.

The rest of the proof is entirely similar to the corresponding part of
the proof of Theorem 4.2. We refer to [1, 13] and [15] for more details.

Corollary 5.1. Let λ ∈ Π[T0(M), T0(M+)] with

def [T0(M) − λI] = def [T0(M+) − λ̄] = nN.

Then

(5.4) σek(S) = ∅, k = 2, 3,

of all regularly solvable extensions S with respect to the compatible
adjoint pair T0(M) and T0(M+).
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Proof. Since def [T0(Mp) − λI] = def [T0(M+
p ) − λ̄I] = n, for all

λ ∈ Π[T0(M), T0(M+)], p = 1, . . . , N . Then we have, from [2,
Theorem 3.3.5] that

dim {D(Sp)/D0(Mp)} = def [T0(Mp) − λI] = n,

dim {D(S∗)/D0(M+
p )} = def [T0(M+

p ) − λ̄I] = n,

p = 1, . . . , N.

Thus, Sp is an n-dimensional extension of T0(Mp) and so, by [2,
Corollary 9.4.2],

(5.5)
σek(Sp) = σek[T0(Mp)], p = 1, . . . , N,

for k = 1, 2, 3.

In particular, if Sp, p = 1, . . . , N , is well-posed (say the Visik exten-
sion), we get from (4.24) and (5.5) that

σek[T0(Mp)] = ∅, p = 1, . . . , N
for k = 1, 2, 3.

On applying (5.5) again to any of the regularity solvable operators Sp,
p = 1, . . . , N , under consideration, we have that

σek(Sp) = ∅, p = 1, . . . , N
for k = 1, 2, 3.

Hence, by (2.35)

σek(S) =
N⋃

p=1

σek(S) = ∅, for k = 2, 3.

Corollary 5.2. If, for some λ0 ∈ C, there are n linearly inde-
pendent solutions of Mp[u] − λ0wu = 0 and M+

p [v] − λ̄0wv = 0 in
L2

w(ap, bp), p = 1, . . . , N , then λ0 ∈ Π[T0(Mp), T0(M+
p )], and hence

Π[T0(M), T0(M+)] = C and σek[T0(M), T0(M+)] = ∅, k = 2, 3,
where σek[T0(M), T0(M+)] is the joint essential spectra of T0(M) and
T0(M+) defined as Π[T0(M), T0(M+)].
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Proof. Since all solutions of Mp[u]−λ0wu = 0 and M+
p [v]− λ̄0wv = 0

are in L2
w(ap, bp) for some λ0 ∈ C, p = 1, . . . , N , then

def [T0(Mp) − λ0I] + def [T0(M+
p ) − λ̄0I] = 2n

for some λ0 ∈ Π[T0(Mp), T0(M+)].

From Lemma 2.9, we have that T0(Mp) has no eigenvalues and so
[T0(Mp) − λ0I]−1 exists and its domain R[T0(Mp) − λ0I] is a closed
subspace of L2

w(ap, bp). Hence, since T0(Mp) is a closed operator, then
[T0(Mp) − λ0I]−1 is bounded and hence Π[T0(Mp)] = C. Similarly
Π[T0(M+

p )] = C, p = 1, . . . , N . From (2.33) we get

Π[T0(M)] =
N⋂

p=1

Π[T0(Mp)] = C

and

Π[T0(M+)] =
N⋂

p=1

Π[T0(M+
p )] = C.

Hence, Π[T0(M), T0(M+)] = C and, from Lemma 2.5,

def [T0(M) − λI] + def [T0(M+) − λ̄I] = 2nN
for all λ ∈ Π[T0(M), T0(M+)].

From Corollary 5.1 we have for any regularly solvable extension S of
T0(M) that σek(S) = ∅ for k = 2, 3 and by [2, Corollary 9.4.2], we get
σek[T0(M)] = ∅, for k = 2, 3. Similarly, σek[T0(M+)] = ∅, for k = 2, 3.
Hence, σek[T0(M), T0(M+)] = ∅ for k = 2, 3.

Remark 5.3. If there are n linearly independent solutions of the
equations M [u] − λwu = 0 and M+[v] − λ̄wv = 0 in L2

w(a, b) for some
λ0 ∈ C, then the complex plane can be divided into two disjoint sets:

C = Π[T0(M), T0(M+)] ∪ σek[T0(M), T0(M+)],
for k = 2, 3.
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We refer to [16] and [17] for more details.
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