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ON THE NONEXISTENCE OF COFREE
FRECHET MODULES OVER LOCALLY
MULTIPLICATIVELY-CONVEX FRECHET ALGEBRAS

A.YU. PIRKOVSKII

ABSTRACT. Suppose A is a locally multiplicatively-convex
Fréchet algebra. It is proved that, if there exists at least one
nonzero, cofree Fréchet A-module, then A is normable.

Topological homology is based on two fundamental concepts: projec-
tivity and injectivity. These concepts can be defined in the context of
locally convex modules over a locally convex algebra A, see [3]. If Aisa
Banach algebra, then many important statements about projective and
injective modules, known from classical homological algebra, are valid
in the categories of Banach A-modules. In particular, each Banach A-
module has projective and injective resolutions, see [3]. However, if A
is an arbitrary locally convex algebra, then only the notion of a pro-
jective A-module is rich in content. The main obstacle for the study of
injective A-modules is the possible absence of so-called cofree objects
in categories of locally convex A-modules. Even if A is a nonnormable
Fréchet algebra, we do not have any information about injective Fréchet
A-modules. In this connection, the following question is of interest. Do
there exist nonzero, cofree Fréchet A-modules over an arbitrary Fréchet
algebra A7

This problem is closely connected with some questions concerning
injective Fréchet A-modules, for example, is it true that any A-module
has an injective resolution? Is it true that each injective A-module is
a retract of a cofree A-module? Finally, does there exist at least one
nonzero, injective A-module? See [4]. If A is a Banach algebra and the
A-modules which are under consideration are also Banach modules,
then the answers to all these questions are affirmative, as well as in
pure homological algebra. In particular, a cofree Banach A-module
is topologically isomorphic to an A-module B(A, E) for some Banach
space E (by B(A, E) we denote the A-module of all continuous linear
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maps from A to E with the operation [a - ¢](b) = ¢(ba), a,b € A,
v € B(A,E)). If A is nonnormable, then the main difficulty is that the
vector space B(A, E) does not possess any natural Fréchet topology
and cannot be considered as an A-module with a jointly continuous
action of A. This fact was noticed by Taylor in [7]; in the same work
there was represented a theory of injective locally convex modules with
hypocontinuous action of a locally convex algebra, A. However, all
of the above-mentioned questions about injective and cofree Fréchet
modules are open.!

In this paper we give a negative answer to the first of these questions
under the additional assumption that the Fréchet algebra A is locally
multiplicatively-convex, or, in other words, A is a metrizable Arens-
Michael algebra. We recall that a locally convex algebra A is called
locally multiplicatively-convez if its topology can be defined by a family
of seminorms {|| - ||, : ¥ € A} having the property ||labll, < ||a||.]b||.
for all a,b € A.

Let A be an arbitrary Fréchet algebra. In the sequel, by Fréchet
A-modules we shall mean left Fréchet A-modules. Morphism means al-
ways ‘continuous morphism,’ isomorphism means ‘topological isomor-
phism.’

Definition. A cofree Fréchet A-module over a Fréchet algebra A
is a pair (X, E) where X is a Fréchet A-module and E is a Hausdorff
quotient space of X, and the following condition holds. For any Fréchet
A-module Y and a linear continuous map ¢ : Y — E, there exists a
unique A-module morphism % : Y — X such that py) = ¢, where p is
the quotient map of X onto E:

Y—F

In such a situation we shall say that ¢ lifts ¢.

Remark 1. Tt can be proved that this definition is equivalent to the
following one. A cofree Fréchet A-module is a pair (X, F), where X is
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a Fréchet A-module, F is a Fréchet space, and X represents the functor
Y — B(Y,E).

Remark 2. It is easy to show that X is uniquely determined by the
space E. This means that, if (X1,E,p; : X1 — E) and (X2, E,p2 :
Xo — E) are cofree Fréchet A-modules, then there exists an A-module
isomorphism 7 : X; — X5 such that pa7 = p;.

One of the most important properties of cofree Fréchet A-modules is
that each cofree Fréchet A-module is injective. We recall that a Fréchet
A-module J is injective if, whenever Z is a Fréchet A-module and Y
is a closed submodule that is complemented as a subspace of Z, then
each A-module morphism « : Y — J can be extended to an A-module
morphism ¢ : Z — J, i.e., the following diagram is commutative:

y —+ 7

Here ¢ is the canonical embedding of Y into Z.

Proposition 1. Suppose (X, E) is a cofree Fréchet A-module. Then
X 1s injective.

Proof. Suppose Z is an arbitrary Fréchet A-module, Y is a closed
submodule, ¢ : Y — Z is the canonical embedding, and ¢ : Z — Y
is a continuous linear map such that gt = 1ly. Let a : ¥ — X be
an arbitrary A-module morphism. Consider the A-module morphism
¥ : Z — X that lifts the linear continuous map ¢ : Z — E, ¢ = pag.
Since py¥ = pag and qi = 1y, we see that pyi = pa. In other words,
11 lifts the linear continuous map pa : Y — E. Since 9t is the unique
morphism having such a property, we conclude that i = a. Hence, X
is an injective A-module. o

Suppose E is an arbitrary vector space and p is a seminorm on FE.
Recall that the accompanying Banach space E, is the completion of
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the space E//p~!(0) with respect to the quotient norm of the seminorm
p. If E is an l.c.s. whose topology is defined by a family of seminorms
{l| -l : ¥ € A}, then the accompanying Banach spaces {E, : v € A}
form an inverse system. It is known that if E is complete, then there
exists a topological isomorphism E = &lnE,,, see [6, I1.5.4]. The
canonical projection @Eu — FE,, coincides with the quotient map
E — E,. Therefore, the image of this projection is dense in E,,
in other words, the inverse system {E, : v € A} is reduced. If,
in addition, E is an Arens-Michael algebra, i.e., a complete locally
multiplicatively-convex algebra, and the seminorms {|| - ||, : ¥ € A} are
submultiplicative, i.e., ||ab||, < ||al,||b||, for all a,b € A, then each E,
is a Banach algebra, and the above isomorphism is an isomorphism of
algebras, see [2, 5.2.17].

Theorem. Suppose A is a nonnormable locally multiplicatively-
conver Fréchet algebra. Then there are no nonzero, cofree Fréchet
A-modules.

Proof. Assume the converse. Let (X, E) be a nonzero, cofree Fréchet
A-module. First, we note that £ # 0. Indeed, suppose that £ = 0;
then both the identity morphism 1x : X — X and the zero morphism
0:X — X lift the map 0: X — F. Hence, 1x =0 and X =0.

Without loss of generality, we can assume that A and X are unital
and consider only unital A-modules. Let us represent A as a reduced
inverse limit, lim(A,,7"), of Banach algebras. Since A, is a Banach
algebra, the dual space A} can be considered as a left A,-module with
respect to the operation [a, - fr](bn) = fn(bnan), an,bn € Ap, fn € A%,
Moreover, we can endow A} with a left A-module structure by putting
a-fn="1n(a)- fn for a € A.

Take an arbitrary element ey € F, ¢y # 0. For each n we define
the linear continuous map ¢, : A% — E by ¢,(f) = f(1.)eo, where
1, = 7, (1) is the identity in the algebra A,,. Let ¢, : A* — X be the
A-module morphism that lifts ¢,,.

For n < m, put j* = (r/")* : A% — A’ . Let us show that

n
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Ypi1j2tL = 4, for all n, i.e., the following diagram is commutative:

Ay X

=

*
A5 ©n

Since 1)y, is the unique A-module morphism that lifts ¢,,, we need only
check that pi, 157" = ¢,,. We have

PUntrdin T (f) = pnpr (Fr™h) = onpa (frp )
= f(T:LH—l(ln-i'l))eO = f(]-n)eO = Qan(f)

Hence, ¥, 1j7"! = 1,,, and we can consider the A-module morphism
wh_n;(A:errzlJrl) — X, ¢=11_I>n1/}n

Define the A-module morphism p : X — B(A,E) by the rule
[p(z)](a) = p(a - z). We endow the space B(A, E), with the topology
of uniform convergence on bounded subsets of A. Let us prove the
continuity of p relative to this topology. Suppose D is a bounded
subset of A and U is a 0-neighborhood in E. A typical 0-neighborhood
in B(A, E) has the form

M(D,U)={ge B(A,E): g(D)CcU}.

Take such a 0-neighborhood M(D,U) C B(A, E); obviously, W =
p 1(U) is a O-neighborhood in X. Since D is bounded, we can take a
0-neighborhood V' C X such that D -V C W. Indeed, if Vj and V}
are 0-neighborhoods in A and X, respectively, such that V- V; C W
and A > 0 is such that D C AVp, then D - \~'V; ¢ W, and we can put
V = A"'V;. We have

[(V)I(D) =p(D-V) Cp(W) =U,

i.e., p(V) C M(D,U). Hence, p is continuous.
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Consider the following commutative diagram

limA, —% X —2 . B(A,E)
_)

T

*
Ap Pn

Here 5(g) = g(1) for g € B(A, E) and j, is the natural map from A}
to hi>nA;‘l

Put A = pt. Since A is an A-module morphism, we see that

(1) A(Gn(fu))](@) = fn(mn(a))eo

for all n € N and f,, € A}; here 7, : A — A,, is the natural projection.
Indeed,

[AGn (fa))l(@) = [A(Gn(fu))I(1 - @) = [a- A(Gn(Fn))]I(1)
= [AUn(ma(@) - fu))I(1) = ¢n(Ta(a) - fu)
= [Tn(a’) ' fn](ln)eo = fn(Tn(a))eO-
Put F =Im C X. Note that Im A is contained in the subspace

L={g€B(AE):Img C Cey} C B(A,E),

which is isomorphic to the strong dual space A* (the isomorphism
i: A* — L is defined by the rule f — f(-)eg). We obtain the following
commutative diagram:

lim A* r A
_>

Here a(z) = v¥(z), B(y) =i~ 1p(y), r(z) = i~ A(z). It follows from (1)
that

(2) [r(Gn(fn)))(@) = fn(Tn(a))
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for all n € N, f, € A}. Combining this with [6, IV.4.4], we see that r
is an algebraic isomorphism of the vector spaces h_r)n A’ and A*. Hence,

the maps a and S are also algebraic isomorphisms.

To continue the proof of the theorem, we need several lemmas. In
what follows, by Z* we shall denote the strong dual of an l.c.s. Z.

Lemma 1. Let E = h_H)l(Ea,jg) be a direct limit of l.c.s’s (here «

runs over some directed set A). Consider the linear map s : E* —
@(Ez,(]g)*), st fe {42(f) : « € A}. Then s is a continuous
algebraic isomorphism.

Proof. 1t is well known that s is bijective, see [1, 26.1.2]. The
continuity of s obviously follows from the definition of a topology on

lm(E, (75)). O

Corollary. Suppose E = h_r)nEn is the direct limit of a sequence of
Banach spaces. Then s : E* — lim E is a topological isomorphism.
H

Proof. Since E is a (DF)-space, as the direct limit of a sequence
of (DF)-spaces, we see that its strong dual E* is a Fréchet space.
Further, the space lim E is also a Fréchet space (as the inverse limit of

a sequence of Banach spaces). Now the assertion follows from Lemma 1
and the closed graph theorem. O

The following lemma, as well as the previous one, is surely well-known
for specialists in the theory of topological vector spaces. Unfortunately,
we could not find an exact reference, and so we give a proof.

Lemma 2. Suppose that a Fréchet space E is represented as
the reduced inverse limit of the accompanying Banach spaces: E =
@(En, ™). Then the continuous linear map 6 : E** —>£i£1(ET‘;*,(T[L”)**),
O(a) = {7} *(a) : n € N} is a linear topological embedding of E** into
lim(B;", (720)").

Proof. Let us first introduce some notation. Given a set C C F,
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by C° we denote the polar of C' with respect to the duality (E, E*).
Further, given a set D C E*, we write D*® for the polar of D with
respect to the duality (E*, E**).

Suppose {U,, : n € N} is a basis of convex circled 0-neighborhoods in
E. Then {US* : n € N} is a basis of convex circled 0-neighborhoods in
E**. Without loss of generality, we can assume that U, D U, for all
n. Hence, U;* D UpY, for all n. Let |- ||,, be the Minkowski functional
of U,. To simplify notation, we also denote the Minkowski functional
of the set U2® by the same symbol || - ||,,. Since E** is a Fréchet space,
see [6, IV.6.5], we see that it is isomorphic to the reduced inverse limit
of the sequence of the accompanying Banach spaces (E**),. Denote
the corresponding connecting maps by o™ : (E**),, = (E**),, m > n,
and denote the natural projections E** — (E**), by o,. For each
n € N consider the linear continuous map 7,;* : E** — E>*. We have

7" (@)[| = sup{|m" (@) fu| = fr € T(Un)°}
(3) = sup{|a(fuTn)| : fu € Ta(Un)};
lalln = sup{|a(f)|: f € Uz},

for all @ € E**. It follows from (3) that ||7*(a)|| < ||a|ln- Let us
prove the opposite inequality. Take any f € U?, then |f(z)| < ||z||n
for all z € E, and f induces the functional f, € E; by the rule
fn(m(z)) = f(x), z € E. It follows that, for each f € Uy, there exists
frn € 7 (Uy,)° such that f = f,7,. Combining this with (3), we obtain

the inequality ||72*(a)|| > ||@||n- Thus, we have ||72*(a)|| = ||@||». For
each n the map 7%* induces the linear continuous map 6, : (E**), —
E'*, 0p(on(a)) = 75*(a). Since ||7*(a)|| = ||a|ln, we see that 6, is

an isometric embedding of (E**),, into E*. Consider now the map
0 : E** — lim E}*, which is defined in the statement of the lemma. It

is evident that 8 = lim 0,,, and since all 6,, are isometric embeddings,
it follows that the map 6 is topologically injective. i

Remark 3. It can easily be checked that the same proof is valid for
an arbitrary complete barreled l.c.s. E.

Let us continue the proof of the main theorem. Recall that we have



NONEXISTENCE OF COFREE FRECHET MODULES 1137

obtained the following commutative diagram:

lim A7, T A*
H.

Consider the diagram

fm A7
RN
(imy 47) r e
\ /
-

Here s is the isomorphism defined in Lemma 1 and 6 is the embedding
defined in Lemma 2. To prove that this diagram is commutative, we
need only check that # = sr*. Recall that we have obtained the equality
(2): [r(Gn(fu)](a) = fu(mn(a)) for all a € A, f,, € A%. This means that
Tjn = T,. We have

0(n) = {2 ()} = e} = {nrdn} = {7n ()} = {n (77 ()} = s(r*(n))

for alln € A** i.e., 8 = sr*. Hence, the latter diagram is commutative.

Since s is a topological isomorphism and € is a topological embedding,
we see that the map [* is also a topological embedding. Hence,
the spaces A** and A C A** are topologically isomorphic to the
corresponding subspaces of F*. Further, the strong dual F* of the
metrizable l.c.s. F' has a fundamental sequence of bounded sets; this
means that there exists a sequence of bounded sets { B, } such that each
bounded set B C F* is contained in some B, see [6, IV.5.2]. Hence,
A C F* also has such a sequence {D,,} : D,, = B,NA. Let U, be a basis
of convex 0-neighborhoods in A such that U,, D U, for all n € N.
By assumption, A is nonnormable; hence, U, is not contained in D,
for any n, see [6, I11.2.1]. Therefore, we can take a point z, € U,\D,
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for each n. Evidently, the sequence {z,} converges to 0; hence, {z,} is
a bounded set. On the other hand, {z,} is not contained in Dy, for any
k and thus cannot be bounded. This contradiction proves the theorem.
O

Acknowledgment. The author is grateful to A.Ya. Helemskii for
valuable discussions.

ENDNOTE

1. Some of these questions were recently answered in the negative in author’s
paper [5].
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