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WEIGHTED NORM INEQUALITIES FOR
MAXIMAL CONVOLUTION-TYPE OPERATORS

V. OLESEN

1. Introduction. The classical approach to the study of con-
vergence of approximate identity operators has strong connections
to the weighted norm inequalities satisfied by the Hardy-Littlewood
maximal function. In particular, if ¢ : R® — Ry, [|4]l1 = 1 and
b () = e "p(e'x), then ¢. x f — f in LP, 1 < p < oo. Further, if
the associated maximal operator

T*f(x) = sup |¢e * f(x)]
e>0

is dominated by the Hardy-Littlewood maximal function, then ¢. *
f(z) — f(z) for almost every x.

In this paper we study the convergence questions of more general
convolution-type operators:

Tof@) = [ oa(a 010 dvte).

Here v is a measure on R"™ and {¢5 : R" x R® — R,}, § € T
is an arbitrary collection of measurable functions. We give “weight”
conditions on the measures u,v and specify the sequences §;, C I" to
obtain pointwise and norm-convergence with respect to the measure p
of the sequence

{Ts,,. f(z) iz

In the Lebesgue measure case the proof of the convergence of
{¢e * f(x)} for almost every z, as € — 0, proceeds by first show-
ing that this is the case for f € C.(R™), and then by proving that
SUp.~q |Pe * f(z)] < ¢||@||1M f(x), where M f is the Hardy-Littlewood
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1104 V. OLESEN

maximal function. The last inequality uses the facts that ||¢¢||1 = [|d]|1
and the translation invariance of Lebesgue measure, something no
longer available in general. Further, M f has to be replaced by a max-
imal function that is more suitably adapted to our problem. Our ap-
proach will generalize a maximal operator introduced by Bagby [1] that
involves “averages” over arbitrary sets instead of cubes or balls.

Section 2 introduces a class of general maximal operators and the as-
sociated Bagby type operators. Weighted weak-type norm inequalities
for the new operators are obtained. Section 3 defines the Bagby maxi-
mal operator that we will use to obtain our convergence results. Both
weak and strong-type norm inequalities are obtained for this operator.
In Section 4 we introduce the convolution operators we wish to study
and we examine the corresponding maximal convolution operator. In
Section 5 pointwise convergence results are given and in Section 6 norm
convergence is studied.

Throughout, we will assume that p and v are two nonnegative Borel
measures on R"™ such that 0 < u(Q), ¥(Q) < oo for every cube Q C R™.
B will denote the o-algebra of Borel measurable sets. All functions will
be assumed Borel measurable and nonnegative. f; is the nonincreasing
rearrangement of f with respect to the measure p. || f||p,q,. denotes the
Lorentz space “norm” of f:

o0 1/q
q N dt
o= (2 [ 0 500%) L 1<,

and, when g = oo,
Hf”p,oo,u = sup y[/‘{f > y}]l/p'
y>0

Given nonnegative integer s,s’ will denote the conjugate exponent to
s defined by the equation ss’ = s + s'.

2. Bagby’s maximal function. Let B, , denote the closed ball
centered at x with radius r > 0. Consider the maximal function

M f(z) = sup (Bm)aly(Bm)p /B f(t) dv(t)

r>0 U

where f >0,0<0<1,0<p<lando+p=1.
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Lemma 2.1. If1 <o ! < oo, then

(2.1) 1M fll1/e),00u < Cllf /o)

Proof. If we set ¢p, , = XB, ,V(Bre) ?u(Bre)”7, then

S —

>0

If MEf(x) is the above maximal function with the sup extended over
all » < R and if E = {MEf > y}, then using the Besicovitch
covering theorem, we can find {B,,};>1, r; < R, such that E C UB,,
X B,, < ¢, and

[ tom,dv >y

From this, we get

Since

([ o )" = s (%)/ -1,

we obtain

C
W(E) < yl/a/ﬁ F17° dv.

The constant c is independent of R and hence the result follows if we
let R — oo.

Remark. When o = 0, M f(z) = sup, v fB fdv, and this
is weak (1,1) with respect to the single measure v.
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Lemma 2.2. Assume 1 <r <o ! <oo. If u < cv, then

1M f

00 < CIIf

|nu-

Proof. We begin as in Lemma 2.1.
1 T
uE) < S ue) < =5 us)( [ sou )

< y—eru(Bj)(/Bj rr du> (/B ¢E§j>m,

and

MB»(é,gaﬁ#:u@m<m3&$ﬁgﬁw>ﬂH

Nl—ro
_ 1(Bj) <e.

V(B;)rr—Dr/r =

Remark. Under the hypothesis of Lemma 2.2,
/ (Mf)rdu<c frdv
n R’fl

if 1 < r < o7l This follows from the Marcinkiewicz interpolation
theorem.

We will use inequality (2.1) to obtain weighted weak-type norm
inequalities for the following Bagby maximal function.

Definition. For any numbers 1 < p;,p2,p3 < co with 1/p; +1/ps +
1/ps < 1, define the Bagby set function

m(E,z) = sup{,u(Bmc)1/”11/(371@)1/”V(E\Br’w)l/m}
>0
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where £ C B, x € R". Further, define

1
A = _ d
@) =sup s [ fav
where the sup is taken over all sets E € B with 0 < v(E) < co.

Throughout, we shall assume that Af is measurable, and we denote
by C the collection of all measures v that satisfy the continuity con-
ditions: v(B;;) — 0 as r — 0, v(B,;) is continuous in r for every
x.

Theorem 2.3. Letv € C. Given 1 < p1,p3 < 00, 1 < pa < 0o with
1/p1+1/pa+1/p3 <1,

1A lps,00u < Cllfll¢10s
where ¢ = (1 — (1/p2) — (1/p3)) L.

Proof. Let v = s'(p3 — s’)~! where s is chosen so that 1/p; + 1/ps +

s'/p3 = 1. Further, let 0 = p3(p1ps—p1s’)~! and p = p3(paps —pa2s’) L.

Note that o + p = 1. For each E € B with v(E) >0, 7 > 0, z € R",
define

B, ) Y/riy(B, )P~ 1/p:
T(E,T,x):sup{r:’r'yzu( ) v(Bra) }

v(E\B, ;)'/ps
Then v < r(E,1,z) < r" gives
(2.2)
BBrre)” VP y(Br ) M p(Bro)™ (B o) Y
V(E\By ;)P B B V(E\By 5)t/ps

By the continuity properties of v, for any 0 < 7 < o0,

1 1
m(E, x) /Efdy = m(E,w)/B fdv

r(E,T,z),x
- / fd
i — 4
m(E,.’L‘) E\By(B,r,2),2
1
= lim 7/ dV>
T’TT(Evﬂw) <m(E’ '/Ll) B'r",z f

1
+ lim <7 /
rr(Bre) \m(E,2) Jp\B,,

= A+ B.

f dy>

x
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To estimate A, use the first half of expression (2.2)
1 U(BT’I)UV(BT’Z)’)
_— dv < : —— M
) fy, 1 ey I
(2.3) < (B )7 Y Pry (B )Pt/ P2
B V(E\By ;) /P
<7t 'Mf(x).

T

Mf(x)

The second half of (2.2) implies that, for 7'/ > r(E, T, z),

L v(E\B» z)(l/s’)—(l/pa)
> : .
- M(B,,-Nyz)l/plI/(B,,Jl’w)l/pz

Therefore,

1 / 1 L
N fdl/ S Nz =Y f sV E Br”,z /s

x

2.4 , )(1/s")=(1/p3)
(24) < UE\Br.a) | Fllew
M(BT,,J)(I/PI)I/(B,,,,,w)l/l’z ’
< o

Combining (2.3) and (2.4) we have that, for any 0 < 7 < oo,
1

2. — <7t'M s,

(25) g L s TMi@ L

Taking 7 = c,ny(:c)’l/(“’H)||f||;,/u(7+1) so that the right side of the
above inequality is minimal gives

(2.6) Af(z) < C,ny(x)l/('VJrl)||f||'577/y('7+1).
Therefore,

y+1

plz = Af(z) >y} < #{m : Mf(x) > yfv}
cyllfllsw
C
e e e

(2.7) S cracd ELECA A

C
Zaygv/e) £1L e
< ypl ||f||s,u ||f’|1/a,u'
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Letting f = Xp € L°(v) for any set B with v(B) < co gives
CU (s"p1+sp3)/s
pla - Af(x) >y} < %V(B) Prvspelieps,

That is,

IAX B lps 0o < CEv(B)°.
Since A is sublinear, we may apply the proof of Theorem 3.13 [10, p
195] to get the desired result.

Remarks. Following the proof of the previous theorem, we use the
notation o = p3(p1p3 — p1s’) "' where necessary.

(i) In the proof of Theorem 2.3, s = 1/0 implies that Af is of weak-
type (1/0/,p1), i-e.,

p{z: Af(z) >y} < _Hle/a'l/

To see this, (2.7) gives
pla: Af() >y} < 2 <o

= I

(ii) Under the above conditions, if y < cv for some constant c,
P1,P2,p3 are such that 1 < ps, ps < oo and 1/py + 1/p2 + 1/ps +
p2/p1ps < 1, then we can deduce that

[AF v < Coyll fllazw

where ¢ = (1 —1/p1 —1/pa—1/p3)~tand g2 = (1 —1/p1 —1/p2)(1 —
1/p1—1/pa —1/ps) "

To see this, use the fact that 1 < s < o~! and M f is strong (r,7) for
any 1 <7 < o~!, by Lemma 2.2. Then, by (2.6),

/ AFOHD dy < Ol / MF# dyp < C|f5G .
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Calculating out the appropriate exponents gives the result.

(iii) If p = v = Lebesgue measure, ps = oo and p; = p}, then A
corresponds to Bagby’s original maximal function [1]. He showed that
Af is lower semi-continuous and that A need not be weak (p1,p1).

(iv) If p3 = 0o, Af can be replaced by

Mf(z) = supu(B)*l/Ply(B)*l/p'l/ fdv
B

where the sup is taken over all balls B centered at xz. This operator is
weak-type (p1,p1) by Lemma 2.1.

With a slight modification, the proof of Theorem 2.3 yields certain
strong-type norm inequalities for Af. Recall that, for f > 0,

r>0 U

Mf(x) = sup (Br,z)aly(Br,w)p v/B,.,z f(t) dl/(t)

where o = p3(p1ps — p15’) L, p = ps(paps — p2s’) L.

Theorem 2.4. If Mf satisfies the weighted strong-type norm in-
equality

(2.8) IMfllppu < Bl fllpw
for all f € LP(v), v €C, 1 < p < oo, then for r = pp3(ps — p') L,

(2.9) [ASllrn < Cppslf

.-

Specifically, Cp.p, = BY"[p'/(ps —p/)] #'/P2.

Proof. Proceeding as in Theorem 2.3 with s = p and v =p'/(p3 —p'),
we choose 7 = 4~V (HD N £(z)~ 1/ O+D)|| £]|,4/ TV so that the right
side of inequality (2.5) is minimized. Thus,

Af(z) < 7*7/(7+1)Mf(x)1/(7+1) ||f||;/157+1)

p/ P’ /ps , ,
~ () M
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Therefore, by (2.8),

/ > —pp’/(p3—p")

Af(@)" dp(z) < B( P

e 1715

Rn

and inequality (2.9) follows immediately.

Question. We note that r 1 co as p3 | p’. Similarly, r | p as p3 1 oco.
Do these facts have any interesting consequences? For example, can we
extract an r = p result?

3. Convolution-type operators. Let {¢s : R" x R" — R,},
6 € T, be a collection of Borel-measurable functions. For f > 0, we
now study operators of the form

Ts f(z) = - F)¢s(z,t) dv(t)

for f > 0. We define the essential least radial majorant of ¢s about =
as

bs(x,t) = sup sz, 7).
|T—z|>[t—=|

Let Egy and Egy represent the level sets of height y for ¢s(z,-) and
¢s(x,-), respectively. That is,
(31) Egy = {t : ¢5($7t) > y}7 Egy = {t : (275($7t) > y}
M (z) is the function

M(z) = sup/ m(Egy, x) dy.

s Jo

We define the maximal convolution operator with respect to the ¢s’s
as

T"f(w) = sup T f (x).

Lemma 3.1. If1 < ps < oo, 1/p1 + 1/p2 + 1/ps < 1 and
1/pi+1/p2+5'/p3 =1,

T f(z) < Af(2)M ().
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Further, define

3 (a) = sup / WS )Py ()P (B3 YV dy,

M,(z) = sgp/ bs(x,t) du(t),
0
and M,(z) is defined similar to M,(x). If, for each x, there is a
0 < R(x) < oo so that supp ¢5(,-) C Br(s),e, then
Af(x)M(x) < Af(2)M (x)

(32) < Af() My (@) 17 My (@)% - sup g5z, ) [3153,

Proof. If ES={(t,y) : ¢s(x,t) > y}, writing ¢s(z,t)= [~ Xps (t,y) dy

gives
e = [ [, r0wwia<ase [,
0

which proves the first 1nequahty.

Further, assume that, for each =, R(x) exists as stated. We define

r(y) = r2(y) = sup{r : v(E3,\Br.) > 0} < R(z) < 00

Then

/L(Br,cc)l/plV(Br,z)l/pzV(Ezy\Br,z)l/ps

S N(Br(y),z)l/plV(Br(y),z)l/pzy(Egy)l/pg

so that

A zyax / r(y /p1 (Br(y),ac)l/pz’/(‘E;v;y)l/p3 dy
/ E5 1/p1 (E6 )1/P2 (E5 )1/P3dy
1/p1 oo B 1/p2
< ([ mezw) ([ weta)
, 51/1’3
| / V(B dy)
0

. 1/p1 N 1/p2
= ( ¢s(x,) d#(ﬂ) < s (,1t) d”(t)>
R Rn
s (, 157
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We thus obtain the chain of inequalities (3.2).

Theorem 3.2. Let 1 < py, ps < 0o, 1/p1 + 1/p2 + 1/ps < 1.
If M(z) < oo for u-almost every x and v € C, then there are sets
Ay CAy CA3C -, p(R*"\UA, ) =0, such that

1Xa; T Fllpy,00m < Cill Flle1,

where ¢ = (1 — (1/p2) — (1/p3))~*. C; depends only on Aj, p1, p2 and
b3.

Proof. By Lemma 3.1, T* f(z) < Af(x)M(x). Letting A; = {z :
M(z) < j} and using Theorem 2.3 gives the result.

If p2 = co, we get the following

Corollary 3.3. Let v € C. If 1 < py,p3 < o are such that
1/p1+1/ps <1 and

sup [ u(B2,) P u(EL) 7 dy = K(z) < o,
0

p-almost every z,

then
IXa;T* Fllpr 00 < Cill fllpy,1,0

where A; = {z : K(z) < j}.

Remarks. (i) If ps = oo, we can use the fact ¢s(x,t) < ds(x,t) to
deduce that

(3.3) T* f(z) < Mf(z)M,(z)"/P M, (z)"/7

where M f(z) = sup u(B) V/P1u(B) Y71 [, f dv, the sup being taken
over all balls B centered at z. The proof of Theorem 3.2 can be altered
to produce

||XAjT*f||p1,oo,u < Cjzn”f“pl,v
where A; = {z: M,(z) < j,M,(z) < j}.
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(ii) Condition (3.3) of the previous remark is related to the A, classes.
If dp = ude, dv = v' 7 dz, ¢ = XBy s Ge(,t) = e "P(e (z — 1)),
then )
T*(fo" “)(2) = caMprf(2)
where My f(z) is the Hardy-Littlewood maximal function. If (u,v)
satisfies the following “weak A,” condition

(. )t o)
sup | —— u v 00, a.e. T,
r>0 |Brm| B, ‘Brz‘ B,

then weak-type norm inequalities can be obtained for Mgy, f(z) re-
stricted to the increasing sets A;; by the previous remark,

u{z € Aj : Myrf(z) >y} < ij_p/fpvdt.

(ili) Let a; be a sequence of positive real numbers with a; 1 co. Let
I; be a sequence of disjoint intervals in R! such that if ug = Y- a;Xy,,
then Murug(r) = a; for x € I;. If v =1, (ug + v,v) € weak A\ As.

The classical approach to the subject of approximate identities, as
discussed in [8] or [11], for example, requires that the least decreasing
radial majorant of the kernel function be integrable. We will show
now that Corollary 3.3 allows us to replace ||¢||1 < oo by the weaker
condition

(3-4) /°° {2 : d(a) >y} [{a : ¢() > y}|"Pody < oo

0
for some 1 < pg < co.

Corollary 3.4. Let ¢ : R® — Ry be in LY(R"). If Tsf(z) =
s * f(x), 6 >0, ¢5(t) = 67 "p(07't), and T* f(x) = sup;.q ¢s * f (),
then (3.4) implies

(a) {z : T*f(z) >y} < (c/y™)| flIpo.1>

(b) T fllp < cpll fllp» Po < p < oo

Proof. The sets ES E2, are as in (3.1) with ¢5(z,t) = ¢s(x —t).

Ty T

Then, for every § > 0,

/ B3[P |2 VP dy = (3.4).
0
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Hence, A; = R™ and Corollary 3.3 gives (a); (b) follows by interpola-
tion.

Remark. A result similar to Corollary 3.4 can be proved by denomi-
nating 7% f by the pth power Hardy-Littlewood maximal function

1/p
1P dt) .

My f(z) = sup (

>0 ‘Brz| Br.

Proceeding as in Lemma 3.1,
b 1(@) = [ oula =D

_ / h / £(t) dt dy
0 {t:¢pc(z—t)>y}
< / 162 > 9} [VPHoe > g}V dy - Myf (@),

where

1
y _ ] t) dt
+$(@) w [{0e > pH71{6e > P /{¢s>y} o

1 1/1’
< P — P(¢) dt
= >y}|1/p</{¢s>y}f “ )

1 v 1/17
< - t) dt
= <|{¢a >y} {$E>y}f © >

< M, f(z).

Since M, is weak-type (p,p), so is T™*.

We will now show that <;~S € L* fails rather markedly to be a necessary
condition for a norm inequality of 7 f. We do this for n = 1.

Theorem 3.5. Assume that ¢¢9 > 0 is a nonnegative decreasing
function supported in [0,1] such that ¢o(t) — oo as t — 0 and
¢0(1) = 0. There is an E C [0,1] such that if ¢(t) = Xg(t)po(t)
and ¢.(t) = e~1p(e71t), then
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(a) ¢ € L*,
(b) Ly = {t : ¢(t) > y}| - [{t : go(t) >y} "> = 1 as y — o0,
() IT* fllp < Cpllfllp for all p > 1, where T* f(x) = sup,~q ¢ * f(z).

¢]

Proof. Find 0 < 6,, < oo so that

(i) 22 ¢0(1/n)bn < oo,

(ii) {I, = [n7,n™t + 0,]}n>2 is a disjoint collection,

(iii) 0 < 6,, < e~ ®0(1/n) _ o—¢o(1/(n+1))

Let E' = Up>2I,. We prove each point in the statement separately.
1 n 140, _ . .

(a) fo o(t)dt = Zn22 fl/n + do(t)dt < > ¢o(n1)b,. Using (i)

above gives the desired result.

(b) For fixed y, find n so that ¢o(1/n) <y < ¢o(1/(n + 1)). Then,
since ¢(t) < ¢o(t) almost everywhere,

S > _ oo > wH
{6 60(0) > v} = [{Z: do(D) > v}

Ly

On the other hand,

PG CES [ !
Yt go(t) >y T n+1{t: go(t) >y}
1 n 1
T ltidot) >ytnt+in
1 n
- — 1 asy— oo.
n+1

That is, L, —+ 1 as y — oo.

(c) Let 1 < py < oo be given. For each ¢ > 0, define E; = {t: ¢.(t) >
y} and By = {t : ¢.(t) > y}. Put M, = I \E;P/PO\E;P/PS dy. For
each y, find n so that ¢o(1/(n+ 1)) > ey > ¢o(1/n). Then

(3.5) Byl =el{m: d(r) > ey} < el{r: do(r) > ey} < e
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and
B =elfr o) > el << 0 6
j>n+1
(3'6) <e Z (e*¢0(1/j) _€*¢0(1/(j+1)))

jzn+l
— g Po(1/(n+1)) < ge %,

Now, writing M, = fooo \EZP/PO‘E;P/IJS dy = Ol/s—i—flo; = A, + B,

allows us to make the following estimates using (3.5) and (3.6)
1/e ,
A, = / |E;|1/p°‘E;|1/p° dy
0
’ 1/6 ’
<etmettss [T or) > e} dy
0
1 ) L
= [ W otr) >y dy < ol
0
Bo= [ B e dy
1/e
< gl/po1/pp /Oo e~ev/Po gy
N 1/e

o0 ’ /
- / e ¥/Po dy = pgefl/po'
1

So, for large enough j, the sets A; appearing in Corollary 3.3 equal
R. Hence, ||T* f|lpy,00 < C||f|lpy,1- Since the above argument holds for
any 1 < pg < o0, interpolation gives the result.

Remark. Under the conditions of the theorem, we see that T™*
is an operator that is strong (p,p) for every 1 < p < oo but not
necessarily weak (1,1). This follows directly from Theorem 10.4.1 or
Theorem 10.4.5 in [3].

4. Pointwise convergence. With each z in some subset £ C R",
we associate a sequence {d;;};>1 C I, and we ask the question: given
measures y and v, when do we get p-almost everywhere convergence of
the sequence Ty, f(z) for appropriate f > 07
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For each function h : R® — R, define its exceptional set for
convergence as

Epn, ={x € E: lim Ts,_ h(z) — lim Tj, h(x) > 0}.
100 —00

Since Ep, need not be measurable, we will make use of p*, the outer
measure induced by p.

Theorem 4.1. Assume 1/p1 + 1/ps + §'/ps = 1, 1 < p1,p2,ps,
s < o0, and let ¢ = (1 — (1/p2) — (1/p3))~L. Let f > 0 in L(¢,1,v),
e >0 and A < p*(Ey,) be given. Then if M(x) < oo, p-almost every
z and v € C, there is a g = ge 5,0 € Cc(R") such that

A< p*(Eg) +e.

Proof. With A; = {z : m(z) < j} as in Theorem 3.2, let
E;j={z € ENA;:imTy, f(z) —UimTs, f(z) > 1/5}.

ThenEf1CEf2C"' .

We claim now that there is a jo such that A < p*(Eyj,). If, for every
J, *(Eyj) < A, then p*(UEy;) < A and hence p*(Ey,)—p*(UE;) > 0.
Since p*(Ey,) < p*(UEf;)+p*(Ef,\UE};) and since p* (UEf;) < A <
00, we have p*(Eys,\UE};) > 0. However, E¢,\UEs; C R"\UA; and
u(R™\ U A;) = 0.

For every g € C.(R"),
Efjo - {:E € EmAjo : 2T*(f —g)(l’) > (2j0)_1} U Egl"
Therefore, by Theorem 3.2,

W (Brjo) < pla € Ajy : Alf — gl(2) > (450) 7>} + 1" (Egy)

<
< )P CNf — gl + 1 (Bgw).

Since C.(R™) is dense in L({,1,v), we choose g appropriately to give
the result.
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Theorem 4.1 allows us to attain the y-almost everywhere convergence
result for the appropriately defined sequences {§;, }.

Definition. We call a sequence {d;;} C I" a (v, z)-sequence, provided
(i) Jgn @5:, (z,t) dv(t) converges as i — oo,

(ii) f\z—t\ZU bs,, (x,t) dv(t) — 0 as 1 — oo for all n > 0.

Further, define the existence set E:

E ={x € R": 3(v, x)-sequence {d;5}}.

Theorem 4.2. Assume 1/p; + 1/p2 + §'/ps = 1, 1 < p1,p2, ps,
s < oo. Let {¢s : R" x R" — Ry}, § € T be a collection of Borel
measurable functions. Assume that M(xz) < oo for u-almost every
z and v € C. Then, for f € L((,1,v), the sequence {Ts,, f(x)}i>1
converges for p-almost every x € E.

Proof. We will show that, for g € C.(R") and =z € E, T, g(z) —
L(z)g(x) where L(z) = lim; oo [ ¢s,, (z,t) dv(t). Theorem 4.1 then
proves the result.

By the definition of (v, z)-sequence, for each = € E,
/ ¢s,, (z,t)dv(t) — L(x) asi— oo.
|le—t|<1
Fix € E. For each € > 0, there is an N. € N so that ¢ > N, implies

< E€.

g tetetran= st

Therefore,
/ b5, (2, 1) dv (1)
|le—t|<1
< mos { [ o @0@0,00) +e} = M)
lo—t|<1

i=1,...,N¢
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Specifically taking € = 1,
/ bs.. (z,1) du(t) < Ma(1) < 00, Vi.
le—t|<1

Let 0 < ¢ < 1 be given. Find 1 > n > 0 so that |z —¢] < n =
lg(z) — g(t)| < €. Then,

Th.0) - L@@ <= [ o mndvl)

+ /thn ¢s,, (z,t)g(t) — g(z)| dv(t)

+ lg(=)]

/R b (1) du(t) — L)

< M)+ 2l [ s ()l
lz—t|2n
@l [ éset)avtt) - Liz)

Applying the definition of a (v, z)-sequence finishes the proof.

The proof of Theorem 4.2 shows that, for g € C.(R"™), T, g(z) —
L(z)g(x) where L(z) = lim [ ¢s,, (z,t)dv(t). We now show that, in
general, the limit of the sequence {T5,, f(x)}i>1 is L(x) f(x).

Theorem 4.3. Assume that M(z) < oo, p-almost everywhere, and
that

Li@) = lim [ 65, (z,1) dv(t)

1—00
is measurable. Then, for f € L({,1,v), v € C, where ( = (1 —(1/p2) —
(1/p3))~",

Ts,. f(x) — L(z)f(x) p-almost every x € E.

Proof. Case 1. Take f € L(¢,1,1+v). Then

(4.1) Ts,. f(z) = L(z)f(x) p-almost every z € E.
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To see this, define A7 = {z € A;NE : [L(z)| < j} where 4; = {z :
M(z) < j} as in Theorem 3.2. For z € A} and any g € C.(R"),
Ts.. f(x) = L(z) f ()| < Ts,,1f = 9l(2) + |T5,, 9(2) — L(z)g ()|
+|L(2)[lg(z) — f ()|
< JA(If = g9))(@) + |Ts,.9(z) — L(z)g(x)]
+Jlg(z) — f(=)].
By the proof of Theorem 4.2,
Bim T5, f(z) = L(z)f ()| < JA(f = g]) (@) + jlg(z) = f(z)].

Define E; = {z € A} : lm|Ts, f(x) — L(z)f(z)] > j~'}. We
will show that p(E;) = 0 for each j which proves (4.1). Note that
Ej CE]'+1 C --- and

u(Ej) < p{z € A A(|f - gl)(z) >
|

25°)7'}
+u{z € A} ¢ |g(z) — f(z) '

(
> (25%)
By Theorem 2.3,
ule € A A(f — g)(@) > (2771 < CEAIf - gl

which can be made as small as we please by choosing g appropriately
since C.(R™) is dense in L({,1,v). Similarly, by Chebychev’s inequal-
ity,

p{z € AN B :g(x) — f(2)] > (27)7"}

< @2j)¢ / F =gl di < )N — gl

Case 2. f € L(¢,1,v), f =0 on E C R", implies that

Ts,. f(r) — 0 p-almost every x € E.

To prove this, take any compact set K C F and show that Ty, f(z) —
0 for p-almost every € K. Let G = R™\ K, and let g be any arbitrary
function in C.(G). For z € K,

T, f ()| < [T5..(f — 9)(2)| + |Ts.. 9()].
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Since g =0 on K, T, g(z) — 0. Therefore,
lim [Ty, f(z)| < Iim |T5,, (f - g)(x)|-

If A7 is defined as in Case 1, we can argue as before to show that

e € KN AL Tm (T, f(2)] > 57 < (o) -j)f/G|f gldv

< (e 9IS = 9llg 1

Case 3. In general, for f € L((,1,v), it suffices to show that
Ts,, f(z) = L(z) f(z) for p-almost every « € By, where

By ={z: L(z) < j, f(z) < j,|z| < j}-

To do this, let fr, = fXxp, and fr = fXrn\B,- Then, for y-almost every
x € By, Case 1 gives

Ts,, fr(z) — L(z) fr(z) = L(z) f(z).

By Case 2, B

5. Norm convergence. In the previous section p-almost every-
where convergence was obtained as a consequence of the weighted
weak-type norm inequalities satisfied by Af. This section will use The-
orem 2.4 to study the norm convergence properties of convolution op-
erators. We will therefore require conditions under which M f satisfies
strong-type norm inequalities

(5.1) 1M fllp,u < Cllfllp-

Simple examples show that (5.1) is not always satisfied. For instance,
let v = Lebesgue measure and p = v + §y where g is the Dirac delta
concentrated at 0. Take any sequence {f,} in LP with f,(0) 1 oo and
| fullp = 1. Inequality (5.1) implies

/ Mo (2)? dz + fo(0) < C,
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which is clearly false.

However, as a consequence of the following rearrangement inequality
of Leckband and Neugebauer [6], we can find a suitable condition on
the measures p and v for (5.1) to hold.

Theorem 5.1. If, for each ball B in R"™, there is a Borel measurable
function ¢p : R™ — [0,00) with suppdp C B, then the mazimal
function

Mf(z) =sup [ ¢, [fdv

r>0JRn
satisfies the rearrangement inequality

Mp© <A [ s
0
A depends only on the dimension n and

®(t) = Dy () = sup{p(B) ¢k, (1(B))}-

By Minkowski’s integral inequality,
M Fllpu < Clifllpw

whenever ® € L(p',1). Therefore, a suitable condition on the measures
p and v for (5.1) to hold is

o(t) = Sup[u(B),,(B)—l]ps/(pzps—pzp’) e L(p',1)
At
where A; is the collection of balls B with v(B) > tu(B). When u = v,
for example, the condition is satisfied for every p > 1.

We shall assume that, if {;;} C T is a (v, z)-sequence for p-almost
every z € E, then, for each ¢, Ty, f(x) is measurable as a function of
on E.

Theorem 5.2. Assume M(z) < oo p-almost everywhere and
®cL(p,l),1<p <ps. Let Aj = {x € E: M(zx) < j}. Then,
for every f € LP(v), v €C, 1 < p < oo,

{Xa,T5,. f(z)}
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converges in L™ (u) for r = pps(ps — p') L.

Proof. Since M(xz) < oo p-almost everywhere, X4,Ts, f(z) —
L(z)f(x), p-almost everywhere. Also,

Xa,Ts,, f(2) — L(z) f ()] < 277" f ()"

By Lemma 3.1 and inequality (2.9) of Theorem 2.4, we may apply the
Lebesgue dominated convergence theorem.

The question of L (i) convergence is more complicated. It does not
appear that we can appeal to any of our pointwise convergence results
since none apply to L'(u) functions. Define the nested sequence of sets

*
A]- as

A = {a: €EE: sqp/d)(;im(m,t)du(t) Sj}.

Since L(z) < oo on E by definition, u(E£\ U A7) = 0. For each pair of
nonnegative integers ¢ and j, we define

T5(0) = [ 5. (e.0) du(o).

Theorem 5.3. If ||H;j|lco < c¢j <00, j=1,2,..., then, for every
feLl(u+v),

Ts,, f(@) — L(@)f(x) in L*(A, ).

Proof. Case 1. Assume f € C.(R"). Let Fy = suppf, Fr =
{z : dist(z,Fy) < k}, M = sup f(z). Since each F} is compact,
w(Fr) + v(Fy) < 0o, k € N. Let € > 0 be given.

Find & so large that

Py = / Ts,, f(z) dp(x) < €/6.
A\ F
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To do this, consider the integral

/" Ykmf(w)du(x)Zl/‘ b, (0, 1) £ (t) dv (1) du(x)
A7\ Fo

A\Fo JFy

g/fw 6., (1) dps(x) du(t)
Fo A’Jf

<M -¢;-v(Fp) < oo.

The finiteness of this integral together with the fact that Fj T R™ as
k T oo provides the existence of such a k.

Next, choose > 0 so that |f(z) — f(t)| < e[6ju(Fk)] ! whenever
|z — t| < n. Define the sets S,, and Ty, as

S = {x €E: bs,, (z,t) dv(t) < e[12Mu(Fy)] i > m},

|z—t|>n

Tpp = {x €E: /qﬁ(;m(x,t) dv(t) — L(z)

< e[6Mu(Fy)] Y > m}.
We consider the following integrals:

B= [ sy 01000 duto)

/ / b5, (1) f () dv(t) dp(x),
ANFe\Sm J |z—t|>n

/A’fﬂF /|—t|< ¢6m(x’t)f(t)dy(t) d/,L(;I,‘)’
/AmF - f(z) /¢5iw (x,t) dv(t) — L(z)

Ps = / f(z)
ATNF\Tm

P

Py

Py

du(),

/(;55” (z,t) dv(t) — L(z)

du(z).
Then

[ 5.5 ~ L@ 1 (@) dule) < Po+ P+ Po+ Pyt P+ By

J
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By the definition of S,,, Py <&/6. Py < 2-M-ju(Fi\Sm) which can be
made less than €/6 since u(R™\ U S,,) = 0. P3 < ¢/6 by the definition
of n. Py < /6 by the definition of T},, and, since u(R™\ UT,,) = 0,
Ps can be made less than /6.

Case 2. Assume now that f € L'(u + v). For any g € C.(R"),

J

5. £(@) = @) @) du@) < [ [ 65170 = 900l dv(t) du(o)

N /A Ts9(2) — L2)g()] dp()
+ /m L(z)|g(x) — f(x)|du(z)

=Q1+ Q2+ Qs.

Clearly, @3 < j[|f — gldv. Fubini’s theorem and the uniform
boundedness condition on the H;;’s gives Q1 < ¢; [ |f — g| du. Both of
these terms can be made as small as we like by choosing g appropriately.
Q- is controlled by Case 1.

Simple examples show that, in general, the L' convergence result
cannot be extended to functions in L'(v). Let {3,}, » > 0 be a
sequence of nonnegative numbers with > 8, < 1. Define

v(t) =Y BiXgirn(t) + Y BiX(—i-1,-4(b),

i>0 i>0

and let §; represent the Dirac delta measure concentrated at 0. Define
the measure v and p by dv(t) = v(t) dt+dp and p = Lebesgue measure.
Put ¢i(z,t) = i~ X(z,044)(t). Clearly, [ ¢;(z,t)dv(t) - L(z) =0 as
i — oo and, as such, d;; =i is a (v, x)-sequence for each z. Also, it is
clear that A7 = R for j > 3. Therefore, for j > 3,

t
blant) dule) =i [ do =1

A*
J
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For f(t)=1¢€ L'(v)\L*(p) and j > 3,

/A T3 () = L@ )] dute) = /R /R b1, 1) dv(t) da
> 0.¢,'(ac,0)dm

-1

=1
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