ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 29, Number 3, Fall 1999

CONVEXITY AND SMOOTHNESS
IN REAL INTERPOLATION
FOR FAMILIES OF BANACH SPACES

L.Y. NIKOLOVA AND T. ZACHARIADES

ABSTRACT. We show how the uniform convexity and
uniform nonsquare properties of an interpolation operator
can be preserved by the induced operator between the real
interpolation spaces for infinite families. Also we show how
uniform smoothness is inherited by real interpolation spaces
for infinite families.

Introduction. In [9] the authors studied how the properties of uni-
form convexity and uniform non-/} are inherited by the real interpola-
tion spaces, which were constructed by Carro’s K-method for infinite
families.

In this paper we show how the uniform convexity and the uniform
nonsquare properties of an interpolation operator can be preserved
when we pass to the induced operator between the real interpolation
spaces, which are constructed by Carro’s K and J-methods for infinite
families. These results extend some of the results of [9]. Let us
note that the analogous problem has already been considered for the
compact, weak compact and limited operators [4, 3]. Results of this
type for finite families can be found in [6, 7] and other papers.

We also study how uniform smoothness is inherited by these interpo-
lation spaces.

Preliminaries. Let D denote the unit disc {z € C': |z| <1} and T
its boundary. Let A = {A(y) : v € T, A,U} be a complex interpolation
family (i.f.) on I', with I/ as the containing Banach space and A as the
log-intersection space, in the sense of [8]. More precisely, following [8,
1, 2] and [5], we assume
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(i) the complex Banach spaces A(7y) are continuously embedded in
U(|| - ||y will be the norm on A(y) and || - |y the norm on ),

(ii) for every x € N,erA(7), the function y — ||z||, is measurable on
L,

(ili) if A = {z € A(y), a.e. v € I': [ log" ||z]lydy < 400} is the
log-intersection space, there exists a measurable function P on I' such
that [,.log" P(v)dy < 400 and, for every z € A, ||z|ly < P(v)l|zy
almost everywhere on T'.

Let

L={s:T' = R" | s is measurable and logs € L*(T")},

and

C= {a:ijXE:nEN,xj € Aforj=1,... ,nand (F;)}_;

j=1

are pairwise disjoint measurable subsets of F}.

We denote by C the set of all Bochner integrable functions o : I' — U
such that a(y) € A(y) almost everywhere on I', and there exists
a sequence (ay)n in C such that lim, [[on,(7) — a(v)]]y = 0 almost
everywhere on I'. For every a« € C we define f, : I' — R, by
fa(y) = lla(y)|ly if a(y) € A(y), and fo(y) = 0 otherwise. It is clear

that C is a linear space, and if a1,z € C and sfa,,5fa, € L(T), then
Sfar+as € LU(T) for 1 < g < +00 and s € L.

Now following [1] and [2], we define the K, and J,-functionals and
the interpolation spaces [A]es,p,q and (A)5 ., with respect to the i.f. A.

0,p,q°
Let s€e Land 1 < g < +c0.
We put

K,(s) = {:17 €U : there exists a € C with

x = /Fa(v) dy and sf, € Lq(I‘)}
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and, for each = € K (s), we define the K — g-functional by

Kys,0) =it { ([ (S(W)fa(v))qw)l/q :
v = /Fa('y) dy and sf, € Lq(r)}.

Also we put

5 = {o e s [[slell ) ar < oo},

and, for each = € J,(s), we define the J,-functional by

sisa) = ( [ <s(v>|w||7>wv)l/q.

If we have more than one i.f., then we write K z(s), J, z(s), K, z(s, z)
and J, %(s,z).

It is easy to see that the K, -functional is a semi-norm and the J,-
functional is a norm.

For s € £ and 0 € D we write s(f) = exp [.log s(v)Py(7) dy where
Py is the Poisson kernel at the point 6.

Let S C Land 1 < p, ¢ < 00, A be an i.f. and § € D. The space
[A]g%q consists of all € U for which € K,(s) for every s € S and
(Kq(s,2)/5(0))ses € IP(S), endowed with the quasi-seminorm

sesS

The space (A) gvpv o is the set of all elements z € U such that there exists
u(s) € Jy(s) for s € S, such that x = Y _su(s) (in the ¢f-norm) and
(2 ses(Jqls, u(s))/s(#))P)'/P < +oo. This space will be endowed with

the quasi-semi-norm

el , = ( (M)
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where the infimum extends over all possible representations of x.

If S satisfies some conditions, see [1, 2|, then the K -functional is
a norm and the spaces [A]g,p,q and (A)§7p7 , are interpolation Banach
spaces. Under these conditions, S is a countable set. In the sequel we

shall assume that the set S satisfies these conditions.

Let A = {A(y),y € T,U} and B = {B(y),7 € I',V} be two if. An
interpolation operator 1" : A — B is a linear operator T : i/ — V such
that T'(A,) C B, and there exists M € £ with ||T,|| < M(vy) fory €T,
where T, = T[4, .

Let T : A — B be an interpolation operator with ||T,| < M(v) for
some M € L. If || M| < 400, respectively if {MS : s € S} C S, then,
for every 1 <p, ¢ < 00, S C L and 6 € D, we get T([A]5, ) C [BI7, ,»
T((4)3,,) C (B)j,, and the operators T : [A]§, . — [Blj,, and

T:(A); . — (B)j

0.p:q 0.p.q are bounded operators, with norm less than or

equal to || M ||, respectively M(6), see [1, 2].
5

We denote by TKgs , respectively TJés , the operator T : [A]j v
»Pyq ,Psq e
(B3 4> respectively T': (A)g . — (B)F , .-

Let X,Y be two normed spaces and T" : X — Y be a bounded
operator. For every 0 < e < 2, we put
Mz +yll
2

5T(5):inf{1 :z,y € Bx and ||T(z) — T'(y)|| 25},

where Bx is the unit ball of X, and
é(T) = sup{0 < e < 2||T| : 6z () = 0}.
T is said to be a uniformly convex operator if and only if d7(g) > 0
for every 0 < e < 2, that is, £(T") = 0.

T is said to be a uniformly nonsquare operator if and only if there
exists 0 < & < 2 such that dr(e) > 0, that is, £(7") < 2.

If X is a normed space and I : X — X is the identity operator, then
X is uniformly convex if and only if I is uniformly convex and X is
uniformly nonsquare if and only if I is uniformly nonsquare.

Let X be a normed space. For 7 > 0, we put

c+y|+llr—y
px(7) _sup{| Ple =il ey e x e < 1wl < T}'
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X is said to be uniformly smooth if lim, _,¢(px(7)/7) = 0.

1. Convexity. Lemma 1.2 is the basic lemma for the results of this
paper. This is a general version of Lemma 2 in [9]. Before we prove
Lemma 1.2, we give the following definition.

Definition 1.1. A family 7" = (7),er of bounded operators, such
that T, : X, — Y, where X,,,Y, are normed spaces, is said to be
compatible if T, (z) = T, (x) for any 71,72 € I' and z € X, N X,,.

Further, for any such family T' = (T ) er we define

My = esssup ||T, ||, mqp = essinf || T, ||
~yerl ~yer

and

er = inf{0 < & < 2my : essinf o7, (¢) > 0}.
vyerl

Remark. It is clear that if T : A — B is an interpolation operator
and T, = T'| 4., then the family (7)) cr is compatible. We denote the
family (Ty)yer by the same symbol T'.

Lemma 1.2. Let T = (Ty)yer be a compatible family such that
T, : Xy = Y, and (X4, - |l5), Y5,]-|y) are normed spaces, with
0 < mp < My < 4oo. Then, for every 1 < q < 400 and for every
er < e < 2mr, there exists §(¢) > 0 such that if f,g are two functions
on T, with f(v), g(v) € X, almost everywhere on T, [ || f(7)[|2dy <1,

JellgMNgdy < 1 and (¢ |Ty(F(7) — Ty(g(y)|2dy)/7 > &, then
(e IF @) + g2 dy)He < 2(1 = 6(e)).

Proof. For every 0 < ¢
Let 1 < ¢ < 400, er < €
er <eg<egy <eE.

2mr we put do(c) = essinf,crdr ().

<
< 2mg and f,g be as above. We choose

Case 1. [[f(7)|ly = llg(7)|ly almost everywhere on T'.
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The proof of this case is similar to the proof of Lemma 2 in [9].

We put ¢ : I — R, with p(7) = |Z5(f(7)) — T, (9())], almost
everywhere on I', and let

) ' and P
Iy = {7 €T f(),9(7) € Xy, f7) # 0 and s - > }

and

Ly ={yeT:f(7),9(y) € Xyand y ¢ ' }.

Then, for every v € I'y, we have
1F () + 9y <2070y (A = do(e2))-
Let o : ' — R, with

(1) vem,,
hlr) = { 11— 260(e2)] - [1f()]y 7 € T,

and f': T' — R, with f'(y) = [|[f(7)|l,. It is clear that h, f' € Bra(r).
We obtain

1/q
@) ( / ||f(7)+9(7)||?,d7> < IIf' + hlloco-
It is clear that
1/q
(3) ||f'h||Lq(F>=2ao(s2>( / ||f(7)||%dv> .
I

If v € Iy, then (1/e2)p(7) < [|£()ll;, and thus (fr,, ¢(7)?dy)"/? < ea.

So we get
1/q 1/q
e< (/w(v)%) <ex+ </ 90(7)"d7> -
T N1

From the above, it follows that

1/q

1/q
s—EQg( / so(v)qd’y) s2MT( [ |f(7)||3d7> ,
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and so
1/q
E — &2
4 . RS q ]
() i< ([ )
From (3) and (4), we obtain
do(e2) - (€ — e2)
BV — <" = hllLay-
> folea)(e — 2)
' ary < 2( 1= Opaq [ 2LE2LEZE2N) )
1"+ Rllze(r) < ( or (F)< My

Thus, from (2), we take

( 1) +g(7>||zdv)l/q < 2(1 a”(%))

Case 2. General case. We put h: ' = U,erX,, with

{ WL/ NlgNg(y) if g(v) € X,y

and g(y) # 0
f(v) if otherwise.

h(y) =

Then h(y) € X, almost everywhere on I, ||h(7)|ly = [|f(7)]|, almost
everywhere on T" and (5. [|h(7)[|2 dv)*1 < 1. We have

(s son) o ( [0+ oz an) :

+( Lot - h(v)llidv>1/q
~( o) +h<w)||?,dv)l/q

(5) + </F gl — ||f(7)||7qd7>1/q

~( 1) +h<v>||zdv)l/q

+lg" = ' llzay,
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where ¢’ : I' — R, with ¢'(y) = [lg(v)|ly and f' : I' — R with
F'(y) =1f()|ly. Also we have

(fim >>|qd7)1/q
( / (0 ))‘Idv)l/q
> (/|T >>|de)1/q2a

o ([muon-romms)”
> ([ oo -0
DR pE—
>e= ([ oo |qdv)1/q

=e—Mr-|lg' = f'llLa)

So

We choose n € N large enough such that
€ €
€1 <€*E and m <6Lq(1")<
If Mr - |lg" = f'lla(ry < (¢/n) then, from (6), we take

1/q c
</|T ))|‘1d7> >e-Sxe,

and so, from Case 1, we obtain

([0 netan) ™" <1 gy (MeDEZe0) ),
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Thus, from (5), we have

(/ ||f(7)+g(7)||%d7>l/q

We set

From the properties of n, we have that ¢’(¢) > 0. If Mp-||g'—f'||La(ry >
(e/n), then

" Pl ey <2(1 6 c
19"+ Flla) < < L(F)(nMT>>’

and so

1/q
( [ise) +g(7)|3d7> <If + oy

€
< 2<l — 6Lq(f‘) (TLMT>>
We put

. do(e2) - (61 — €2) € €
0(¢) = min [JLq(A,)( v — 2MTn,5Lq(p) it ) |

Remarks 1. Tt is clear that Lemma 1.2 is true, not only for the space
I', but for any measure space. The discrete variant of Lemma 1.2 is the
following.

Let T = (Tn)ne/n be a compatible sequence, where T), :
X, — Y, and (Xo, || - [[n)ne/ns (Yo, | - [n)ne/n are normed
spaces, with 0 < inf ||T},|| < sup,, ||Tn|| < +oo. Then, for every
1 < ¢ < +oco and for every e < ¢ < 2inf,¢c/n ||| there
exists §(¢) > 0 such that, if © = (xn)nen, 2 = (2n)nen with
Tny2n € Xn,m €N, 30y ll2alld <1, 30 cn 2]l <1 and

(3 i) - Tn<zn>|;a)1/q >,

neN
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then

(}jn%+wn@fmgzu5@»

n€/N

2. Let T' = (T))yer be as in Lemma 1.2. For every 1 < ¢ < 400 and
er < € < 2myp, we denote

q /q
dr,4(¢) = inf {1 — Ur /) +‘g(7)|| )’ ): f,g as in Lemma 1.2}.

If ¢ = ep we put dp4(¢) = 0. Lemma 1.2 says that dp4(c) > 0 for
every ep < € < 2mr.

Theorem 1.3. Let A = (A, [ly)yer; B = (By| - |y)qyer be two
i.f. and T : A — B be an interpolation operator with mr > 0 and
ITy|| < M(7y) for some M € L and ||M||x < +o00. Then, for every
1<p,g<+00,SCL andf e D,

(i) the operator Tys s a bounded operator with é(TKes ) <er,
and o .

(ii) the operator Tys is a bounded operator with é(TJes ) <er.
Pyq P q

Proof. Let 1 < p, g < 400, S C L and 0 € D. WeputTK:TKgs
sP
and T; = TJes .
»Pyaq

'q

(i) From [2] we have | Tk | < ||M||oo-

From Lemma 1.2 we obtain that, for every e < ¢ < 2myp, there
exists d(¢) > 0 such that Ky(s,z1 + xz2) < 2(1 — §(¢)), for every
s € 5, and z1,22 € K 7(s) with K(s,21), Ky(s,22) < 1 and
Kqfa, (@) — T(aa) > <.

For every s € S we put T : K 5(s) = K, 5(s), with Ti;(z) = T'(z)
for z € K 4(s). From the above we have inf,cs dr, (€) > 6(¢) > 0 for
every er < € < 2mr, and thus er, < er where Ts = (Ts)secs. Hence,
since S is countable, from the discrete case of Lemma 1.2 we obtain
é(TK) S Er.

(ii) From [2] we have ||Ty|| < ||[M]|co- From Lemma 1.2 we obtain
that, for every ey < ¢ < 2mrp, there exists §(¢) > 0 such that
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Jo(s,u1 + u2) < 2(1 — 4(¢)), for every s € S, and u1,us € A, with
Ja(s,u1) <1, Jg(s,uz) < 1 and Jg(s,T(ur) — T'(ug)) > e.

Let er < ¢ < 2mp and zj,z5 € (A)gpq with HQUIH(A)g ,
[ »P,aq

[22ll(ayg < Land [Ty(21) = Ts(@2)|mys =&

Then there exist (u1(s))ses and (u2(s))ses in A such that z; =
Yses ui(8), T2 = D g ua(s) and

L6 < ) <

seS sES

Since |Ty(z1) — TJ($2)|(B)§p , 26 we obtain

(Z (Jq(s,ﬂul(ss()e)) T(w(s)))p) oL

ses

So, since S is countable, from the discrete case of Lemma 1.2 and the
above we have

(35 (Bt st )Y <o o,

sES

and thus ||z; + x2||(A)esp s 2(1—-4(e)).

The next corollary follows from Theorem 1.3.

Corollary 1.4. Let A = (A,)yer, B = (By)yer be two if. and
T : A — B an interpolation operator, with my > 0 and ||T,| < M(y),
M € L and [|[M||oo < +o0. If essinf,crdr (€) > 0 for every 0 < e <

2mr, respectively, esssuperé(Ty) < 2mr, then Tx; — and Tys —are
'Pyq ,P,q

uniformly convex operators, respectively uniformly nonsquare operators,
for everyl <p, q< 400, SCL and § € D.

From Corollary 1.4 we obtain the next corollary.

Corollary 1.5. Let A = (Ay)yer be an if., 1 <p, ¢ < 400, S C L
and 0 € D. If essinficrda () > 0 for every 0 < e < 2, respectively
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and (A)j

esssup,eré(A,) < 2, then the interpolation spaces [A]3 i

0,p,q
are uniformly convezx, respectively uniformly nonsquare.

Corollary 1.5 for the case of the interpolation space [A]5 was proved

. 0,p,q
in [9].
2. Smoothness.

Lemma 2.1. If (X,)yer is a family of Banach spaces with

lim;_,o esssupyer(px, (7)/7) = 0, then essinfyerdx:(g) > 0 for every
0<e<?2.

Proof. Since lim; o esssup,er(pz., (7)/7) = 0, we obtain that X, is
uniformly smooth and so reflexive almost everywhere on I'. thus, we
have

TE
px. (1) = sup{? —dx:(e):0<e< 2}
almost everywhere on I' [10].

Suppose there exists 0 < g9 < 2 such that essinfyepéx; (e0) = 0.
Then

esssup px., (1) = esssup{sup{%g —0x:(e):0<e < 2} :yel}
yer

€
> esssup {% —0x:(g0) 17 € F}
N TEO . _ T_EO
= - esvselélfJX; (e0) = 5

which is a contradiction.

Lemma 2.2. Let 1 < g < 400 and (X, |- ||y) be a family of normed
spaces with lim,_,q esssupyer(px(r)/r) =0. Ift >0 and f,g are
functions on T', with f(v),9(y) € X, almost everywhere on I', such
thas (| F o )1/3 < 1 nd (o a9 )1 o = 7. them

(/ ||f(7)+g(7)||§dv> SALC ||de)1/q

<sup{2(1 —d;p(e)) +7e: 0 <e < 2},
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where (1/p) + (1/q) = 1 and I = (Iy)yer, where I, : X3 — X is the
identity operator for v € I.

Proof. Let 7 > 0 and f, g be as above. We put o(y) = [|f(7) +9(7)ll4
and o(v) = ||f(7) —9(7)||y almost everywhere on I'. Then o, € L(T)
such that ||oflzary < 1 and [|¢|lLery < 7. So there exist F,G €

Lr(T ) fOf (1/10) (1/q) = 1 such that ”FHLP(I") < L Gllzery £ 1,

Jr F( dy = |lo]|zar) and [ G(7) - (1) dy = || Lar). Also,
there ex1st wv,y € Bx: such that z ((f(v) + 9(v)) = o(y) and

yf,((f(V) —9(7)) = ¢(v) almost everywhere onT.

From the above and the Holder inequality, we obtain
lolex) + ellzace) = [ FO)- o) ddg + [ G0)- oty
= [P + gt
/ G() - y5((f(v) —9(v)) dvy
—Aw(>m+cu V() dy
) + [P = G0 i) et
< [ 1P+ 60) -3l - 1) b
+ [1PG) -2 = 60) -1 - lal, dr

s(ﬁww»ﬁ+awyﬁmmfm
+r(ﬂiu%w-x:cxv»ymmdw)uf

From Lemma 1.2, we have

er =inf{0 < e < 2:essinfdx-(e) > 0} =0.
yel v

%—(AWM@—GMQMMY@

We put
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From Lemma 1.2 and Remark 2 after the lemma, we get

1/p
2) ( / IF("/)I§+G(7)y$IIZdV> < 21— b1(0)).

So, from (1) and (2), we obtain

(feoreaces) T ([ 10tz an) N

<sup{2(1 — 9y p(e)) +7e: 0 <e < 2}

Remark. 1t is clear that Lemma 2.2 is true not only for the space I'
but for any measure space.

The discrete variant of Lemma 2.2 is the following.

Let (Xp)ne/y be a sequence of normed spaces with
lim,_,o(sup, px, (7)/7) = 0. If 7 > 0 and z,,y, € X,, for n € N
such that (377, 2 9)/7 < 1 and (X3, [ya][4)4 < 7, then

o0 1/q o0
(Z||wn+yn||q) +(Z||wn—yn||q)
n=1 n=1

<sup{2(1 —d;p(e)) +7e: 0 <e < 2},

1/q

where (1/p) 4 (1/q) =1 and I = (I,,)ne/n, where I, : X;; — X1 is
the identity operator for n € /N.

Theorem 2.3. Let A = (A))yer be an if, such that
lim, g esssupyer(pa, (7)/7) = 0. Then the interpolation space [A]g,p,q
is uniformly smooth for every 1 < p, ¢ < +co0, 0 € D and S C L.

Proof. Let 1 < p, q < +00, 8 € D and S C L. We denote by
I, : A% — A the identity operator for v € ' and I = (I, ) er-

From Lemma 2.2 we have that

K, z(s,2+y)+ K (s, —y) <sup{2(1 —drp(e)) +7e:0<e <2}
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for every 7 > 0, s € S, s,y € K, 7(s), with K z(s,2) < 1 and
K, Z(s,y) <.

From the above, we get

sup pg, (s)(7) < sup {%8 —0rp(e):0<e< 2},
s€S

and, thus, it is easy to see that lim o (supscs Pk, (s)(7)/7) = 0. Let
7> 0and 21,22 € [A]g%q,
Since S is countable, from the above and the discrete case of Lemma 2.2,

we obtain

with Hml”[A];qu <1 and HI?H[AL?M < T.

lerteallgg Flan—eallas < sup{2(1-0rq())+7e 0 < e < 2},

where Iy = (Ig,(s))ses and Ik (s) @ K;(s) — K;(s) is the identity
operator for s € S. So

TE
paig, () < sup {5 — 01y q(e) 1 0<e < 2}-

From this we obtain lim o(ppys /7) =0.

Theorem 2.4. Let A = (A))yer be an if, such that
lim, g esssup,cr(pa, (7)/7) = 0. Then the interpolation space (A)§7p7q
is uniformly smooth for every 1 < p, ¢ < +co, 0 € D and S C L.

Proof. Let 1 < p, g < 400,00 € D and S C L. From Lemma 2.2, we
obtain

Jo(s,z+y) + Jo(s,z —y) <sup{2(1 —drp(e)) + e :0 <e < 2},
for every 7> 0, s € S, x,y € Jy(s) with J,(s,y) <1 and J,(s,y) <7,

where I = (I,)er and I, : A%, — A% is the identity operator for y € I'.
So, for every 7 > 0, we have

sup pj, (s)(7) < sup {T—E —0rp(e):0<e< 2},
seS 2
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and thus it is easy to see that

(1) lim SUPgcs P, (T)

7—0 T

=0.

Let 7 > 0 and 1,22 € (A)‘g,pﬂ with ”le(A);qu <1 and ||I2||(A)§,,q <

7. Then there exist (u;(s))ses and (UQ(S))SES, with (s),u2(s) € Jy(s),

(B )"

seS

(B

seS

and

Since S is countable, from (1) and the discrete case of Lemma 2.2, we
obtain

(5 (=)
s (s) — un(s))\ P\ /7
(g (ee)

sES

<sup{2(1 — d1,4(e)) +7e: 0 <e < 2},

where I; = (I, (s))ses and Iy () @ Jy(s) — Jy(s) is the identity
operator for s € S. Thus,

‘|x1+m2‘|(14)§_p,q+||m1_w2||(A)§,p,q < sup{2(1—01,4(e))+7e: 0 <e < 2},
So

TE
< — 0<e< .
SUDP(4)F . SHP{ 5 01,q(e):0<ex< 2}

From the above inequality, we obtain lim,_o(p( A)S /7) =0.
P q
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