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0. Introduction. A is the ring of arithmetic functions with convolu-
tion as multiplication. It is well known that A is a unique factorization
domain [3]. Its ideal structure has been studied by Shapiro [5]. The
group of units, particularly the subgroup of multiplicative functions,
has been investigated by many people over the years. The multiplica-
tive functions can be characterized as those arithmetic functions which
are completely determined by their values at prime powers. Among
them are the completely multiplicative functions, namely, those that
are characterized by their values at the primes. The subgroup of the
group of multiplicative functions generated by the completely multi-
plicative functions, the (group of) rational functions, was studied in a
paper of Carroll and Gioia [2]. The name rational functions is due to
Vaidyanathaswamy [6, pp. 611-612]. It is this subgroup, denoted here
by M™, that we are concerned with.

Among other results, we show that M® is a free (abelian) group; in
particular, it is torsion-free and each element has a unique representa-
tion in terms of a generating set consisting of completely multiplicative
functions. The group M™ is especially rich in subgroups. Our general
approach is to look for “interesting” subgroups, that is, we shall use
the subgroup structure as a useful means of classifying the arithmetic
functions in this group.

Let
Mk:{'yEM.;'y:a*---*a,k times,« € My}

and
My ={y"' e M™;ye M},

where M, is the set of completely multiplicative functions. Then every
element of M™ can be written as a (convolution) product 7, * v '
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where v, € My, and y; € M;. We denote the convolution identity by J,

thus
§(n) _ { 1 n=1; ‘
0 otherwise.

6 € My, NM;. Observing that My C M1 and My C My7, |, we define
M* = UMy, M~ = UM .

Then we can also write M™ = M* « M~*, with the obvious interpre-
tation of the product.

It is well known that if v € My, then v~ 1(p") = 0, n > k, for each
prime p [2]. It is also probably well known that M* N M~* = {§},
that is, that the inverse of a nontrivial element in some Mj, is not in
M; for any j, (Proposition 1.2 below). From these facts follow the
freeness of M™ Corollary 1.3.2. Using these ideas, we are able to give
a recipe for constructing multiplicative functions which are not in M™,
thus showing that M is strictly larger than M™. Of course, both are
uncountable.

The following point of view will prove useful. Let v € Mj. Then
v is implicitly determined locally, i.e., at each prime number p, by a
(monic) polynomial of degree k (its Bell polynomial at p). So, fixing
p, we study the local behavior of M™. Thus, given a prime p and a
polynomial z* + ;2! + ... + a; = P(z), an arithmetic function 7 is
determined locally by letting y~(p") = a,, if n < k and 0 otherwise.

In Section 2 we determine (p™) explicitly in terms of the roots of
the polynomial P(z) and the discriminant of P(z). In Section 3 we
produce two recursive families of polynomials {F »(t1,...,tx)} and
{Gkn(t1,... ,tx)} which have the following virtues:

(i) v(p™) = Fgn+1(a1, ... ,ar), Theorem 3.1. This gives an explicit
local representation of + in terms of the coefficients a; of P(x).

ii e G-polynomials are related to the F-polynomials by partia
ii) The G-pol ial lated to the F'-pol ials b tial
derivation.

In Section 4 we discuss the locally periodic functions. A function ~y
in M* is locally periodic if, for some fixed positive integer s, v(p" %) =
~(p™). Here we prove that v is locally periodic if and only if the roots
of the polynomials determining 7, P,(x), are roots of unity and P, (x)
itself is a factor of a polynomial of the form z% — 1, Theorems 4.1 and
4.2.
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1. The group M".

Theorem 1.1 [2, Theorem 2.2]. v € My, implies that v~'(p") = 0
forn > k.

Theorem 1.2. v € My and v % & implies that v~1 ¢ M, for any
n € N.

Proof. Suppose not. Let k be the least integer for which the result
is false. Let v = B X, B,X € M™. We have from Theorem 1.1
that v 1(p!) = 0 for t > k and 4(p!) = 0 for t > n. We can
suppose that 8 € M; and that X € Mj_q, so that X = v * ™.
Now X(p") = v(") + (" ")B7(p), (") =0, r —j > n+1
and 8~ 1(p?) = 0, j > 2. Thus y(p"7)B(p?) = 0 if j > 2 or if
j<r—-mn—1 Soifr =n+3, x(p") = 0. Thus X ! € M,2.
Bp") =y xxHp") = X" )X Hp?). xHp) =0, > k. Also
(') =0forr—j >n+1,ie,if j <r—n—1. Sor > k+n+1, then
v(p"77) = 0 when j < k, and X(p’) = 0 when j > k; thus, 3(p") = 0 for
r > k+mn+ 1. Hence, 371 € My i,+1. But B € My, so B(p") = B(p)"
for r > k+n+ 1, and hence S(p) = 0. 8 =0 and v € Mj_4, the
desired contradiction. The case k = 1 follows easily from an obvious
adaptation of the argument concerning 3 used above. ]

Theorem 1.3. Each element of M™ has a unique representation in
terms of generators from M.

Proof. 1t is sufficient to prove the result for v € M™* and repre-
sentations of v in M*. Suppose v = aj * -+ xa, = (1 * - % (s,
0 # a4, 0 # B and «4,8; € My, and suppose that » < s. Now, by
Theorem 1.1, 41 is uniquely determined by its values a; = v 1(p?),
j <r, thus r = s. Moreover, the a;(p) are the roots of the polynomial
" +ayz" "'+ -+a,. Therefore, for some permutation 7 of {1,...,7},
a; = Br(i)- o

Corollary 1.3.1. M™ is torsion-free.
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In fact,
Corollary 1.3.2. M™ is free.

Since M; is infinite, in fact, uncountable, M™ is an infinitely-
generated (uncountable) free abelian group.

The elements of M™ whose M;-generators have the same values at
each prime p clearly form a subgroup of M™. We call this subgroup
the uniform subgroup of M™ and the multiplicative functions in this
subgroup, uniform functions. The uniform subgroup is clearly a proper
subgroup of M™. Now let {X;} be a family of uniform functions, one
for each natural number k, such that X, '(p) = Xpi1(p!) for t < k
and X1 (p**1) # 0. Construct a multiplicative function § by defining
6~ uniformly on all primes p to agree with the inverse of the uniform
function X on its first k values. Now an element of M}y or of My’
is completely determined locally by k constants, e.g., by the values of
its completely multiplicative generators at p, or by the coefficients of
its polynomial P(z). Thus 6 is certainly not in M* nor in M*~. If
6 =yxx~!, where v € My and X € M;, then fxy~! € M]-_1 and hence
is determined by finitely many constants. But this is clearly not the
case.

Theorem 1.4. M® is a proper subgroup of M.

Remarks. It would be of interest to know if M is locally free, or even
torsion free, and to know what is the structure of the quotient group
M/M"™.

2. Local properties of M™. The local generating function,
i.e., the Bell series relative to p, for & € M is 1/(1 — a(p)x), thus
a generating function for a=! is 1 — a(p)z. Consider v € M;.
Y = oy % --- % oy, where a; € M. Let a;(p) = r;. Using the fact
that the convolution product of arithmetic functions translates as the
pointwise product of their generating functions, we have as a generating
function for v, =¥ + a;2* ' + .- + a;, where the aj are up to sign the
appropriate symmetric functions of the r;. In particular, a; = =) r;,
ap = (—=1)* M; r;. Thus, given any prime p and any set of complex
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numbers ay, ... ,ax, a unique v € My, is determined locally by letting
v 1(p") = a;. We seek now explicit expressions for the v(p") in terms
of both the r; and the a;. Let P,(z) = 2 + a4+ + .

Define

1 1
T1 Tk
Ak - A(rla ark) = . .
-1 -1
] ooy
and
1 1
1 Tk
Apn = Dpn(ry,...,mp) = :
k—2 k—2
o k rkk
n+k—2 n+k—2
T Tk

Theorem 2.1. Let P(z) be a monic polynomial of degree k with
coefficients a; € C, i = 1,... ,k, and with roots ry,... ,rg. Let vy be
the arithmetic function in M* determined by P,(x). Then v(p") =
Apn+1/Dr, when k> 1, y(p™) = r"”, when k = 1.

The theorem follows from this lemma.

Lemma 2.1.1.

r?:fZair?_i, i=1,...,k, k>2.
i

Proof. First assume the truth of the lemma; then the theorem follows
by an easy induction. Let v(p™~!) = Ay ,,,/Ak for m < n. Using the
lemma we have v(p") = —(1/Ax) >_; Agn—;. The theorem now follows
using the multilinearity of the determinant function with respect to the
last row, with the help of the lemma. For & = 1, the computation is
direct. o
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Proof of the lemma. a; = (—1)7 Y 7, -+ -7}, so the righthand side of
the formula in the lemma becomes

_ (Zw)rgl +oee gt (1)i<ZTj1"'Tji>T?i

£ (DR )R, s=1,00 k.

That is,
a; = —ry — errgfl 4.+ (_1)1'27“]_1_”
i7s s
rjry * £ Zrﬂ ey R H rir R L
J#s jr#s
Cancellation leaves —r7, which gives the lemma. o

Corollary 2.1.2. Ay is a factor of Ay p.

Corollary 2.1.3.

Yt = Y e
2iion

J

Remark. The case k = 2 is of interest, for then Theorem 2.1 gives the
multiplicative function (in M™) as (rP™* — r*1)/(r, — ry) where r
and 7, are the roots of the quadratic polynomial 2 + a;x + as. In the
case that a; = —1 and ay = —1, these are just the Fibonacci numbers.
More generally, for k = 2, we get the Lehmer numbers.

Remark. A} is the discriminant of the polynomial P, which deter-
mines the arithmetic function ~.

3. The polynomials F(ty,...,t;) and G(t1,...,tx). First we
consider the polynomials P(z;t1,...,t;) =xF —tjzF 1 —-. —tp inz
with parameters tq, ... ,t;. With respect to these parameters we define
Fi.n(t1,... ,tg) inductively by

ka(t)zo, n < ].,
Frai(t) =1,
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and
Fini1(t) =t1Fen(t) + - + teFrpn_rt+1(t),
where ¢t = (t1,...,t;), kK € N, n an integer; and G, (t1,... ,tx) by

ka(t) =0, n<o0,
Gk’o(t) =k,
Grpnt1(t) =t1Grpn(t) + - + tGrpn—r41(2).

Theorem 3.1 [1]. v(p"*™!) = Fy »(a), a = (a1,... ,ak).
The theorem follows from
Lemma 3.1.1. y(p"*1) = =Y a;y(p" 7 11).

Proof. This follows immediately from the fact that yxy~1(p®) = §(p*)
is 0 when s > 0 and is 1 when s = 0, the fact that v~ !(p®) = as when
s < k + 1, and the fact that F 1(a) = 1 (and Fyo(a) = 0). O

Proof of the theorem. The theorem now follows from the definition
by letting t; = —a;. O

Remark. With Theorems 2.1 and 3.1 we now have direct expressions
for the values of = directly in terms of both of the coefficients and
the roots of the defining polynomial. Moreover, the expressions in
terms of coefficients are recursive. The following theorem gives a direct
expression for the G-polynomials in terms of the roots.

Theorem 3.2. Gy ,(a) =r}+---+r}, where {r;} is the set of roots
of the polynomial z* + a1z '+ +ag, j=1,... k.

Proof. Gpo(a) = k. By definition, G pni1(a) = > t;Grn—jt1(a)
which is equal to Y t;(r7 7T + ot r 9 by induction. Letting
tj = —aj, this becomes — Y a;(r} /T + ...+ r?77!) which, in turn,
equals — >3, 37 ajr;kﬁl. But this is just 7} ™! +- .- +77"! by Lemma
2.1.1. O
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There is a number of pretty connections between the F-polynomials
and the G-polynomials, for example:

Theorem 3.3.
k-1
Gro =k, Gin = Frppy1 + thj—l—le,n—ja n > 1.
=1

The proof is straightforward and will be omitted. O

Theorem 3.4.
aGk,n

at;

=nkFyn, n2>0.

Again, the proof will be omitted. ]

The two systems of polynomials are also related to each other by
derivation.

When k = 2, we have lists that begin

Fr0=0 G20 =2

Forp=1 Gap =t

Fho=1t Gog =15 + 2ty

Fa3 =17 +1 Gas = t3 4 3t1ty

Foy =5 + 21ty Gaa =t + 4t3ts + 2t3

Fys=t]+3tita+t2  Gags=1] + 5tity + 5tyt;

Thus, for the case k = 2, it is reasonable to call these polynomials,
respectively, generalized Fibonacci polynomials and generalized Lucas
polynomials. When (t1,t2) = (1,1), the F-polynomials generate the
Fibonacci numbers, the G-polynomials generate the Lucas numbers.
(I am not aware that the term Lucas polynomials has been used
before.) In fact, by appropriate selection of values for ¢; and t3, we
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can generate the Pell and their companion numbers, the sequences
{2™ — 1} and {2" + 1} and, more generally, the Lehmer numbers and
the companion Lehmer numbers. Perhaps it would be more appropriate
to call these two sequences of polynomials Lehmer polynomials and co-
Lehmer polynomials.

4. Locally periodic arithmetic functions in M™. We call
v € M* locally periodic if v(p™**) = v(p") for n = 0,1,..., and for
some natural number s. We would like to characterize the v which have
this property.

Recall that a v in M* is completely determined by its polynomial
P,(z), that Py(z)Px(z) = Py.«x(z), and that v % X has a unique
representation in terms of completely multiplicative functions.

Theorem 4.1. Let r1,...,r, be the roots of Py(x), v € Mg, v is
locally periodic only if r1,... ,ry are Toots of unity.

Lemma 4.1.1. Ify € M* is locally periodic and v = ax X, a € My,
then X s locally periodic.

Lemma 4.1.2. If o € M; is locally periodic, then r is a root of
unity, where Py(z) =z — r.

Proof of Lemma 4.1.1. Suppose that « has period s, and write
X = v * a1, and let  — r be the polynomial for a. Then X(p") =
Y(p") + (" = (") + (T = X(P"T), e, X(0") =
X(p™t*). O

The proof of Lemma 4.1.2 is an immediate consequence of the defi-
nition of the F-polynomials for £ = 1. Note that it is a consequence of
Lemma 4.1.1 that the o that appears in the product decomposition of
v is locally periodic and so satisfies Lemma 4.1.2.

Theorem 4.1 now follows by induction. On the other hand, it is
easily seen that ™ — 1 determines a locally periodic function with
period m; therefore, it is a consequence of Lemma 4.1.1 that cyclotomic
polynomials determine locally periodic functions as well (which we
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might as well call cyclotomic functions).

Corollary 4.1.3. If is locally periodic, then so is every convolution
factor of v locally periodic.

However, it is not the case that the product of two locally periodic
functions is necessarily a locally periodic function. For example, (z—1)?
determines a function which is not locally periodic.

Theorem 4.2. If v,y € My, is locally periodic with period s, and if
the roots of Py(x) are the j;th roots of unity, ri,... 7Tk, r; # rj, for
1 # j, then

(i) s = L — k42 where L = LCM{j1, ... ,jx}, and

(ii) v is a (convolution) factor of X, X € My, where X is periodic
with period L and Py = z¥ — 1.

Proof. We have from Theorem 2.1 that when n 4+ k — 2 = L, then
y(p™ ') = 0. This occurs when n = L — k +2. Thus s = L — k + 2.
Clearly z7 —1 divides z¥ —1, which gives the second part of the theorem.
O

In particular, in the notation of Theorem 4.2, v is periodic if and only
if 27 — 1 divides ¥ — 1 for each j € {j1,... ,jx}.

Corollary 4.2.1. If the coefficients of the defining polynomials are
restricted to the rational field, then the completely multiplicative locally
periodic functions are just those determined by the linear polynomials
z — 1 and x + 1. The quadratic polynomials which determine locally
periodic functions are CP(3), CP(4), CP(6) and CP(1) times CP(2)
where CP(m) is the mth cyclotomic polynomial.

The arithmetic functions determined by the quadratic polynomials
mentioned in Corollary 4.1.3 are, in the order cited, the functions with
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value vectors

(1,-1,0,...) period 3;
(1,0,-1,0,...) period 4;
(1,1,0,-1,-1,0,...) period 6;

and

(1,0,...) period 2.
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