ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 29, Number 4, Winter 1999

QUOTIENT MAPS WITH STRUCTURE
PRESERVING INVERSES

M. ZIPPIN

ABSTRACT. It is proved that certain quotient maps g :
(Zn Un)i; — Y, where U, are finite dimensional spaces,
have the following property: If E is a subspace of Y with
a “good” structure of uniformly complemented finite dimen-
sional subspaces, so is the subspace ¢~ 1(E) of (Zn Un)i,- In
particular, any quotient map g : Iy — L1 has this property.

1. Introduction. Let ¢ : U — Y be a quotient map. In general,
very little is known about the connection between a subspace F of Y
and the subspace ¢~!(E) of U. In this note we discuss a quotient map g,
the inverse of which preserves the 7 property and the finite dimensional
decomposition property. Recall that a space F is said to be a ) space,
A > 1, if there exist a sequence {E,, }22 ; of finite dimensional subspaces
of E, with By C E; C .-+ and US2,E, = E, and a sequence of
projections {P,}52; of E onto E, with sup, [|P,|| = A < o©. E is
said to be a 7 space (or, to have the 7 property) if it is a 7 space
for some A > 1. The pair of sequences ({E,}>2,,{P,}52,) will be
called a 7 structure of E. If E has a m structure ({E,}52 1, {Pn}32)
and, for every n,k > 1, P,Py = PP, = Pyin(k,n), then the sequence
{(P,—Pn_1)(E)}2, is called a finite dimensional decomposition of E,
f.d.d. for short, and FE is said to have the f.d.d. property.

Our main result is the following

Theorem. Let Y be a wy space with a wx structure ({Y,}22,,
{Qn}y), and let U = (307 Yy)i,. For each n > 1, let U, denote

the subspace {(0,...,0,y4,0,...) € U :y € Y,}, and denote by 7, the
——
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natural isometry of U, onto Y,. Let q : U — Y be the quotient map
determined by the relations q(u) = 7,(u) if u € U, for every n > 1.
Then for every subspace E of Y with a m structure (with an f.d.d.),
q Y (E) has a 7 structure (an f.d.d., respectively).

We will prove the theorem in Section 2. Let us now discuss the
following two examples.

Example 1. Lindenstrauss investigated in [1] the properties of the
following quotient map ¢ : I3 — L1[0,1]. Let {u;}$°, denote the
unit vector basis of I3 and X(A) the indicator function of the subset
A C [0,1]. For each m > 0and 1 < ¢ < 2" put ul! = ugn_144
and define ¢ : Iy — Ly by q(ul?) = x([((¢ — 1)/2™),(i/2™)]). It is
clear that g satisfies the assumption of the theorem and therefore ¢!
preserves the m and f.d.d. properties. Moreover, because l; is quotient
homogeneous, (i.e., if ¢; : Iy — L is another quotient map, then there
is an automorphism 7" on l; for which ¢; = ¢T, see [2]) any quotient
map qi : Iy — Ly has the same property.

Remark. Note that the same holds for every quotient map g:l; =Y
if Y is an L;-space. Indeed, in this case Y has a m) structure
({Yn}22, {Qn}52 ) where each Y, has a basis {y{‘}?g), d(n) =dimY,,
satisfying the inequality A S0 Jai| < | LY sl < S0 Jail
for every sequence of scalars {ai}?iq). Clearly U = (>, Yn)i, is
isomorphic to I; and therefore the argument presented in Example 1
proves our claim.

Example 2. Let Y = I3, let {y;}$2, be any orthonormal basis of Y’
and put Y,, = [y;]7;. Put U = (3, Yo)i,, Un ={(0,...,0,9,0,...):
n—1
y € Y.}, and let 7, : U, — Y, be the natural isometry. Define
q : U = Y by the relations g(u) = 7,(u) if w € Up, n = 1,2,....
Then g satisfies the assumptions of the theorem; hence, ¢~ ! preserves
the 7 and f.d.d. properties.

Let u? = (0,...,0,y;,0,...) for every n > 1 and 1 < i < n. Then,
——
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clearly, kernel (q) = [u? — u?T!]?_,

Y i " |iz1m=1 and the theorem implies that
every subspace V of U which contains kernel (¢) has an f.d.d. In fact,
one can show that every such subspace has a basis because kernel (¢) has
a natural basis, ¢(V') has a basis and, as is easily seen, the projections
V, on V constructed in the proof of the theorem can be chosen so
that the spaces (V,, — V,_1)(V) have bases with uniformly bounded

constants.

2. Proof of the theorem. Let us begin by taking a close look at
the structure of K = kernel (q). Let K, = {u € >\, ®U; : q(u) = 0}.

Claim 2a.

Indeed, if w = Y ;0 u; € K, where u; € U; for i > 1, and if
e > 0, let N be so large that Y2\, [|ui]| < € and let gy denote
the restriction of ¢ to Zf\;l ®U;. Put v = Zfil u;; then |lgn (v)|] =
lg(u = 32 Ny wi)ll = lg(CZ n gy wi)ll < e But kernel (qn) = Kn
and, by the definition of ¢, ¢y is a quotient map of vazl @®U; onto
Yn. Hence, there is a w € Ky with |[v — w|| < e. It follows that
lu—w|| <|lu—v| +|Jv—w| < 2¢, proving Claim 2a. Next, note that,
for every 1 <i<nandu € U;, u — T,jlnu € K,; hence we have

(2.1) Z oU; =K, U, forevery n>1.

i=1

Moreover, if p, : Z?zl @®U; — U, denotes the projection onto U, along
K, then, because 7, = ¢,|u, = q|u, is an isometry, we have that for
every w € K, and u € Uy, ||lw+ ul| > ||g(w + w)|| = |lg(w)]| = ||u|| and
hence ||p,|| = 1. Now consider the mapping ¢, 1 ® ¢m = q|(v,.,_,0U,,)
which maps Uy,—1 & U, onto Y,,. Put H,,_1 = kernel (¢,—1 D ¢m);
then dim (H,,—1) =d(m — 1) = dim Y;,, 1.

Claim 2b. EZ:1 H,, is a Schauder decomposition of K1 and
S [ Hpyis an f.d.d. of K.

m=1
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Indeed, let R; denote the natural projection of U onto Uj;, let h,, €
H,, for 1 < m < n, and suppose that h,, = u+v where u = R,h,, € U,
and v = Rpt1hn € Upg1. Then g(u + v) = q(h,) = 0 and, since
the maps ¢,4+1 and ¢, restricted to U,4+; and U,, respectively, are
isometries, we get that ||u|| = ||v|| and the maps R, = R, |m, and
}/2;:1 = Ry,+1|m, are isomorphisms satisfying

— 1 —~
(2.2) [Rahnll = SlIhall = | Botahiall-

It follows that |37 Y Al < |27 _, Al and, since dim H,, =
dimY,,_1, this implies that ) " _ ®H,, = K,41; hence, in view of
Claim 2a, anOH @®H,, is an f.d.d. of K. Moreover, the natural
projections W,, : K — " H, = K, have norm |W,| = 1.
This proves Claim 2b. Note that qR,|w, ,eu,) is a quotient map
of U,_1 ® U, onto Y,,, the kernel of which is U,,_y; hence, U,_; is
isomorphic to H,,_; via (2.2).

Assume that E is a subspace of Y with a 7 structure ({E,}22,
{P,}22,). A standard small perturbation argument allows us to
assume without loss of generality that U ,E, C UZ2;Y, because
U>®.,Y, =Y, see, eg., [3, Lemma 2.1]. Also, because each E, is
contained in Y, for a sufficiently large m, allowing finite numbers of
repetitions of E,s in the sequence, we may assume that E,, C Y, for

every n > 1.

Let us now construct a 7 structure in ¢~1(E). We start with the
definition of the finite dimensional subspaces F,, of ¢! (FE) which will
determine the 7 structure. For every n > 1, let G,, = ¢;;1(E,,) and put
F, = G, + K,; then, (2.1) ensures that this is a direct sum and, for
each f = g+ h with g = ¢,,1(e), e € E,, and h € K,,, we have that

(2:3) 171> Nlgll = el

because ¢|g, is an isometry. We must show that F,, C Fj,;1. Indeed,
let g1 = TndTng; then g; € U,,+1 and, putting hg = g1 — g, we have
that ¢(g1) = ¢(9) = e and hence hy € H,, C K, ;1. Consequently,
f=g+h=g—ho+h where g1 = ¢;},(e) € ¢ 11(Ent1) = Gny1
and h — hg € K,4+1. This establishes the inclusion F;, C Fj,+1. Since
U<, K, = ¢ 1(0) and, for each n > 1, g|g, is an isometry, we get
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that ¢ 1(E) = U | F,. We proceed to construct projections V,, of
¢ !(E) onto F, which will eventually determine the 7 structure of
q¢~1(E). Recall that W,, denotes the natural projection of K onto K,
and define the operator V,, on U2, F}j as follows: if k > nand f = g+h
with g € G and h € Kj, then

(2.4) Vi f = d4n Prar(g) + Wi (h).

This definition obviously depends on the representation f = g+h in F.
However, suppose that g = qgl(e) and f = g1 + hy where g1 € Ggy1
and hy € Kjy1; then the above argument for the inclusion F,, C Fj, 41
shows that there is an hg € H,, for which g; = g+ hg and hy = h — hyg.
Hence, gc11(91) = a(g1) = a(g) = e and Wy (ho) = 0. Therefore,

@ " Prugis1(91) + Wa(h1) = g, ' Pre + Wy (h — ho)
= qglpn‘ﬂc(g) + Wn(h)
= Vn(f)

This shows that the definition of V,, does not depend on the choice
of k and V,, is well defined. Let us show that Vn2 =V, If f=
g+ h with g € Gg, h € Kj and k > n, then the representation of
V,.f in F, is clearly V,f = q¢;'P.qx(g9) + W,(h). Hence, by (2.4),
Vil = 47 Pugndy  Paar(g) + WE(R) = a4, Puar(9) + Wa(h) = Vi f.
Suppose that the given sequence of projections mutually commute
and let m < n. Because W,,W, = W,,, we get that V,,,V,,f =
G Prdns ' Padi(9) + Wi Wa(h) = 45, Pk (9) + Win(h) = Vi f, and
hence

(2.5) Vi Vio = Vi = Vi Vi

Before proceeding to estimate the norm of V,,, let us prove the following

Lemma. Let X be a Banach space, let A > 1 and let g, h,u and v be
elements of X satisfying the following four inequalities: ||g|| < |lg+ A/,
[ull < [lutvl], [[ull < Allgll and ||v]| < Al[R]|. Then [[u+v|| < 3X|lg+h].

Proof. 1If [[o]| < 2fjufl, then [lu + of| < [fu] + o < 3[ju| <
3Mgll < 3A|lg + h||- Suppose that |[v|| > 2||u||, then since ||| <
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lgll + llg + hll < 2|lg + Al and [[A] > A=H|v]| > 2A74||ul|, we get that
lu+ ol < [lull + [lo]l < B/2)[[vll < (3/2)AllR] < 3Allg +Al. B

Let us complete the proof of the theorem by showing that ||V, || < 3A.
For any k > nand f = g+ h € G ® Ky, put u = ¢, ' P,qx(g) and
v = Wy (h). Then, by (2.3), ||g|| < ||lg+h]|| and ||u|| < ||u+v||. Moreover,
[ull < [[Pallllgll < Allgll and [Jo[] < [[Wall[|a]] < [|A]] < Af[A[]. Tt follows
from the lemma that |V, f|| = |lg; ' Pagrg + Wa(h)|| = |Ju + o] <
3\||lg + k|| = 3)||f||- Extending V,, to all of ¢;;1(E) by continuity, we
complete the construction of the 7 structure of ¢g~!(E). Equality (2.5)
takes care of the f.d.d. case.

Remark. Our proof shows that, under the assumptions of the the-
orem, g~ ! preserves Grothendieck’s bounded approximation property
and the commuting bounded approximation property.
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