QUOTIENT MAPS WITH STRUCTURE PRESERVING INVERSES

M. ZIPPIN

ABSTRACT. It is proved that certain quotient maps $q:(\sum_n U_n)_{l_1} \to Y$, where U_n are finite dimensional spaces, have the following property: If E is a subspace of Y with a "good" structure of uniformly complemented finite dimensional subspaces, so is the subspace $q^{-1}(E)$ of $(\sum_n U_n)_{l_1}$. In particular, any quotient map $q:l_1 \to L_1$ has this property.

1. Introduction. Let $q:U\to Y$ be a quotient map. In general, very little is known about the connection between a subspace E of Y and the subspace $q^{-1}(E)$ of U. In this note we discuss a quotient map q, the inverse of which preserves the π property and the finite dimensional decomposition property. Recall that a space E is said to be a π_{λ} space, $\lambda \geq 1$, if there exist a sequence $\{E_n\}_{n=1}^{\infty}$ of finite dimensional subspaces of E, with $E_1 \subset E_2 \subset \cdots$ and $\bigcup_{n=1}^{\infty} E_n = E$, and a sequence of projections $\{P_n\}_{n=1}^{\infty}$ of E onto E_n with $\sup_n \|P_n\| = \lambda < \infty$. E is said to be a π space (or, to have the π property) if it is a π_{λ} space for some $\lambda \geq 1$. The pair of sequences $(\{E_n\}_{n=1}^{\infty}, \{P_n\}_{n=1}^{\infty})$ will be called a π structure of E. If E has a π structure $(\{E_n\}_{n=1}^{\infty}, \{P_n\}_{n=1}^{\infty})$ and, for every $n, k \geq 1$, $P_n P_k = P_k P_n = P_{\min(k,n)}$, then the sequence $\{(P_n - P_{n-1})(E)\}_{n=1}^{\infty}$ is called a finite dimensional decomposition of E, f.d.d. for short, and E is said to have the f.d.d. property.

Our main result is the following

Theorem. Let Y be a π_{λ} space with a π_{λ} structure $(\{Y_n\}_{n=1}^{\infty}, \{Q_n\}_{n=1}^{\infty})$, and let $U = (\sum_{n=1}^{\infty} Y_n)_{l_1}$. For each $n \geq 1$, let U_n denote the subspace $\{(\underbrace{0,\ldots,0}_{n-1},y,0,\ldots)\in U:y\in Y_n\}$, and denote by τ_n the

Received by the editors on September 1, 1997, and in revised form on May 15, 1998.

Participant at Workshop in Linear Analysis and Probability, NSF DMS-9311902. AMS Mathematics Subject Classification. 46B25.

AMS Mathematics Subject Classification. 46B25.
Partially supported by the Edmund Landau Center for Research in Mathematical Analysis, sponsored by the Minerva Foundation (Germany).

1538 M. ZIPPIN

natural isometry of U_n onto Y_n . Let $q: U \to Y$ be the quotient map determined by the relations $q(u) = \tau_n(u)$ if $u \in U_n$ for every $n \ge 1$. Then for every subspace E of Y with a π structure (with an f.d.d.), $q^{-1}(E)$ has a π structure (an f.d.d., respectively).

We will prove the theorem in Section 2. Let us now discuss the following two examples.

Example 1. Lindenstrauss investigated in [1] the properties of the following quotient map $q: l_1 \to L_1[0,1]$. Let $\{u_i\}_{i=0}^{\infty}$ denote the unit vector basis of l_1 and $\chi(A)$ the indicator function of the subset $A \subset [0,1]$. For each $n \geq 0$ and $1 \leq i \leq 2^n$, put $u_i^n = u_{2^n-1+i}$ and define $q: l_1 \to L_1$ by $q(u_i^n) = \chi([((i-1)/2^n), (i/2^n)])$. It is clear that q satisfies the assumption of the theorem and therefore q^{-1} preserves the π and f.d.d. properties. Moreover, because l_1 is quotient homogeneous, (i.e., if $q_1: l_1 \to L_1$ is another quotient map, then there is an automorphism T on l_1 for which $q_1 = qT$, see [2]) any quotient map $q_1: l_1 \to L_1$ has the same property.

Remark. Note that the same holds for every quotient map $q: l_1 \to Y$ if Y is an \mathcal{L}_1 -space. Indeed, in this case Y has a π_λ structure $(\{Y_n\}_{n=1}^\infty, \{Q_n\}_{n=1}^\infty)$ where each Y_n has a basis $\{y_i^n\}_{i=1}^{d(n)}, d(n) = \dim Y_n$, satisfying the inequality $\lambda^{-1} \sum_{i=1}^{d(n)} |a_i| \le \|\sum_{i=1}^{d(n)} a_i y_i^n\| \le \sum_{i=1}^{d(n)} |a_i|$ for every sequence of scalars $\{a_i\}_{i=1}^{d(n)}$. Clearly $U = (\sum_n Y_n)_{l_1}$ is isomorphic to l_1 and therefore the argument presented in Example 1 proves our claim.

Example 2. Let $Y = l_2$, let $\{y_i\}_{i=1}^{\infty}$ be any orthonormal basis of Y and put $Y_n = [y_i]_{i=1}^n$. Put $U = (\sum_n Y_n)_{l_1}$, $U_n = \{(\underbrace{0, \ldots, 0}_{n-1}, y, 0, \ldots) :$

 $y \in Y_n$ }, and let $\tau_n : U_n \to Y_n$ be the natural isometry. Define $q: U \to Y$ by the relations $q(u) = \tau_n(u)$ if $u \in U_n$, $n = 1, 2, \ldots$. Then q satisfies the assumptions of the theorem; hence, q^{-1} preserves the π and f.d.d. properties.

Let $u_i^n = (\underbrace{0, \dots, 0}_{n-1}, y_i, 0, \dots)$ for every $n \ge 1$ and $1 \le i \le n$. Then,

clearly, kernel $(q) = [u_i^n - u_i^{n+1}]_{i=1,n=1}^n$ and the theorem implies that every subspace V of U which contains kernel (q) has an f.d.d. In fact, one can show that every such subspace has a basis because kernel (q) has a natural basis, q(V) has a basis and, as is easily seen, the projections V_n on V constructed in the proof of the theorem can be chosen so that the spaces $(V_n - V_{n-1})(V)$ have bases with uniformly bounded constants.

2. Proof of the theorem. Let us begin by taking a close look at the structure of K = kernel (q). Let $K_n = \{u \in \sum_{i=1}^n \oplus U_i : q(u) = 0\}$.

Claim 2a.

$$K = \overline{\bigcup_{n=1}^{\infty} K_n}.$$

Indeed, if $u=\sum_{i=1}^\infty u_i\in K$, where $u_i\in U_i$ for $i\geq 1$, and if $\varepsilon>0$, let N be so large that $\sum_{i=N+1}^\infty \|u_i\|<\varepsilon$ and let q_N denote the restriction of q to $\sum_{i=1}^N \oplus U_i$. Put $v=\sum_{i=1}^N u_i$; then $\|q_N(v)\|=\|q(u-\sum_{i=N+1}^\infty u_i)\|=\|q(\sum_{i=N+1}^\infty u_i)\|<\varepsilon$. But kernel $(q_N)=K_N$ and, by the definition of q, q_N is a quotient map of $\sum_{i=1}^N \oplus U_i$ onto Y_N . Hence, there is a $w\in K_N$ with $\|v-w\|<\varepsilon$. It follows that $\|u-w\|\leq \|u-v\|+\|v-w\|<2\varepsilon$, proving Claim 2a. Next, note that, for every $1\leq i\leq n$ and $u\in U_i,\ u-\tau_n^{-1}\tau_iu\in K_n$; hence we have

(2.1)
$$\sum_{i=1}^{n} \oplus U_i = K_n \oplus U_n \quad \text{for every} \quad n \ge 1.$$

Moreover, if $p_n: \sum_{i=1}^n \oplus U_i \to U_n$ denotes the projection onto U_n along K_n , then, because $\tau_n = q_n|_{U_n} = q|_{U_n}$ is an isometry, we have that for every $w \in K_n$ and $u \in U_n$, $||w + u|| \ge ||q(w + u)|| = ||q(u)|| = ||u||$ and hence $||p_n|| = 1$. Now consider the mapping $q_{m-1} \oplus q_m = q|_{(U_{m-1} \oplus U_m)}$ which maps $U_{m-1} \oplus U_m$ onto Y_m . Put $H_{m-1} = \text{kernel } (q_{m-1} \oplus q_m)$; then $\dim(H_{m-1}) = \dim(M_m) = \dim(M_m)$.

Claim 2b. $\sum_{m=1}^{n} H_m$ is a Schauder decomposition of K_{n+1} and $\sum_{m=1}^{\infty} H_m$ is an f.d.d. of K.

Indeed, let R_i denote the natural projection of U onto U_i , let $h_m \in H_m$ for $1 \leq m \leq n$, and suppose that $h_n = u + v$ where $u = R_n h_n \in U_n$ and $v = R_{n+1}h_n \in U_{n+1}$. Then $q(u+v) = q(h_n) = 0$ and, since the maps q_{n+1} and q_n restricted to U_{n+1} and U_n , respectively, are isometries, we get that ||u|| = ||v|| and the maps $\widetilde{R_n} = R_n|_{H_n}$ and $\widetilde{R_{n+1}} = R_{n+1}|_{H_n}$ are isomorphisms satisfying

(2.2)
$$\|\widetilde{R_n}h_n\| = \frac{1}{2}\|h_n\| = \|\widetilde{R_{n+1}}h_n\|.$$

It follows that $\|\sum_{m=1}^{n-1}h_m\| \leq \|\sum_{m=1}^nh_m\|$ and, since $\dim H_m = \dim Y_{m-1}$, this implies that $\sum_{m=1}^n \oplus H_m = K_{n+1}$; hence, in view of Claim 2a, $\sum_{m+1}^\infty \oplus H_m$ is an f.d.d. of K. Moreover, the natural projections $W_n: K \to \sum_{m=1}^{n-1} H_m = K_n$ have norm $\|W_n\| = 1$. This proves Claim 2b. Note that $qR_n|_{(U_{n-1}\oplus U_n)}$ is a quotient map of $U_{n-1}\oplus U_n$ onto Y_n , the kernel of which is U_{n-1} ; hence, U_{n-1} is isomorphic to H_{n-1} via (2.2).

Assume that E is a subspace of Y with a π_{λ} structure $(\{E_n\}_{n=1}^{\infty}, \{P_n\}_{n=1}^{\infty})$. A standard small perturbation argument allows us to assume without loss of generality that $\bigcup_{n=1}^{\infty} E_n \subset \bigcup_{n=1}^{\infty} Y_n$ because $\bigcup_{n=1}^{\infty} Y_n = Y$, see, e.g., [3, Lemma 2.1]. Also, because each E_n is contained in Y_m for a sufficiently large m, allowing finite numbers of repetitions of E_n s in the sequence, we may assume that $E_n \subseteq Y_n$ for every $n \geq 1$.

Let us now construct a π structure in $q^{-1}(E)$. We start with the definition of the finite dimensional subspaces F_n of $q^{-1}(E)$ which will determine the π structure. For every $n \geq 1$, let $G_n = q_n^{-1}(E_n)$ and put $F_n = G_n + K_n$; then, (2.1) ensures that this is a direct sum and, for each f = g + h with $g = q_n^{-1}(e)$, $e \in E_n$ and $h \in K_n$, we have that

$$||f|| \ge ||g|| = ||e||$$

because $q|_{G_n}$ is an isometry. We must show that $F_n \subset F_{n+1}$. Indeed, let $g_1 = \tau_{n+1}^{-1} \tau_n g$; then $g_1 \in U_{m+1}$ and, putting $h_0 = g_1 - g$, we have that $q(g_1) = q(g) = e$ and hence $h_0 \in H_n \subset K_{n+1}$. Consequently, $f = g + h = g_1 - h_0 + h$ where $g_1 = q_{n+1}^{-1}(e) \in q_{n+1}^{-1}(E_{n+1}) = G_{n+1}$ and $h - h_0 \in K_{n+1}$. This establishes the inclusion $F_n \subset F_{n+1}$. Since $\overline{\bigcup_{n=1}^{\infty} K_n} = q^{-1}(0)$ and, for each $n \geq 1$, $q|_{G_n}$ is an isometry, we get

that $q^{-1}(E) = \overline{\bigcup_{n=1}^{\infty} F_n}$. We proceed to construct projections V_n of $q^{-1}(E)$ onto F_n which will eventually determine the π structure of $q^{-1}(E)$. Recall that W_n denotes the natural projection of K onto K_n and define the operator V_n on $\bigcup_{j=1}^{\infty} F_j$ as follows: if $k \geq n$ and f = g + h with $g \in G_k$ and $h \in K_k$, then

(2.4)
$$V_n f = q_n^{-1} P_n q_k(g) + W_n(h).$$

This definition obviously depends on the representation f = g + h in F_k . However, suppose that $g = q_k^{-1}(e)$ and $f = g_1 + h_1$ where $g_1 \in G_{k+1}$ and $h_1 \in K_{k+1}$; then the above argument for the inclusion $F_n \subset F_{n+1}$ shows that there is an $h_0 \in H_n$ for which $g_1 = g + h_0$ and $h_1 = h - h_0$. Hence, $q_{k+1}(g_1) = q(g_1) = q(g) = e$ and $W_n(h_0) = 0$. Therefore,

$$q_n^{-1}P_nq_{k+1}(g_1) + W_n(h_1) = q_n^{-1}P_ne + W_n(h - h_0)$$

= $q_n^{-1}P_nq_k(g) + W_n(h)$
= $V_n(f)$.

This shows that the definition of V_n does not depend on the choice of k and V_n is well defined. Let us show that $V_n^2 = V_n$. If f = g + h with $g \in G_k$, $h \in K_k$ and $k \ge n$, then the representation of $V_n f$ in F_n is clearly $V_n f = q_n^{-1} P_n q_k(g) + W_n(h)$. Hence, by (2.4), $V_n^2 f = q_n^{-1} P_n q_n q_n^{-1} P_n q_k(g) + W_n^2(h) = q_n^{-1} P_n q_k(g) + W_n(h) = V_n f$. Suppose that the given sequence of projections mutually commute and let m < n. Because $W_m W_n = W_m$, we get that $V_m V_n f = q_m^{-1} P_m q_n q_n^{-1} P_n q_k(g) + W_m W_n(h) = q_m^{-1} P_m q_k(g) + W_m(h) = V_m f$, and hence

$$(2.5) V_m V_n = V_m = V_n V_m.$$

Before proceeding to estimate the norm of V_n , let us prove the following

Lemma. Let X be a Banach space, let $\lambda \geq 1$ and let g, h, u and v be elements of X satisfying the following four inequalities: $||g|| \leq ||g+h||$, $||u|| \leq ||u+v||$, $||u|| \leq \lambda ||g||$ and $||v|| \leq \lambda ||h||$. Then $||u+v|| \leq 3\lambda ||g+h||$.

Proof. If $\|v\| \le 2\|u\|$, then $\|u+v\| \le \|u\| + \|v\| \le 3\|u\| \le 3\lambda\|g\| \le 3\lambda\|g+h\|$. Suppose that $\|v\| > 2\|u\|$, then since $\|h\| \le 3\lambda\|g\|$

1542 M. ZIPPIN

$$\begin{split} \|g\| + \|g + h\| &\leq 2\|g + h\| \text{ and } \|h\| \geq \lambda^{-1}\|v\| > 2\lambda^{-1}\|u\|, \text{ we get that } \\ \|u + v\| &\leq \|u\| + \|v\| \leq (3/2)\|v\| \leq (3/2)\lambda\|h\| \leq 3\lambda\|g + h\|. \end{split}$$

Let us complete the proof of the theorem by showing that $\|V_n\| \leq 3\lambda$. For any $k \geq n$ and $f = g + h \in G_k \oplus K_k$, put $u = q_n^{-1}P_nq_k(g)$ and $v = W_n(h)$. Then, by (2.3), $\|g\| \leq \|g+h\|$ and $\|u\| \leq \|u+v\|$. Moreover, $\|u\| \leq \|P_n\| \|g\| \leq \lambda \|g\|$ and $\|v\| \leq \|W_n\| \|h\| \leq \|h\| \leq \lambda \|h\|$. It follows from the lemma that $\|V_nf\| = \|q_n^{-1}P_nq_kg + W_n(h)\| = \|u+v\| \leq 3\lambda \|g+h\| = 3\lambda \|f\|$. Extending V_n to all of $q_n^{-1}(E)$ by continuity, we complete the construction of the π structure of $q^{-1}(E)$. Equality (2.5) takes care of the f.d.d. case.

Remark. Our proof shows that, under the assumptions of the theorem, q^{-1} preserves Grothendieck's bounded approximation property and the commuting bounded approximation property.

REFERENCES

- ${\bf 1.}$ J. Lindenstrauss, On a certain subspace of $l_1,$ Bull. Acad. Polon. Sci. ${\bf 12}$ (1964), 539–542.
- **2.** J. Lindenstrauss and H.P. Rosenthal, Automorphisms in c_0 , l_1 , and m, Israel J. Math. **7** (1969), 227–239.
- 3. M. Zippin, Applications of Michael's continuous selection theorem to operator extension problems, Proc. Amer. Math. Soc., to appear.

The Hebrew University of Jerusalem, Jerusalem, Israel and The University of Connecticut, Storrs, Connecticut, USA $E\text{-}mail\ address:}$ zippin@math.huji.ac.il