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MAXIMALITY OF THE HYPERCUBE GROUP

STANISLAUS MAIER-PAAPE

ABSTRACT. In this paper we prove maximality of the
hypercube group B,<O(n) for n > 3, n # 4, as a closed
subgroup of O(n). B4<O(4) is not maximal, but we are
able to describe all closed supergroups of Bys. Furthermore,
we indicate how this result is used in bifurcation theory for
O(n)-equivariant equations like semilinear elliptic boundary
value problems.

1. Introduction. In this paper we will discuss the symmetry group
of the n-cube [—1,1]" C R™, n > 3. We will denote this group by B,,.
The questions we are interested in are whether B,,<O(n) is a maximal
closed subgroup or, if not, which are the nontrivial closed supergroups
of B,,.

In Section 2 we prove maximality of the hypercube group B, <O(n)
for n > 3, n # 4, in the sense that there is no nontrivial closed
supergroup of B, in O(n). B4<0O(4) is not maximal, but we are able
to describe in Section 3 all closed supergroups of By.

A first step in the proof is to show discreteness and hence finiteness
of a supergroup I' of B,,. This follows basically from the fact that B,,
acts irreducible on the Lie algebra of O(n). The finite group I is then
set in relation to the reflection group guaranteed by reflections in I and
their normalizer which, to the very end, determines I itself.

The method to determine the various normalizers is always very
similar. Essentially all is based on the knowledge of a characteristic
subgroup Z of the finite reflection group, say G<O(n). Denoting by R
the set of roots of G we have Z acting on RR (or a certain subset) in
the natural way. Therefore, RR decomposes in Z-orbits and elements
of the normalizer of G now act on these orbits by permutation. This
already enables computation of the normalizer, at least in our examples.
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These questions are of relevance in equivariant bifurcation theory
(cf., e.g., [3]). They might be applied for instance in connection with
the Equivariant Branching Lemma (see [3, Chap. XIII, Theor. 3.3] or
[2]), where a maximal isotropy subgroup ¥ of a closed supergroup I'
is assumed to prove bifurcating solutions of a I'-equivariant problem
which has isotropy subgroup . An application in that spirit to semi-
linear Neumann problems on the ball in R" is given in Maier-Paape [6,
Chap. 3]. Here solutions with isotropy subgroup B,, for n > 3, n # 4,
are obtained. We note that a maximal closed subgroup ¥ # SO (n)
of ' = SO (n) or O(n) is not a maximal isotropy subgroup of all
representations of the group I', but by a result of Lauterbach and Maier
[5, Theor. 6.5], ¥ is a maximal isotropy subgroup for infinitely many
spherical representations.

Another application of our result is given in Maier-Paape, Schmitt
and Wang [7, Sect. 5]. Here also semi-linear Neumann problems
are discussed; however, now with a homogeneous nonlinearity with
critical exponent. In other words, we search for positive solutions of
—Au+ Au =P in Q C R™ subject to Neumann boundary conditions.
Here A\ € R is a parameter and p = ((n + 2)/(n — 2)) is the critical
exponent for R", n > 3.

The methods used in [7] are both variational and group theoretical.
One discusses domains {2, which are invariant under a closed subgroup
T of O(n). Essentially, it is possible to construct solutions in the fixed-
point space Fix (X), ¥ a subgroup of T, which are peaked (i.e., attain
their global maximum) at a finite number of well-located points on the
boundary 0. This information, together with the characterization of
all closed supergroups of B,, in this paper, is enough to prove that these
solutions indeed have isotropy subgroup ¥ = B,, n > 3 (now n = 4
included). These solutions are peaked at the 2n intersection points of
the Cartesian axes with a sphere in R™.

We next introduce some well-known properties of the groups B,
(confer Humphreys [4, Chap. I, Sect. 2.10] for details). B, is a
finite group generated by reflections at hyperplanes in R™, or, to use
Humphrey’s notation, B,, is the Weyl group of type B,,. Two important
subgroups are S,, (permuting the canonical basis in R"™, which we from
nowoncalle;, i =1,...,n)and H, = (Z2)" (acting by sign changes on
the e;). We have the semi-direct product B,, = H,, X S,, and therefore
H.,, is normal in B,,.
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The results of this paper are taken in parts from the Habilita-
tionsschrift of Maier-Paape [6].

2. Maximality of B,,. In this section we will prove maximality
of B, as a closed subgroup of O(n) for n = 3 or n > 5. The case
n = 4 is different and will be handled in Section 3. Before we can give
the theorem on the maximality, we need a couple of auxiliary lemmas.
The first one deals with the adjoint representation of O(n) on its Lie
algebra o(n) = {4 € R"*" | AT = —A}. For the orthogonal groups
this means acting by conjugation (cf. Brocker and Tom Dieck [1, Chap.
L, (2.10)])

O(n) x o(n) — o(n)
(A,B) — ABA™ .

Of course, with O(n), any subgroup of O(n) is acting on o(n) as well,
by restriction of the above representation. For some subgroups this
action turns out to be irreducible. Note that we always consider n > 3.

Lemma 2.1. The adjoint action of B, on o(n), i.e., B, x o(n) —
o(n), (A, B) — ABA™!, is irreducible.

Proof. We will show that for any B € o(n)\{0} fixed, one obtains
Span {B,B} = o(n). Then, clearly, there are no nontrivial B,-
invariant subspaces of o(n).

We set B;; € R"*", 1 < i < j < n, the matrix with (¢, j)th and
(j,t)th entry 8;; = —fB;; = 1. All other entries are zero. Then the set
{B;j |1 <i<j<n}CR"™" forms the standard basis of o(n).

It is not difficult to see that, for any fixed B € o(n)\{0} there is at
least one index pair (%, j) such that B;; € Span {B, B} (add matrices of
the form CBC~!, C € H, to B in order to obtain more and more zero
columns and rows). Hence, it suffices to show Span {B,B;;} = o(n)
for any 1 < i < j < n. Using the permutation matrices of S,, applied
to Bj, this is obvious. a

Our next goal is to calculate the normalizers No)(Bn) = {7 €
O(n) | yB,y~! = B,}. However, before we get there, we need an
auxiliary lemma on some normal subgroup of B,,.
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Lemma 2.2. Forn =3 orn > 5, H, is the only normal subgroup
of B, with order 2™.

Proof. In order to find a contradiction, assume there were a normal
subgroup X <B,,, X # H, and |X| = 2". Then, of course, XH,,>H,
is a normal 2-subgroup of B,, as well: H,, # XH,, <B,,. Furthermore,
XH, NS, is normal in S, and therefore {1} # XH, N S, <S,. This
follows from the fact that for any v € B,\#,, and in particular for
any element v € X\H,, there exists an element £ € H, such that
v¢ € Sp\{1}. The normal subgroups of S,, however, are very well
known.

Since n = 3 or n > 5, the normal subgroups of S,, are S,, A, (the
alternating group) or {1}. Hence either S,, or A, must be a subgroup
of the 2-group X%H,,. But this is impossible since the order of A,, or
S, is divisible by three for n > 3. O

We note that for n = 4 there is an additional normal subgroup of S,
with four elements (Klein’s 4-group V;), making this kind of argument
impossible. With this lemma, we can now calculate the normalizer of
B,.

Theorem 2.3. For n =3 orn > 5, we have No(»)(Br) = By

Proof. We just have to show N := No(,)(Bn)<B,. Since H, < By,
for any given v € N also YH, 7! <B,,. The order of vH,y ! is again
2™, so due to uniqueness of the normal subgroups with this order, we
derive

(2.1) YHny ' =H, forany v €N.

The set of one-dimensional coordinate subspaces U := {U | dimU =
1,U = Span {e; }} will now turn out to be crucial. Note that #,, lets all
U € U be invariant and no other one-dimensional subspaces. In other
words we have:

(i)¢U=Uforall( e H, and U € U.
(i) f ¢V =V forall £ € H,, and dimV =1, then V € U.
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Now fix some v € N and U € U. Then, due to (2.1), yU is invariant
under #H, as well. Hence YU € U. But U € U was arbitrary and
therefore v is just permuting the coordinate subspaces. This already
determines « fully and we conclude v € B,,. ]

We need one more auxiliary lemma concerning finite reflection groups,
i.e., finite subgroups of O(n) which are generated by finitely many
reflections at hyperplanes in R"™.

Lemma 2.4. B,<O(n) is forn = 3 or n > 5 a maximal finite
reflection group.

Proof. Since the action of the finite reflection group B,, on R" is
irreducible, the action of any supergroup of B,, is irreducible as well.
But all (irreducible) finite reflection groups are very well known and
characterized (cf., e.g., Humphreys [4, Chap. I, Sect. 2]). Now all pos-
sible irreducible finite reflection groups are excluded to be supergroups
of B,, by order considerations. A list of their orders is given again in
[4, Chap. I, Subsect. 2.11].

For any subgroup X<O(n) we introduce the set
Ts :={y € & | v is a reflection at a hyperplane}

and denote by (7x) the subgroup of ¥ which is generated by the
reflections in 3. Assume r € Ty is areflection at a hyperplane M C R™.
Then for arbitrary v € ¥ also yry~! € ¥ is a reflection (now at the
hyperplane yM). Hence, yry~! € Tx. Iterating this argument a finite
number of times gives:

Lemma 2.5. If ©<O(n) is finite, then (Tg) < X.

Now we have all preliminaries at hand to show the main theorem of
this section.

Theorem 2.6. Forn =3 orn > 5, B, is a maximal closed subgroup

of O(n).
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Proof. Assume some closed subgroup I' of O(n) with
(2.2) B,<I'<O(n) but I # O(n),

is given. Our goal is to show I' = B,,. Of course, I' is a Lie group, since
it is a closed subgroup of the Lie group O(n). Therefore I' has a Lie
algebra g C o(n) and I acts on g through the adjoint representation
(cf. Brocker and Tom Dieck [1, Chap. I])

I'xg—g¢g
(A,B) — ABA™'.

Since B, <T, also B,, acts on g by restriction. Therefore, g C o(n) is a
B,,-invariant subspace of o(n). But, by Lemma 2.1, B,, acts irreducible
on o(n) yielding that g is a trivial subspace of o(n), i.e., g = {0} or
g = o(n). The latter is only possible for I' = SO (n) or I' = O(n)
which is excluded due to (2.2). Hence g = {0} and the compactness of
I gives even that I is finite.

Using the notation introduced above we have (7g, ) = By,, since B,, is
a finite reflection group. Finiteness of I' makes (7r) a finite reflection
group. But since 7g, C Tr we find B,, = (T, )<(7r). Using the
maximality of B,, as a finite reflection group, by Lemma 2.4 for n = 3
or n > 5 this is only possible in case B,, = (7r).

Using Lemma 2.5 for I' we conclude I' = Nr((7r)) = Nr(B,)<
No(n)(Bn). On the other hand, due to Theorem 2.3 No(,)(Bn) = By
yielding I'<B,, and therefore by assumption (2.2) even I' = B,,. O

3. Dimension four. Dimension four is different, B, cannot be a
maximal closed subgroup of O(4), since it has even a finite reflection
supergroup F4. For a definition of the finite reflection group F4 (the
Weyl group of type F4) confer again Humphreys [4, Chap. I, Sec.
2.10]. Other possible irreducible finite reflection groups are again
excluded to be supergroups of B4 by order consideration. We note
that |Fy4| : |B4| = 3 and we may generate Fy = (By4,7yy) with

1
11
AR
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Before we can make similar arguments as we did in the proof of
Theorem 2.6, we have to determine Ng(4)(B4) and No(4)(F4). To do
that, we need information on the subgroups of B4 and F4. We denote
H§ := {y € Ha | dety = 1}. Hence, v € H§ are diagonal matrices with
an even amount of —1’s on the diagonal. Define furthermore Z, :=
HS % Vi, where again V3 = {1,(12)(34), (13)(24), (14)(23)}<S4<By is
Klein’s 4-group.

According to Humphreys [4, pp. 42-45], the Weyl group Dy of type
Dy in By satisfies

Dy =H$ xSy and therefore Z4<Dy.
We also find
Fys=Dy x 5'3 in particular Dy <Fy,

for some permutation group S5 which is not a subgroup of By.

Lemma 3.1. We have Z4<F4 and it is the only normal subgroup of
F4 with 32 elements.

Proof. Firstly, Z4 is a characteristic subgroup of Dy, since it is the
unique normal subgroup of Dy with order |Z4|. The last statement is
a consequence of the fact that D,/Z; = S3 which has no power two
normal subgroup, yielding that Z, is the largest normal 2-subgroup in
Dy.

Now Z, <« Fy4 follows immediately from D4 < F4. Uniqueness of Z,
as a normal subgroup of F4 with this order follows from the argument
just given above once we have established Fy/Z, = S3 X S3, since this
again has no normal 2-subgroup.

Letting Y :=F,/Z4 and U := D4/Z,, we have
U<Y, U=S; and Y/U=F,/Ds= S,

Introducing Cy(U) := {¢ € Y | cu = uc for all u € U}, one easily
shows that Y = U - Cy (U). But U <Y implies Cy (U) <Y. Since also
UNCy((U) =41} we find Y = U x Cy(U) and the claim is established
using U & S5 and Cy(U) 2 Y/U > S;. O
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We introduce the roots of F4 (cf. again [4, Chap. I, Sect. 2.10]). In
the case of F there are 24 roots of length 1 and 24 of length /2:

:I:ei, 1§Z§4, (:telj:egzl:e3:l:e4)/2,
:i:eiiej, 1§l<]§4
Let €4 denote the set of those 48 root vectors. We define
Uy :={U CR* | dimU = 1,U = Span {v} for some v € £} = R&4,

which is a set of finitely many one-dimensional subspaces of R*. Note
that the elements in F4 permute these one-dimensional subspaces of Uy,
in fact all elements in the normalizer No(4)(F4) act as a permutation
on Uy, since for any finite reflection group G with root system R the
normalizer of G in O(n) is equal to {y € O(n) | YR C RR}. Consider

v V2/2 —V2/2 0 0
V22 v2)2 0 0
Te =0 0 v2/2 —v2/2 "
0 0 V2/2  V2/2
and observe v, ¢ Fy, but ~, preserves the roots of F4 up to scalars
and 72 € F4. Therefore,

X4 := (F4,7:)<No)(F4)

yields a supergroup of Fy with |X4| = 2 |F4|. In particular, even Fy
cannot be a maximal closed subgroup of O(n).

Theorem 3.2. Ng4)(F4) = X;.

Proof. With F, also Z; acts on the set Uy. Consider Z4-orbits
Oz, (U), with U € U,. For instance, Oz, (Span {e1 }) contains Span {e; },
i = 1,...,4. Similarly, we find that the sets Oz, (Span{e; + es}),
Oz, (Span{e; +e3}), Oz, (Span{e; +e4}), Oz, (Span{(—e; +ex+e3+
e4)/2}) and Oz, (Span {(e1 +e2 +e3+e4)/2}) always contain four one-
dimensional subspaces and are pairwise disjoint.

For simplicity we write O;,i =1, ... , 6, for the above occurring orbits
(in that order). Consider now v € N := No(4)(F4). Then yZ4y~! is
like Z4 normal in F4. But due to Lemma 3.1 this implies

(3.1) vZyy~t =27, forall € N.
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We next claim that vO; € {O;,i = 1,...,6} for all v € N, where
O; was the set of coordinate subspaces. But, obviously from (3.1), we
have that vO; = yZ4(Span{e1}) = Zs(Span{ve1}) = Zs(Span{r})
for some r = r, € £4. Hence O, € {0;,i=1,...,6}.

Observe now that for any O;, ¢ = 1,...,6, there is some §; € Xy,
not unique, such that O; = £;0;. Now for fixed v € N there is some
ip € {1,...,6} with yO; = O;, = &;,O;1 and therefore (ffolfy)(’)l = 0.
This means §;_ 1~ permutes coordinate subspaces which is only possible
for {[01’7 € By4. Hence v € &;,,By C X4. This proves N C X4 and
therefore indeed N = No(4)(F4) = X. O

The other normalizer of interest is the one of B4. Our approach

will be quite similar. The relevant power two normal subgroup is
Z4 = H4 X V;l

Lemma 3.3. We have Z,<By, and it is the unique normal subgroup
of B4 with 2% elements.

~

Proof. Note th@t B4/Z4 =~ S3 which has no power two normal
subgroup. Again Z; is the largest power two normal subgroup of By
and therefore unique. ]

We also need the root system of By (cf. [4, Chap. I, Sect. 2.10]).

These roots are
*e;, 1<i<4 and e Ee;, 1<i<j<A4

The set of these 32 vectors is similarly denoted by &, and

Uy :={U c R* | dimU = 1,U = Span {v} for some v € £} = RE,
is now the relevant set of finitely many one-dimensional subspaces of
R

Theorem 3.4. Ng(4)(B4) = By.

Proof. Our proceeding is very similar to the proof of Theorem 3.2. We
therefore skip arguments whenever possible. For any U € U, consider
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the Z,-orbits Oz, U). Uy decomposes into four Z,-orbits given by O;,
i=1,...,4, introduced in the proof of Theorem 3.2. Using Lemma 3.3
we obtain similarly as in (3.1)

724’)’71 = 24 forall ~ € N0(4) (B4)

giving vO0; € {O0; | i = 1,...,4} for all v € No(4(By) with the
same arguments. But the rest of the proof works unchanged giving
Noa) (B4)<X4. One can now easily check that neither X4 nor Fy
normalize B4 and the only possibility left is No(4)(B4) = Ba. o

We are now ready to state the main theorem on maximality in
dimension four.

Theorem 3.5. The groups ¥4 and X4 are the only nontrivial closed
supergroups of By in O(4). In particular, X4 is a mazimal closed
subgroup of O(4).

Proof. Our proof is along the lines of the proof of Theorem 2.6.
Assume some closed subgroup I' of O(4) with

B4<F<0(4) but T # F4,X4,0(4),

is given. Again our goal is to show I' = B4. With the same arguments
as before we conclude that T is finite. Thus (7r)>By is again a finite
reflection group with only two possibilities, either

<7}*> = B4 or <7}‘> = F4.

Again (7r) is normal in T’ by Lemma 2.5. Together with Theorems 3.2
and 3.4 we therefore conclude
Nr(B4)<N, B,) =B
I = N ((Tr) = { riBe)<Now(Be) = Be
Nr(F4)<No(Fa) = Xs.

In any case B4<I'< Xy, but since I' # Fy, Xy, we conclude T' = By.
O
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