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SEMIREGULAR, SEMIPERFECT AND
PERFECT RINGS RELATIVE TO AN IDEAL

MOHAMED F. YOUSIF AND YIQIANG ZHOU

ABSTRACT. Let I be an ideal of a ring R. Consider the
following conditions on R:

1. If X is a finitely generated submodule of a finitely generated
projective module P , then X = A⊕B where A is a summand
of P and B ⊆ P · I.

2. If X is a submodule of a finitely generated projective
module P , then X = A ⊕ B where A is a summand of P
and B ⊆ P · I.

3. If X is a submodule of a projective module P , then
X = A ⊕ B where A is a summand of P and B ⊆ P · I.

When I is the Jacobson radical J(R) of R, these conditions
characterize semiregular rings, semiperfect rings and right per-
fect rings, respectively. In this paper we completely character-
ize these conditions for the cases when I is the right singular
ideal, or the right socle, or the intersection of any two of the
three ideals. As applications, structure theorems are obtained
for right CEP-rings R with J(R)2 = 0 and for QF-rings R
with J(R)2 = 0.

All rings R are associative and have an identity, unless otherwise
specified, and modules are unitary right modules over R. For an R-
module M , J(M), Z(M) and Soc (M) are the Jacobson radical, the
singular submodule and the socle of M , respectively. We use Zr, Zl, Sr

and Sl to indicate the right singular ideal, the left singular ideal, the
right socle and the left socle of R, respectively.

1. I-Semiregular rings. The following lemma has been observed
in [21, Lemma 1.1] when K is a principal right ideal of R.

Lemma 1.1. Let I be an ideal of the ring R. The following
conditions are equivalent for a right ideal K of R:
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(1) There exists e2 = e ∈ K with (1− e)K ⊆ I.

(2) There exists e2 = e ∈ K with K ∩ (1− e)R ⊆ I.

(3) K = eR ⊕ S where e2 = e and S ⊆ I.

Proof. (1) ⇒ (2). This is obvious since K ∩ (1− e)R ⊆ (1− e)K.

(2) ⇒ (3). Let S = K ∩ (1− e)R.

(3)⇒ (1). For a ∈ K, write a = er+ s where r ∈ R and s ∈ S. Then
ea = er+ es and (1− e)a = a− ea = s− es ∈ I. So (1− e)K ⊆ I.

Following [21], R is called a right I-semiregular ring if every principal
right ideal K of R satisfies the equivalent conditions of Lemma 1.1.

Clearly R is a (von Neumann) regular ring if and only if R is right (re-
spectively left) (0)-semiregular and R is semiregular (or f -semiperfect)
if and only if R is right (respectively left) J(R)-semiregular. The right
Zr semiregular rings, called right weakly continuous rings, are studied
in [21]. Let δr be the ideal of R defined by δr/Sr = J(R/Sr). The
right δr-semiregular rings are discussed in [23].

The next lemma is due to Baccella [6].

Lemma 1.2. For a ring R, idempotents of R/Sr lift to idempotents
of R.

Proof. Let x ∈ R with x2 − x ∈ Sr. Write Sr = S1 ⊕ S2 where S1

is the sum of all nilpotent minimal right ideals and S2 is the sum of
all idempotent minimal right ideals. Then both S1 and S2 are ideals
of R and S2

1 = 0. Write x2 − x = a1 + a2 where a1 ∈ S1 and a2 ∈ S2.
Since a2R is a direct sum of finitely many idempotent minimal right
ideals, it is standard to show that a2R is a direct summand of RR.
So a2R = fR for some f2 = f ∈ R. Write f = a2b where b ∈ R
and let c = bf . Then a2 = fa2 = a2(bf)a2 = a2ca2 and c ∈ S2. It
follows that x2 − x = a1 + a2ca2 = a1 + (x2 − x − a1)c(x2 − x − a1) =
(x2 − x)c(x2 − x) + b1 where b1 ∈ S1. Let y = 1 − (x − 1)c(x − 1).
Then xyx = x2 − (x2 − x)c(x2 − x) = x2 − (x2 − x − b1) = x + b1

and hence (xy)2 = xy + b1y with b1y ∈ S1. Since S2
1 = 0, there exists

e2 = e ∈ R such that e − xy ∈ S1. So e − x = (e − xy) + (xy − x) =
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(e − xy)− x(x − 1)c(x − 1) ∈ S1 + S2 = Sr.

Lemma 1.3. For a ring R, let R = R/Sr. If idempotents of R/J(R)
lift to idempotents of R, then idempotents of R/δr lift to idempotents
of R.

Proof. Let x ∈ R with x2 − x ∈ δr. Then x̄ ∈ R/Sr and
x̄2−x̄ ∈ J(R) = δr/Sr. By the hypothesis, there exists ā2 = ā ∈ R such
that x̄ā ∈ δr/Sr. Thus, a2−a ∈ Sr and x−a ∈ δr. By Lemma 1.2, there
exists e2 = e ∈ R such that a−e ∈ Sr. So x−e = (x−a)+(a−e) ∈ δr.

The right δr-semiregular rings were characterized in [23, Theorem
3.5]. A new characterization of such rings is given in the next theorem.

Theorem 1.4. A ring R is a right δr-semiregular ring if and only if
R/Sr is semiregular.

Proof. By [23, Theorem 3.5], R is a right δr-semiregular ring if and
only if R/δr is a regular ring and idempotents lift modulo δr. Thus
the implication “⇒” follows immediately. Suppose that R/Sr is a
semiregular ring. Then R/δr

∼= R/J(R) is regular and idempotents
of R/δr lift to idempotents of R by Lemma 1.3. Thus, R is right δr-
semiregular.

Following Ara [2], we say that an ideal I of a ring R is an exchange
ring if, for every x ∈ I, there exists e2 = e ∈ xI such that 1 − e ∈
(1 − x)R. This extends the concept of a unital exchange ring to rings
without unit.

Corollary 1.5. Let R/Sr be a semiregular ring. Then R is an
exchange ring and every finitely generated projective R-module is iso-
morphic to a direct sum of right ideals of the form eR, e2 = e.

Proof. Suppose that R/Sr is semiregular. Then R/Sr is an exchange
ring by Warfield [22]. By [6, Lemma 1.2], Sr is an exchange ring. Since



1654 M.F. YOUSIF AND Y. ZHOU

idempotents of R/Sr lift to idempotents (Lemma 1.2), a result of Ara
[2, Theorem 2.2] asserts that R is an exchange ring. The second part
follows from a well-known result of Warfield [22, Theorem 1].

Theorem 1.6. The following are equivalent for a ring R:

(1) R is right Sr-semiregular.

(2) For any a ∈ R, aR = eR ⊕ U where e2 = e and U ⊆ J(R) ∩ Sr.

(3) R/Sr is a regular ring.

(4) If X is a finitely generated submodule of a (finitely generated)
projected module P , then X = A⊕B where A is a summand of P and
B ⊆ Soc (P ).

Proof. The implications (4) ⇒ (1) ⇒ (3) and (2) ⇒ (1) are obvious.
(1)⇒ (2). Let a ∈ R. By (1), aR = eR⊕U where e2 = e and U ⊆ Sr.
Note that the uniform dimension dim (U) of U is finite. If dim (U) = 0,
then U = (0) ⊆ J(R) ∩ Sr, and we are done. Assume that, whenever
aR = eR ⊕ U with dim (U) = k(≥ 0) where e2 = e and U ⊆ Sr, there
exist f2 = f ∈ R and V ⊆ J(R)∩Sr such that aR = fR⊕V . Suppose
that aR = eR ⊕ U where e2 = e, U ⊆ Sr and dim (U) = k + 1. Since
aR = eR⊕[aR∩(1−e)R], aR∩(1−e)R ∼= U and so aR∩(1−e)R ⊆ Sr.
We can assume that aR ∩ (1 − e)R is not contained in J(R). Thus,
there exists an idempotent minimal right ideal, say I, in aR∩ (1− e)R.
Obviously, I is a direct summand of RR and hence of (1 − e)R. So
eR ⊕ I is a summand of R. Write eR ⊕ I = fR where f2 = f ∈ aR.
Then aR = fR ⊕ V where V ⊆ Sr and dim (V ) = k. By induction
hypothesis, there exist g2 = g ∈ R and W ⊆ J(R) ∩ Sr such that
aR = gR ⊕ W .

(3) ⇒ (4). Since R/Sr is regular, δr/Sr = J(R/Sr) = 0̄. So δr = Sr.
Hence, by Lemma 1.2, idempotents of R/δr lift to idempotents of R.
Thus, by [23, Theorem 3.5], R is right δr-semiregular and δr = Sr.
To prove (4), let X be a finitely generated submodule of a projective
module P . Since every projective module is a direct summand of a
free module, we may assume that P is a free module, and further we
can assume that P is a finitely generated free module. Then P/X is
a finitely presented module. By [23, Theorem 3.5(2), Lemma 2.4 and
Lemma 1.9], P has a decomposition P = P1 ⊕ P2 such that P1 ⊆ X
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and X ∩ P2 ⊆ P · δr = P · Sr ⊆ Soc (P ). Thus, X = A ⊕ B where
A = P1 and B = X ∩ P2.

Corollary 1.7. The following statements hold:

(1) Being right Sr-semiregular is a Morita invariant property of rings.

(2) Every right Sr-semiregular ring is right J(R)∩Sr-semiregular and
hence right semiregular. In this case Zl ⊆ Sr, Zr ⊆ J(R) ⊆ Sr and
J(R)2 = 0.

(3) The ring R is regular if and only if every minimal right ideal is
idempotent and R/Sr is regular.

Proof. (1) This follows from Theorem 1.6(4).

(2) Theorem 1.6(2) shows that R is right J(R) ∩ Sr-semiregular and
hence right semiregular. Then it follows from [21, Theorem 1.2] that
Zl ⊆ Sr, Zr ⊆ Sr and J(R) ⊆ Sr. Hence, Zr ⊆ J(R) and J(R)2 = 0.

(3) One direction is clear. Suppose that every minimal right ideal is
idempotent and R/Sr is regular. Then J(R)∩Sr = 0. By Theorem 1.6,
R is right 0-semiregular, i.e., regular.

Examples 1.8. (1) A right Zr-semiregular ring may not be right
Sr-semiregular: Let R = {( x y

0 x

)
: x ∈ Z4, y ∈ Z4 ⊕ Z4} where

Z4 = {0̄, 1̄, 2̄, 3̄}. Then J(R) = Zr = {( x y

0 x

)
: x ∈ 2Z4, y ∈ Z4 ⊕ Z4}

with J(R)3 = 0 and R/J(R) ∼= Z2. So R is a Zr-semiregular ring.
But Soc (R) = {

(
0 y

0 x

)
: y ∈ 2Z4 ⊕ 2Z4}. So J(R) is not contained in

Soc (R) and hence R is not right Sr-semiregular.

(2) A right Sr-semiregular ring may not be right Zr-semiregular: Let
R =

(
F F

0 F

)
where F is a field. Then Sr =

(
0 F

0 F

)
and R/Sr

∼= F . So
R is right Sr-semiregular. But Zr = 0 with J(R) �= 0. So R is not right
Zr-semiregular.

By Corollary 1.7(2), R is right Sr-semiregular if and only if R is
right J(R) ∩ Sr-semiregular and, by [21, Theorem 2.4], R is right Zr-
semiregular if and only if R is right J(R) ∩ Zr-semiregular. Next we
characterize right Sr ∩ Zr-semiregular rings.
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Corollary 1.9. The following are equivalent for a ring R:

(1) R is right Sr ∩ Zr-semiregular.

(2) R is right Sr-semiregular and right Zr-semiregular.

(3) For any a ∈ R, aR = P⊕U where P is projective and U ⊆ Zr∩Sr

and every principal projective right ideal is a direct summand.

(4) For any a ∈ R, aR = P⊕U where P is projective and U ⊆ Zr∩Sr

and R is right C2.

(5) R/Sr is a regular ring and J(R) = Zr.

Proof. The implications (1) ⇒ (2) and (3) ⇒ (4) ⇒ (1) are obvious.
(2) ⇒ (1). Let a ∈ R. Since R is right Zr-semiregular, aR = eR⊕U
with e2 = e and U ⊆ Zr. Since R is right Sr-semiregular, U = fR⊕ V
with f2 = f and V ⊆ Sr. Since U is singular, f = 0 and so
U = V ⊆ Sr ∩ Zr.

(1) ⇒ (3) follows from (1) and [21, Lemma 2.1].
(2) ⇔ (5) follows from Theorem 1.6 and [21, Theorem 2.4].

The next proposition can be proved using the arguments as in the
proof of [21, Proposition 2.2].

Proposition 1.10. The following are equivalent for a ∈ R:

(1) aR = P ⊕ U where P is projective and U ⊆ Zr ∩ Sr.

(2) r(a) is the intersection of finitely many essential maximal sub-
modules of some summand of RR.

Remark 1.11. For an ideal I of R, by [21, Theorem 1.2], the condition
that (a) R is a right I-semiregular ring always implies that (b) R/I is
regular and idempotents lift modulo I. (a) and (b) are equivalent when
I = J(R), I = Sr, (by Lemma 1.2 and Theorem 1.6(3)), or I = δr (see
[23, Theorem 3.5]), but not equivalent in general by [21, Example 1.3].
From Example 2.8, we have that (b) does not imply (a) when I = Zr.

As a comparison to Theorem 1.6(4), a homological characterization
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of right Zr-semiregular rings is given as follows.

Proposition 1.12. The ring R is right Zr-semiregular if and only
if, for any finitely generated submodule X of a (finitely generated)
projective module P , X = A ⊕ B where A is a summand of P and
B ⊆ Z(P ).

Proof. One direction is clear. Suppose that R is right Zr-semiregular.
Let X be a finitely generated submodule of a projective module P .
Since every projective module is a direct summand of a free module,
we may assume that P is a free module and further we can assume that
P is a finitely generated free module. Then P/X is a finitely presented
module. By [7, Lemma 2.3], P has a decomposition P = P1 ⊕ P2 such
that P1 ⊆ X and X ∩ P2 ⊆ J(P ) = P · J(R) = P · Zr ⊆ Z(P ). Thus,
X = A ⊕ B where A = P1 and B = X ∩ P2.

2. I-Semiperfect rings. The ring R is called a right I-semiperfect
ring if every right ideal K of R satisfies the equivalent conditions in
Lemma 1.1. Clearly R is a semisimple artinian ring if and only if R
is right (respectively left) (0)-semiperfect and R is semiperfect if and
only if R is right (respectively left) J(R)-semiperfect. The right δr-
semiperfect rings are discussed in [23]. The following result is well
known and easy to prove.

Lemma 2.1. The following are equivalent for a ring R:

(1) R is a semisimple artinian ring.

(2) Every simple R-module is projective.

(3) Every maximal right ideal of R is a direct summand of RR.

(4) Every singular simple R-module is projective.

Theorem 2.2. A ring R is right δr-semiperfect if and only if R/Sr

is semiperfect.

Proof. By [23, Theorem 3.6], R is right δr-semiperfect if and only
if R/δr is semisimple artinian and idempotents lift modulo δr. And
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the latter, by the same arguments as in the proof of Theorem 1.4, is
equivalent to the condition that R/Sr is semiperfect.

Theorem 2.3. The following are equivalent for a ring R:

(1) R is right Sr-semiperfect.

(2) For every countably generated right ideal K ⊆ R, K = eR ⊕ U
where e2 = e and U ⊆ Sr.

(3) R/Sr is semisimple artinian.

(4) If X is a submodule of a finitely generated projective module P ,
then X = A ⊕ B where A is a summand of P and B ⊆ Soc (P ).
(5) There exists a complete orthogonal set of idempotents e1, e2, . . . , en,

such that for each i, either (eiR)R is simple or Soc (eiR) is a maximal
submodule of (eiR)R.

(6) For every maximal right ideal K ⊆ R, K = eR ⊕ U where e2 = e
and U ⊆ Sr.

Proof. (1) ⇒ (3), (5) ⇒ (3), (4) ⇒ (2) and (4) ⇒ (1) ⇒ (6) are
obvious.

(3) ⇒ (4). Since R/Sr is semisimple artinian, δr/Sr = J(R/Sr) = 0̄.
So δr = Sr and then idempotents of R/δr lift to idempotents of R by
Lemma 1.2. Thus by [23, Theorem 3.6], R is right δr-semiperfect and
δr = Sr.

Let X be a submodule of a finitely generated projective module P .
Then P/X is a finitely generated module. By [23, Theorem 3.6(2),
Lemma 2.4 and Lemma 1.9], P has a decomposition P = P1 ⊕P2 such
that P1 ⊆ X and X ∩P2 ⊆ P ·δr = P ·Sr ⊆ Soc (P ). Thus, X = A⊕B
where A = P1 and B = X ∩ P2.

(6) ⇒ (3). Condition (6) implies that every maximal right ideal of
R/Sr is a direct summand. Thus, by Lemma 2.1, R/Sr is semisimple
artinian.

(1) ⇒ (5). For any module M , let δ(M) = ∩{N ⊆ M : M/N is
a singular simple module}. By [23, Lemma 1.9], for any projective
module P , δ(P ) is the intersection of all essential maximal submodules
of P . Suppose that (1) holds. Then R is right δr-semiperfect and
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δr = Sr. By [23, Theorem 3.6], there exists a complete orthogonal
set of idempotents e1, e2, . . . , en such that, for each i, either (eiR)R is
simple or (eiR)R has a unique essential maximal submodule. The latter
means that δ(eiR) is an essential maximal submodule of eiR. But, by
[23, Corollary 1.7], δr = δ(RR). So Sr = δ(RR). It follows from [23,
Lemma 1.5] that Soc (eiR) = δ(eiR) for all i. Thus (5) follows.

(2) ⇒ (1). Suppose (2) holds. Then R is right Sr-semiregular and
hence R/Sr is regular by Theorem 1.6. So, δr/Sr = J(R/Sr) = 0̄.
Thus δr = Sr. Moreover, by [23, Theorem 3.6], (2) implies that R is
right δr-semiperfect.

Remark 2.4. Clearly, if R/Sr is semisimple artinian, then Sr is
essential in RR.

Theorem 2.5. The following are equivalent for a ring R:

(1) R is right Zr-semiperfect.

(2) R is semiperfect and J(R) = Zr.

(3) If X is a submodule of a finitely generated projective module P ,
then X = A ⊕ B where A is a summand of P and B ⊆ Z(P ).

(4) For every maximal right ideal K ⊆ R, K = eR ⊕ U where e2 = e
and U ⊆ Zr.

Proof. (1) ⇒ (2). Because of (1), every right ideal of R/Zr is a
direct summand and so R/Zr is semisimple artinian. Moreover, by [21,
Theorem 2.4], Zr = J(R) and idempotents of R/Zr lift to idempotents
of R.

(2) ⇒ (3). Let X be a submodule of a finitely generated projective
module P . Then P/X is finitely generated and hence has a projective
cover. By [7, Lemma 2.3], P has a decomposition P = P1⊕P2 such that
P1 ⊆ X and X ∩ P2 ⊆ J(P ). But J(P ) = P · J(R) = P · Zr ⊆ Z(P ).
Thus, X = A ⊕ B where A = P1 and B = X ∩ P2.

(3) ⇒ (1) ⇒ (4). These are obvious.
(4) ⇒ (2). By (4), every maximal right ideal of R/Zr is a direct
summand. Then by Lemma 2.1, R/Zr is semisimple artinian and
hence J(R) ⊆ Zr. Suppose Zr �= J(R). There exists x ∈ Zr and a
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maximal right ideal K of R such that x /∈ K. Then R = K + xR.
By (4), K = eR + U where e2 = e ∈ R and U ⊆ Zr. Clearly
e �= 1. It follows that R = eR + Zr + xR = eR + Zr. This shows
that (1 − e)R ∼= R/eR ∼= Zr/(Zr ∩ eR) is singular and projective. By
[21, Lemma 2.1], 1 − e = 0. This is a contradiction. So Zr = J(R).
Thus Condition (4) implies that every simple R-module has a projective
cover and hence R is semiperfect.

In view of Theorem 2.3 and Theorem 2.5, the next corollary is
immediate.

Corollary 2.6. Being a right Sr-semiperfect (respectively right Zr-
semiperfect) ring is a Morita invariant.

Examples 2.7. (1) A right Sr-semiperfect ring may not be semiper-
fect: Let Q = Π∞

i=1Fi where Fi = Z2 and T the subring of Q generated
by ⊕∞

i=1Fi and 1Q. Then T is right Sr-semiperfect, but is not semiper-
fect and hence not right Zr-semiperfect.

(2) A right Zr-semiperfect ring may not be right Sr-semiperfect: Let
R = {( a x

0 a

)} : a, x ∈ Z4}. Then Sr = {
(

0 x

0 0

)
} : x ∈ 2Z4} and

Zr = J(R) = {( a x

0 a

)} : a ∈ 2Z4, x ∈ Z4}. R is clearly (right) Zr-semi-
perfect but is not right Sr-semiperfect.

(3) Every right Zr-semiperfect ring is semiperfect. The ring R in
Example 1.8(2) is semiperfect but is not right Zr-semiperfect.

(4) Every right Sr-semiperfect ring is right Sr-semiregular. The
ring R in Examples 1.8(1) is right Sr-semiregular but not right
Sr-semiperfect.

(5) Every right Zr-semiperfect ring is right Zr-semiregular. The ring
T in (1) is right Zr-semiregular, but not right Zr-semiperfect.

For an ideal I, the condition (a) “R is right I-semiperfect” is equiva-
lent to the condition (b) “R/I is semisimple artinian and idempotents
of R/I lift to idempotents of R” when I = Sr (see Theorem 2.3(3) and
Lemma 1.2). But the next example shows that (a) is not equivalent to
(b) if I = Zr.
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Example 2.8 [Bergman’s example]. The ring R in this example
is given in detail in [12, Example 1.36]. Let W be the set of all
surjective real-valued analytic functions f of a real variable such that
f has positive derivative and f(x + 1) = f(x) + 1 for all x. Then W
is a group with respect to the compositions of functions. As shown
in [12, p. 28], there exists a real number p such that, for f, g ∈ W ,
f(p) = g(p) ⇔ f = g. Let G be the subgroup of W generated by all
elements f of W which are given by f(x) = x + g(x) for all x with
g a truncated Fourier series of period 1 with rational coefficients, i.e.,
g =

∑n
k=0[ak cos(2πkx) + bk sin(2πkx)] for some n ≥ 0 where the ak

and bk are rationals. Let c ∈ W be given by c(x + 1) = x + 1 for
all x and S = {g ∈ G : g(p) ≥ p}. Then S is a sub-semigroup of G
and c is a central element of S. Let K be a field and then c will be a
central element of the semigroup algebra KS. Now set R = KS/cKS.
As shown in [12, pp. 28 30], R is right primitive (and so J(R) = 0)
and Zr �= 0. So R is not right Zr-semiregular (and hence not right
Zr-semiperfect). But it can be proved from the construction of R given
in [12, p. 29] that Zr is a maximal right ideal of R. Thus R/Zr is a
division ring and hence idempotents of R lift modulo Zr.

By Theorem 2.5, R is right Zr-semiperfect if and only if R is right
J(R)∩Zr-semiperfect. But in contrast to Corollary 1.7(2), a right Sr-
semiperfect ring may not be right J(R) ∩ Sr-semiperfect: The ring T
in Example 2.7(1) provides such an example. Next we consider right
J(R) ∩ Sr-semiperfect and right Sr ∩ Zr-semiperfect rings.

Corollary 2.9. The following are equivalent for a ring R:

(1) R is right J(R) ∩ Sr-semiperfect.

(2) R is semiperfect and right Sr-semiperfect.

(3) R is semiprimary with J(R) ⊆ Sr.

Proof. (1) ⇒ (3). Clearly, (1) implies that R is right Sr-semiperfect.
So R is right Sr-semiregular. Thus, J(R) ⊆ Sr by Corollary 1.7(2)
and so J(R)2 = 0. (1) also implies that R is semiperfect, so R is
semiprimary.

(3)⇒ (2). R is clearly semiperfect, i.e., right J(R)-semiperfect. Since
J(R) ⊆ Sr, it follows that R is right Sr-semiperfect.
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(2) ⇒ (1). Let K be a right ideal of R. Since R is semiperfect,
K = eR⊕U with e2 = e and U ⊆ J(R). Since R is right Sr-semiperfect,
U = fR ⊕ V with f2 = f and V ⊆ Sr. Since U ⊆ J(R), f = 0 and so
U = V ⊆ J(R) ∩ Sr.

Lemma 2.10. Let e2 = e ∈ R such that Soc (eR) is a maximal
submodule of (eR)R. If K ⊆ eR is an idempotent right ideal, then
eR = K ⊕ fR where f2 = f and Soc (fR) is a maximal submodule of
(fR)R.

Proof. We can write K = gR where g2 = g. Then eR = gR ⊕ [(1 −
g)R∩eR]. Write (1−g)R∩eR = fR where f2 = f . Then eR = K⊕fR
and Soc (eR) = K ⊕ Soc (fR) is maximal in K ⊕ fR. It follows that
Soc (fR) is maximal in (fR)R.

A ring R is right Kasch if every simple right R-module embeds
in RR or, equivalently 1(K) �= 0 for every maximal right ideal K.
Analogously, one defines left Kasch rings.

Theorem 2.11. The following are equivalent for a ring R:

(1) R is right Sr ∩ Zr-semiperfect.

(2) R is both right Sr-semiperfect and right Zr-semiperfect.

(3) R is semiprimary and J(R) = Zr ⊆ Sr.

(4) R = S ⊕ T where S is a semisimple artinian ring and T is a
semiprimary ring with J(T ) = Z(TT ) = Soc (TT ).

In this case, Zl ⊆ Zr = J(R) ⊆ Sr ⊆ Sl, R is left Kasch, J(R)2 = 0
and R satisfies ACC on left annihilators and ACC on right annihila-
tors.

Proof. (1) ⇒ (2) and (4) ⇒ (3) are obvious.
(2) ⇒ (1). Let K be a right ideal of R. Since R is right Zr-
semiperfect, K = eR ⊕ U with e2 = e and U ⊆ Zr. Since R is right
Sr-semiperfect, U = fR ⊕ V with f2 = f and V ⊆ Sr. Since U is
singular, f = 0 and so U = V ⊆ Sr ∩ Zr.
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(2) ⇔ (3). It follows from Corollary 2.9 and Theorem 2.5.
(2) and (3) ⇒ (4). Since R is right Sr-semiperfect, by Theorem 2.3,
there exists a decomposition R = e1R⊕ · · · ⊕ esR⊕ es+1R⊕ · · · ⊕ enR
where e2

i = ei for all i, (eiR)R is simple for i = 1, . . . , s, and Soc (eiR)
is maximal in (eiR)R for i = s+1, . . . , n. Clearly (3) implies that R is
semiprimary with J(R)2 = 0. So, by [19, Lemma 4.10], RR has ACC on
direct summands. Therefore, because of Lemma 2.10, we can assume
that, for each s + 1 ≤ i ≤ n, Soc (eiR) is nilpotent. So, Soc (eiR) ⊆
J(R) ∩ eiR = J(eiR) = eiJ(R) = eiZr = Z(eiR). Since Soc (eiR)
is maximal in (eiR)R, Soc (eiR) ⊇ J(eiR). So, Soc (eiR) = J(eiR) =
Z(eiR) for i = s+1, . . . , n. Write R = S⊕T where S = e1R⊕· · ·⊕esR
and T = es+1R ⊕ · · · ⊕ enR. Then Zr = Z(es+1R) ⊕ · · · ⊕ Z(enR)
and T = Z2(RR) is the second right singular ideal of R. Clearly
S · Z2(RR) = Z2(RR) · S = 0. So, R = S ⊕ T is a ring direct sum
and S is a semisimple artinian ring. Clearly J(TR) = J(TT ) and
Soc (TR) = Soc (TT ) and it can be easily checked that Z(TR) = Z(TT ).
Since J(TR) = Z(TR) = Soc (TR), we have J(TT ) = Z(TT ) = Soc (TT ).
So, J(TT )2 = 0. As seen above, T/J(T ) = T/Soc (TT ) is semisimple
artinian. Thus T is semiprimary.

To see the last statement, we have Zl ⊆ Zr by [21, Theorem 1.2]
since R is right Zr-semiperfect. By (4), Zr = J(R) ⊆ Sr and R is
semiprimary. Hence J(R)2 = 0 and Sl = r(J(R)) = r(Zr) ⊇ Sr. Thus,
Sl is essential in RR. By [20, Lemma 3.11], R is left Kasch. And it
follows from [19, Lemma 4.10] that R has ACC on left annihilators and
ACC on right annihilators.

Examples 2.12. (1) For any semisimple artinian ring S, R =
{( x y

0 x

)
: x, y ∈ S} is an artinian ring with J(R) = Zr = Sr, but R

is not semisimple artinian.

(2) Let Q = Π∞
i=1Fi where Fi = Z4 and R be the subring of Q

generated by ⊕∞
i=12Fi and 1Q. R is semiprimary but not right artinian,

and Soc (R) = J(R) = Zr = (⊕∞
i=12Fi) + 2Z · 1Q.

(3) Every right Sr∩Zr-semiperfect ring is right J(R)∩Sr-semiperfect.
The ring R in Example 1.8(2) is right J(R)∩Sr-semiperfect, but is not
right Sr ∩ Zr-semiperfect.

A ring R is a QF-ring if and only if R is left (or right) self-injective
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and left (or right) artinian. A ring R is called a right CS-ring if every
right ideal is essential in a direct summand of RR and a right CS-ring R
is called right continuous if R is right C2, i.e., any right ideal isomorphic
to a direct summand of RR is itself a direct summand of RR (see [17]).
A right self-injective (respectively a left and right continuous) ring R
such that R/Sr is right artinian or right noetherian is QF (see [3],
[4] and [14]). Also right CS-rings R such that R/Sr is right artinian
or right noetherian have been studied in [10]. Motivated by these
results, we characterize below the right CS, right Sr-semiperfect rings.
Following [15], a ring R is called a right CEP-ring if every cyclic right
R-module can be essentially embedded in a projective module.

Theorem 2.13. The following are equivalent for a ring R:

(1) R is right CS and R/Sr is semisimple artinian.

(2) R is right continuous, right artinian with J(R)2 = 0.

(3) R is a right CEP-ring with J(R)2 = 0.

(4) There exists a complete orthogonal set of idempotents e1, e2, . . . , en

such that all eiR are indecomposable modules of composition length at
most 2 and, for i �= j, every isomorphism Soc (eiR) → Soc (ejR) ex-
tends to an isomorphism eiR → ejR.

(5) R = S ⊕T where S is a semisimple artinian ring and there exists
a complete orthogonal set of idempotents t1, t2, . . . , tk in T such that
all (tiT )T are indecomposable modules of composition length 2 and,
for i �= j, every isomorphism Soc (tiT )T → Soc (tjT )T extends to an
isomorphism (tiT )T → (tjT )T .

Proof. (1) ⇒ (2). By [10, Lemma 4 and Corollary 6], R is right
artinian. Then by Theorem 2.11, R is left Kasch and J(R)2 = 0 and
so R is a right C2-ring (see [21, Examples (7)]).

(2) ⇒ (4). Suppose that (2) holds. Then R is semiperfect and
so R = e1R ⊕ · · · ⊕ enR where each (eiR)R is indecomposable and
J(eiR) is maximal in (eiR)R. It follows that (eiR)R is uniform since
R is right continuous. Thus, each Soc (eiR) is simple since R is
right artinian. Note that, since R is right artinian with J(R)2 = 0,
J(R) ⊆ 1(J(R)) = Sr. So J(eiR) ⊆ Soc (eiR) ⊆ eiR. If Soc (eiR) =
eiR, then eiR has composition length 1. If Soc (eiR) �= eiR, then
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Soc (eiR) = J(eiR) is maximal in eiR. So eiR has composition length 2.
Let f : Soc (eiR)→ Soc (ejR) be an R-isomorphism where i �= j. Since
R is right continuous, f extends to an R-homomorphism g : eiR → ejR
and f−1 extends to an R-homomorphism h : ejR → eiR by [17,
Proposition 2.10]. Both maps g and h must be one-to-one since f
is an isomorphism. Since eiR has composition length at most 2, g is
an isomorphism.

(4) ⇒ (5). Let ei, i = 1, . . . , n, be as in (4). Set S = ⊕{eiR : eiR is
simple} and T = ⊕{ejR : ejR has composition length 2}. It can easily
be proved that, if eiR is simple (i.e., of composition length 1) and ejR
is of composition length 2, then eiR · ejR = 0 = ejR · eiR and hence
R = S ⊕ T is a direct sum of rings. The rest of (5) is clear.

(5) ⇒ (4) is clear and (3) ⇒ (2) is by [20, Theorem 5.8].
(4) ⇒ (1). Suppose (4) holds. Then R is right Sr-semiperfect by
Theorem 2.3. (4) also implies that, for i �= j, eiR is ejR-injective. It
follows from [17, Corollary 2.14] that R is right CS.

(2) and (4) ⇒ (3). By [20, Theorem 5.8], it suffices to show that
every right ideal of R is an annihilator. First we show that R is
right Kasch. Let {e1, . . . , en} be given as in (4). Then, since R is
semiperfect, it contains a basic set of idempotents, say {e1, . . . , em}
where m ≤ n. Thus, eiR �∼= ejR if i �= j and 1 ≤ i, j ≤ m.
By (4), Soc (eiR) �∼= Soc (ejR) if i �= j and 1 ≤ i, j ≤ m. Hence,
{Soc (e1R), . . . ,Soc (emR)} is an irredundant set of representatives of
the simple right R-modules. This shows that R is right Kasch. Let L be
a maximal right ideal. Then R/L is isomorphic to a minimal right ideal
of R. Thus, (R/L) · r(Sr) = 0̄, i.e., r(Sr) ⊆ L for any maximal right
ideal L. Thus, r(Sr) ⊆ J(R). The other inclusion is clear. Therefore,
J(R) = r(Sr). Next we show that every right ideal contained in J(R)
is an annihilator. Let K be such a right ideal. Since R is right CS,
K is essential in eR where e2 = e ∈ R. Then rl (K) ⊆ rl (eR) = eR.
From K ⊆ J(R), we see that rl (K) ⊆ rl (J(R)) = r(Sr) = J(R).
But J(R) ⊆ Sr by (2). It follows that K ≤e rl(K) ⊆ Sr. It must
be that K = rl (K). Now we let I be a right ideal of R. Since R is
semiperfect, I = eR ⊕ U where e2 = e ∈ R and U ⊆ J(R). Then
rl (I) = r (R(1 − e) ∩ l(U)) ⊇ I. If x ∈ r (R(1 − e) ∩ l(U)), then
l((1 − e)U) ⊆ l(1 − e)x) and so (1 − e)U = rl ((1 − e)U) ⊇ (1 − e)xR
(note (1− e)U ⊆ J(R)). Write (1− e)x = (1− e)u where u ∈ U . Then
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x = e(x − u) + u ∈ I. Therefore, I = rl (I).

We call a moduleM socle-injective if any homomorphism f : Sr → M
extends to R or equivalently for any semisimple right ideal K of R, any
homomorphism f : K → M extends to R.

Lemma 2.14. Let R/Sr be semisimple artinian. Then a module M
is socle-injective if and only if M is injective.

Proof. Let M be socle-injective, and let f : K → M be an R-
homomorphism where K is a right ideal of R. By Theorem 2.3,
R is right Sr-semiperfect, and so K = eR ⊕ U where e2 = e and
U ⊆ Sr. Write K = eR ⊕ V where V = (1 − e)R ∩ K ∼= U is
semisimple. By the socle-injectivity, there exists g : RR → RR such
that g(x) = f(x) for all x ∈ V . Let h : RR → RR be defined by
h(er + (1 − e)t) = f(er) + g((1 − e)t). Then h extends f and thus M
is injective.

Corollary 2.15. The following are equivalent for a ring R:

(1) R is a QF -ring with J(R)2 = 0.

(2) (R ⊕ R)R is CS and R/Sr is semisimple artinian.

(3) RR is socle-injective and R/Sr is semisimple artinian.

(4) R is right self-injective and R is a direct sum of indecomposable
right ideals of composition length at most 2.

(5)R=S⊕T where S is a semisimple ring, T is right self-injective and
is a direct sum of indecomposable right ideals of composition length 2.

Since (1) is left-right symmetric, these are also equivalent to the left
versions of conditions (2), (3), (4) and (5).

Proof. (1)⇒ (4)⇔ (5)⇒ (3). By Theorem 2.13.
(3) ⇒ (2). By Lemma 2.14, RR is an injective, and so (R ⊕ R)R
is CS.

(2) ⇒ (1). By Theorem 2.13, R is right artinian, right continuous
with J(R)2 = 0. Then by [21, Corollary 2.7], R is right self-injective.
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Thus R is QF.

Next, we give another characterization of QF-rings R with J(R)2 = 0.
A ring R is said to satisfy (P1) if RR is indecomposable of composition
length 2 such that (R/Sr)R ∼= (Sr)R. Clearly, such a ring is right self-
injective if and only if every isomorphism (Sr)R → (Sr)R extends to an
isomorphism RR → RR. The ring Z4 satisfies (P1). A ring R is said to
satisfy (P2) if R = e1R ⊕ · · · ⊕ enR where n > 1 such that eiR ∼= ejR
only if i = j and, for each 1 ≤ i ≤ n, (eiR)R is an indecomposable
module of composition length 2, and eiR/Soc (eiR) ∼= Soc (eσ(i)R)
where σ is an n-cycle. Clearly again, such a ring is right self-injective
if and only if, for each i, every isomorphism Soc (eiR) → Soc (eiR)
extends to an isomorphism eiR → eiR. Note that there exist QF-rings
R satisfying (P2) such that J(R)2 = 0 (see [16, Examples (16.19), (5)
and (6)]).

Corollary 2.16. The following are equivalent for a ring R:

(1) R is a QF-ring with J(R)2 = 0.

(2) R is Morita equivalent to a ring direct product R0⊕R1⊕R2 where
each Ri is right self-injective, R0 is a direct sum of division rings, R1

is a direct sum of rings satisfying (P1) and R2 is a direct sum of rings
satisfying (P2).

Proof. Only need to show that (1) implies (2). Suppose that (1)
holds. Since being a QF-ring with J(R)2 = 0 is a Morita invariant and
every semiperfect ring is Morita equivalent to its basic ring, it suffices
to show that a basic ring S of a QF-ring R with J(R)2 = 0 has the
ring decomposition described as in (2). Since the ring S is basic, i.e.,
the identity is the sum of a basic set of primitive idempotents and is
QF with J(S)2 = 0, without loss of generality we can assume that R
is itself a basic ring. So by (4) of Corollary 2.15, R = e1R⊕ · · · ⊕ emR
where each eiR is an indecomposable module of composition length at
most 2 and eiR ∼= ejR only if i = j. By the injectivity and projectivity
of these eiR, we have

(a) Soc (eiR) ∼= Soc (ejR) if and only if eiR ∼= ejR if and only if
eiR/Soc (eiR) ∼= ejR/Soc (ejR) and
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(b) for i �= j, eiR · ejR �= 0 implies ejR/Soc (ejR) ∼= Soc (eiR).

Let R1 = ⊕{eiR : eiR is simple}, R2 = ⊕{eiR : eiR/Soc (eiR) ∼=
Soc (eiR)} and R3 = ⊕{eiR : eiR is not simple and eiR/Soc (eiR) �∼=
Soc (eiR)}. By (a) and (b), R1, R2 and R3 all are ideals of R and so
R = R1 ⊕ R2 ⊕ R3 is a ring direct product. By (a), every eiR in R1 is
an ideal of R1 and so R1 = ⊕{eiR : eiR is simple} is a ring direct sum
with each eiR a division ring.

By (a) and (b), every eiR in R2 is an ideal of R2 and so R2 = ⊕{eiR :
eiR/Soc (eiR) ∼= Soc (eiR)} is a ring direct sum with each eiR a ring
satisfying (P1).

Choose ei1R ⊆ R3. Again because of (a) and (b), there exists
eij

R ⊆ R3, j = 1, . . . , t, such that eij
R/Soc (eij

R) ∼= Soc (eij+1R)
for j = 1, . . . , t − 1 and eit

R/Soc (eit
R) ∼= Soc (ei1R). If A = ⊕{eij

R :
j = 1, . . . , t} and B = ⊕{eiR : eiR ⊆ R3 but i �= ij for j = 1, . . . , t}.
From (a) and (b), R3 = A ⊕ B is a ring direct product and A satisfies
(P2). If B �= 0, then a ring satisfying (P2) splits from B using the same
process. And this process will ensure that R3 is a direct sum of rings
satisfying (P2).

Example 2.17 [8, p. 70]. Given a field F and an isomorphism
a �→ ā from F → F ⊆ F , let R be the right F -space on basis {1, t}
with multiplication given by t2 = 0 and at = tā for all a ∈ F . Then R
is a local ring, and the only right ideals are 0, J(R) and R. Hence R is
a local, right artinian, right continuous, right dual ring (i.e., every right
ideal is a right annihilator). It follows that J(R) = Zr = Zl = Sr = Sl

and that R/Sr is semisimple artinian. Moreover, R is right CEP by
Theorem 2.13. But R is not left continuous if dim F (F ) ≥ 2. Indeed,
if R were left continuous, then, being local, it would be left uniform.
But if X and Y are nonzero F -subspaces of F with X ∩ Y = 0, then
P = tX and Q = tY are nonzero left ideals with P ∩ Q = 0. R is left
artinian when dim F (F ) < ∞ but is not left finitely dimensional when
dim F (F ) =∞.

Example 2.18 [9, p. 36]. Let R = Z2[x1, x2, . . . ] where x3
i = 0 for

all i, xixj = 0 for all i �= j and x2
i = x2

j = m �= 0 for all i and j.
Then R is a commutative local ring with J(R) = span {m,x1, x2, . . . },
and R has a simple essential socle J(R)2 = Z2m. In particular, R is
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uniform and so is CS; C2 also holds because r(a) = 0, a ∈ R, implies
that a is a unit. Hence R is continuous. Thus, R is a commutative,
local, continuous, semiprimary ring with J(R)3 = 0, but R is not finite
dimensional. Note that Soc (R) ⊆ J(R) = Z(R).

3. I-Perfect rings. Let I be an ideal of a ring R. Then R is called
a right I-perfect ring if, for any submodule X of a projective module
P , X has a decomposition X = A⊕B where A is a summand of P and
B ⊆ P · I. Note that R is right perfect if and only if R is right J(R)-
perfect and R is semisimple artinian if and only if R is right (0)-perfect.
The right δr-perfect rings are discussed in [23].

The next theorem is an improvement of [23, Theorem 3.8].

Theorem 3.1. A ring R is right δr-perfect if and only if R/Sr is
right perfect.

Proof. By [23, Theorem 3.8], R is right δr-perfect if and only if
R/Sr is right perfect and idempotents lift modulo δr and the latter is
equivalent to the condition that R/Sr is right perfect by Lemma 1.3.

The next corollary is an interesting contrast to the fact that a
semiperfect ring is not necessarily right perfect.

Corollary 3.2. The following are equivalent for a ring R:

(1) R is right Sr-perfect.

(2) Every submodule X of a projective module P has a decomposition
X = A ⊕ B where A is a summand of P and B ⊆ Soc (P ).
(3) R is right Sr-semiperfect.

Proof. (1) ⇔ (2). This is because of the fact that P · Sr = Soc (P )
for any projective module P .

(2) ⇒ (3). This is obvious.
(3)⇒ (2). Suppose that (3) holds. Then R/Sr is semisimple artinian
by Theorem 2.3. Thus, R is right δr-perfect by Theorem 3.1 and
δr = Sr. So R is right Sr-perfect.
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Proposition 3.3. The following are equivalent for a ring R:

(1) R is right Zr-perfect.

(2) Every submodule X of a projective module P has a decomposition
X = A ⊕ B where A is a summand of P and B ⊆ Z(P ).

(3) R is right perfect and J(R) = Zr.

Proof. (1) ⇔ (2). This is because of the fact that P · Zr = Z(P ) for
any projective module P .

(3) ⇒ (2). It is obvious.
(2) ⇒ (3). By Theorem 2.5, J(R) = Zr and thus R is right perfect.

Examples 3.4. (1) Every right Zr-perfect ring is right perfect. The
ring R is Example 2.7(2) is right perfect but is not right Zr-perfect.

(2) Every right Zr-perfect ring is right Zr-semiperfect. Let R be a
dual ring which is not self-injective. Such rings exist by [13, Example
6.1]. By [11, Theorem 13], R is not right perfect. But clearly
Zr = J(R) and, by [13, Theorem 3.9], R is semiperfect. So there
exist right Zr-semiperfect rings which are not right perfect, and hence
not right Zr-perfect.

Finally we note that R is right J(R) ∩ Zr-perfect if and only if R is
right Zr-perfect (by Proposition 3.3), R is right J(R) ∩ Sr-perfect if
and only if R is right J(R) ∩ Sr-semiperfect (by Corollary 2.9), and R
is right Sr ∩Zr-perfect if and only if R is right Sr ∩Zr-semiperfect (by
Theorem 2.11).
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