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ISOMORPHISM CLASSES OF UNIFORM GROUPS

MICHAEL NAHLER

ABSTRACT. In this paper we count isomorphism classes
of uniform groups within a fixed near-isomorphism class.

1. Preliminaries. An almost completely decomposable group X
is an extension of a completely decomposable group R by a finite
group X/R. If exp(X/R) = h, denote − : R → R = h−1R/R,
x �→ x̄ = h−1x+ R the natural epimorphism. Furthermore, − denotes
also the induced homomorphism − : AutR → AutR, α �→ ᾱ, which is
well defined by ᾱ(x̄) := α(x). Recall, cf. [6], that

TypAutR = {ξ ∈ AutR | ∀τ∈Tcr(R)ξR(τ ) = R(τ )}

is the set of type automorphisms of R. Let R =
⊕n

j=1〈xj〉R∗ , where
x = (x1, . . . , xn) is an h-decomposition basis, i.e., hgtR

p (xj) ∈ {0,∞}
for all j and all primes p dividing h. Then x̄ = (x̄1, . . . , x̄n) is called an
induced decomposition basis of h−1R/R. We write Zh := Z/hZ. Let
a = (a1, . . . , ar) be a basis ofX/R ⊆ h−1R/R. Then the basis elements
ai may be written as linear combinations of the induced decomposition
basis ai =

∑n
j=1 αij x̄j , for i = 1, . . . , r, where αij ∈ Zh. The (r × n)-

matrix M = (αij) i=1,... ,r
j=1,... ,n

∈ Mr×n(Zh) is called representing matrix of

X over R relative to a and x̄.

A group X is called p-local for a prime p if the regulator quotient
X/R(X) is a (finite) p-group.

Definition 1.1. Let p be a prime and e, n, r natural numbers. Let
T = (τ1, . . . , τn) be an ordered n-tuple of pairwise incomparable types,
where τi(p) = ∞ each i. Then C(T, p, e, r) denotes the class of almost
completely decomposable groups X such that

(1) T = Tcr(X) is the critical typeset of X,
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(2) X is rigid, i.e., X(τ ) has rank 1 for all τ ∈ T ,
(3) the regulator quotient is homocyclic of exponent pe, i.e.,X/R(X) ∼=

(Zpe)r = Zpe ⊕ Zpe ⊕ · · · ⊕ Zpe︸ ︷︷ ︸
r

is a direct sum of r copies of Zpe .

We call such groups X uniform.

Note that a group in C(T, p, e, r) has rank n and is p-reduced which
is equivalent to the assumption τi(p) =∞.

The following lemma is folklore.

Lemma 1.2. Let X be an almost completely decomposable group.
Let R = ⊕n

j=1Rτj
be a rigid completely decomposable subgroup of finite

index and X/R of exponent m ∈ N. The following are equivalent:

(1) R(X) = R.

(2) (Rτj
)X∗ = Rτj

for j = 1, . . . , n.

(3) X/R ∩ (m−1Rτj
+R)/R = 0 for j = 1, . . . , n.

In Lemma 3.4 we derive a regulator criterion for the representing
matrix of a p-local group.

Let X and Y be groups with a common regulator R(X) = R(Y ) = R
and exp(X/R) = exp(Y/R) = h. Let M be the representing matrix
of X and N be the representing matrix of Y over R relative to some
bases. Then the near-isomorphism criterion [6, Theorem 2.15] and
the isomorphism criterion [6, Theorem 4.2] have the following matrix
forms:

(1) The groups X and Y are nearly isomorphic, X ∼=nr Y , if and only
if N = PMD, where P is the matrix of an automorphism of Y/R and
D is the matrix of a type-automorphism ξ ∈ TypAutR, or equivalently
ξ(X/R) = (Y/R).

(2) The groups X and Y are isomorphic if and only if N = PMF ,
where P is the matrix of an automorphism of Y/R and F is the matrix
of an induced automorphism ζ ∈ AutR or equivalently ζ(X/R) =
(Y/R).

If we specialize to rigid groups, then these matrix equations simplify,
since typ-automorphisms have diagonal matrices in this case. We
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achieve reductions by using a special form of the representing matrices
in Theorem 4.3. In Theorem 5.1 we use such matrix equations to
determine the number of distinct isomorphism classes contained in a
fixed near-isomorphism class. We will find it easy to calculate upper
and lower bounds for that number.

2. Matrix theory.

Definition 2.1. Let S be a commutative ring with 1, let r, n be
natural numbers. Let S∗ denote the set of units in S. Let the set of
(r × n)-matrices over S be denoted by Mr×n(S). A matrix which is
obtained by striking out rows and columns of a matrix A is called a
submatrix of A. The maximal natural number k such that there is an
invertible k-rowed submatrix of A is called determinantal rank of A.
Write rkdet(A) = k. Abbreviate a diagonal matrix by

diag (d1, . . . , dn) ∈ Mn×n(S).

If r < n and D = diag (d1, . . . , dr, dr+1, . . . , dn), then define the
submatrices D≤r := diag (d1, . . . , dr) and D>r := diag (dr+1, . . . , dn).

Let U,U1, . . . , Un be subgroups of (S∗, ·). Write

DIAG (n;U) := {diag (d1, . . . , dn) | ∀j=1,... ,ndj ∈ U}

for the set of all (n× n)-diagonal matrices over U . This definition can
be generalized to

DIAG (U1, . . . , Un) := {diag (f1, . . . , fn) | ∀j=1,... ,nfj ∈ Uj}.

The matrices M,N ∈ Mr×n(S) are said to be diagonally equivalent if
there are invertible diagonal matrices D1, D2 such that

N = D1MD2.

The matrices A,B ∈ Mr×r(S) are said to be diagonally similar if there
is an invertible diagonal matrix D such that B = D−1AD.

Remark 2.2. Note that DIAG(U1, . . . , Un) ∼=
∏n

j=1 Uj is an abelian
subgroup of GL (n, S). This group acts on Mr×(n−r)(S) via diagonal
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equivalence:

DIAG (U1, . . . , Un)× Mr×(n−r)(S) −→ Mr×(n−r)(S),
(F,M) �−→ F−1

≤rMF>r.

Let A ∈ Mr×(n−r)(S). The stabilizer of A in DIAG(U1, . . . , Un) is
defined as

(2.3)

StabDIAG (U1,... ,Un)(A) = {F ∈ DIAG(U1, . . . , Un) | F−1
≤rAF>r = A}.

The DIAG (U1, . . . , Un)-orbits are known as diagonal equivalence classes
in Mr×(n−r)(S). The orbit of A is

Orb (A) =

{
F−1
≤r A F>r

∣∣∣∣ F≤r = diag (f1, . . . , fr),

F>r = diag (fr+1, . . . , fn), where fj ∈ Uj

}
.

Lemma 2.4. The number of matrices which are DIAG (U1, . . . , Un)-
diagonally equivalent to A is

[DIAG (U1, . . . , Un) : StabDIAG (U1,... ,Un)(A)] =

∏n
j=1 |Uj |

|StabDIAG (U1,... ,Un)(A)| .

Proof. This is the well-known fact that the length of the orbit of A is
the index of the stabilizer of A in the group of all DIAG (U1, . . . , Un)
matrices.

Definition 2.5. Let p be a prime and e ∈ N a natural number.
A matrix C = (γij)1≤i≤r

1≤j≤k
over Zpe is said to be normed if all the

main submatrices Cm = (γij) 1≤i
j≤m

for m = 1, 2, . . . ,min(r, k) have

determinant 1.

Let M be an (r × n)-matrix over Zpe with determinantal rank r.
Then there are invertible submatrices of size r × r. The set of indices
of the columns for such an invertible submatrix is called a pivot set of
the matrix M . A pivot set is not uniquely determined in general.
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Example 2.6. We want to determine the cardinality of an arbitrary
diagonal equivalence class of normed invertible (2 × 2)-matrices over
Zpe = Z/peZ. A 2-rowed matrix A is invertible and normed if and
only if

A =
(
1 α
β 1 + αβ

)
,

where α = λpm, β = µpl and λ, µ are units, 0 ≤ m, l ≤ e.

By Lemma 2.4, we have to calculate the cardinality of
StabDIAG (4;Z∗

pe )(A). By Definition 2.3 we haveD = diag (d1, d2, d3, d4) ∈
StabDIAG (4;Z∗

pe )(A) if and only if

(
d−1
1 0
0 d−1

2

) (
1 α
β 1+αβ

)(
d3 0
0 d4

)
=

(
d−1
1 d3 d−1

1 d4α
d−1
2 d3β d−1

2 d4(1+αβ)

)

=
(
1 α
β 1+αβ

)
.

It can be shown that therefore d3 = d1 and d4 = d2 and (d2−d1) ·α = 0
and (d2 − d1) · β = 0.

We count the possibilities of the solutions to determine
|StabDIAG (4;Z∗

pe )(A)|.

Case 1. A =
(

1 0

0 1

)
. Then |StabDIAG (4;Z∗

pe )(A)| = ϕ(pe)2 and

|Orb (A)| = ϕ(pe)2 = (pe−1(p− 1))2.

Case 2. A =
(

1 0

0 1

)
. Then |StabDIAG (4;Z∗

pe )(A)| = ϕ(pe) · pmin(l,m)

and

|Orb (A)| = ϕ(pe)3 · p−min(l,m) = p3e−3−min(l,m)(p− 1)3.

Here |Orb (A)| is the number of (2 × 2)-matrices over Zpe which are
diagonally equivalent to A. Recall that ϕ denotes the Euler ϕ-function.
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3. Representing matrices.

Theorem 3.1 [5, Theorem 3.7]. Let p be a prime and e, n, r natural
numbers. Let X be a p-reduced almost completely decomposable group
of rank n with completely decomposable subgroup R such that

X/R ∼= (Z/pe1Z)⊕ · · · ⊕ (Z/perZ), with e = e1 ≥ · · · ≥ er ≥ 1.

Then there is an ordered induced decomposition basis x̄ = (x̄1, . . . , x̄n)
of p−eR/R and an ordered basis a = (a1, . . . , ar) of X/R with 〈ai〉 ∼=
Z/peiZ such that the representing matrix of X over R relative to x̄ and
a is in Hermite normal form

M = Λ(E | A), where Λ = diag (pe−e1 , . . . , pe−er), and

(3.2) E =



1 m1,2 · · · m1,r

0 1 · · · m2,r

...
...

. . .
...

0 0 · · · 1


 , mi,j ∈ Z/peZ.

If especially ei = ej, then mi,j = 0. In particular, when e = e1 = · · · =
er, there are bases x̄ and a such that X has a representing matrix in
Hermite normal form M = (Ir | A) where Ir is the (r × r)-identity
matrix.

Definition 3.3. The matrix A ∈ Mr×k(Zpe) is called primitive if
each row of A has an entry which is a unit in Zpe .

Lemma 3.4. Let p be a prime and e, n, r ∈ N natural numbers
with r < n. Let X be a p-reduced rigid almost completely decomposable
group of rank n with a completely decomposable subgroup R such that
X/R ∼= ⊕r

i=1(Z/p
eiZ), where e = e1,≥ · · · ≥ er ≥ 1. Let x̄ be an

ordered basis of p−eR/R and a = (a1, . . . , ar) an ordered basis of X/R
with 〈ai〉 ∼= Z/peiZ. Let B ∈ Mr×n(Zpe) be some matrix such that

M = diag (pe−e1 , . . . , pe−er) ·B

is the representing matrix of X over R relative to a and x̄.
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Then R = R(X) is the regulator of X if and only if any submatrix
obtained from B by deleting one column has determinantal rank r.

If in addition e = e1 = · · · = er and M = (Ir | A) is in Hermite
normal form, then R is the regulator of X if and only if A is primitive.

Proof. Write R =
⊕n

j=1Rτj
=

⊕n
j=1〈xj〉R∗ , where x = (x1, . . . , xn)

is an ordered p-decomposition basis with tp (xj) = τj ∈ Tcr(R). Let
− : R → R = p−eR/R, x �→ x̄ = p−ex+ R denote the natural epimor-
phism. Recall that X/R =

⊕r
i=1 Zpeai and

⊕n
j=1(p

−eRτj
+ R)/R =

(p−eR)/R = R =
⊕n

j=1Rτj
=

⊕n
j=1 Zpe x̄j . Write B = (βij) i=1,... ,r

j=1,... ,n

and (αij)i,j) = M = diag (pe−e1 , . . . , pe−er) · B = (pe−eiβij)i,j . Let
B(k) denote the [r× (n−1)]-matrix over Zpe obtained from B by delet-
ing the k-th column. This matrix B(k) has p-independent rows if and
only if rkdetB

(k) = r. By the regulator criterion 1.2, we have to show

X

R
∩ p−eRτk

+R
R

= 0 for all k = 1, . . . , n [ 1.2⇐⇒ R = R(X)]

⇐⇒ B(k) has p-independent rows for all k = 1, . . . , n.

“⇐.” Assume that k ∈ {1, . . . , n} and B(k) has p-independent rows.
Let

∑r
i=1miai ∈ (X/R)∩ (p−eRτk

+R)/R ⊆ (p−eRτk
+R)/R = Zpe x̄k

be an arbitrary element of the intersection. Then

r∑
i=1

miai =
r∑

i=1

mi

( n∑
j=1

αij x̄j

)
=

n∑
j=1

( r∑
i=1

miαij

)
x̄j ∈ Zpe x̄k.

Since the sum R =
⊕n

j=1 Zpe x̄j is direct, we conclude
∑r

i=1miαij =∑r
i=1(mip

e−ei)βij = 0 in Zpe for all j = k. Hence

(m1p
e−e1 , . . . ,mrp

e−er) ·B(k) = (0, . . . , 0)︸ ︷︷ ︸
n−1 times

.

So (m1p
e−e1 , . . . ,mrp

e−er) = (0, . . . , 0) as the rows of B(k) are p-
independent. Thus

∑r
i=1miai =

∑r
i=1mi(

∑n
j=1 αij x̄j) =

∑n
j=1

∑r
i=1 ×

mikp
e−ei︸ ︷︷ ︸

=0

βijx̄j = 0 and therefore X/R ∩ (p−eRτk
+ R)/R = 0. Since

this is true for all k = 1, . . . , n, R(X) = R follows.
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“⇒.” Assume that k ∈ {1, . . . , n} and (X/R)∩ (p−eRτk
+R)/R = 0.

Then (X/R)[p] ∩ (p−1Rτk
+ R)/R = 0. Notice that (X/R)[p] =

(p−1R ∩ X)/R = 〈pei−1ai | 1 ≤ i ≤ r〉 is the p-socle of (X/R) and
(p−1Rτk

+ R)/R = 〈pe−1x̄k〉 is the p-socle of Rτk
= (p−eRτk

+ R)/R.
Let m1, . . . ,mr ∈ Zpe be such that (m1, . . . ,mr) · B(k) ∈ p(Zpε)n−1.
Then

X

R
[p] �

r∑
i=1

mip
ei−1ai =

r∑
i=1

mip
ei−1

( n∑
j=1

αij︸︷︷︸
=pe−ei βij

x̄j

)

=
n∑

j=1

pe−1

( r∑
i=1

miβij

︸ ︷︷ ︸
∈pZpe for j �=k

)
x̄j

= pe−1

( r∑
i=1

miβik

)
x̄k ∈ 〈pe−1x̄k〉

=
p−eRτk

+R
R

[p].

Therefore pe−1(
∑r

i=1miβik)x̄k ∈ (X/R)[p]∩(p−eRτk
+R)/R[p] = 0, so

(m1, . . . ,mr). (β1k, . . . , βrk)tr =
∑r

i=1miβik ∈ pZpe , since ord x̄k =
pe. Hence

(m1, . . . ,mr) ·B ∈ p(Zpe)n,

and therefore (m1, . . . ,mr) ∈ (pZpe)r, since B has p-independent rows.

We have shown (m1, . . . ,mr)·B(k) ∈ p(Zpe)n−1 implies (m1, . . . ,mr)
∈ (pZpe)r. For 1 ≤ l ≤ e we get recursively the implication
(n1, . . . , nr) · B(k) ∈ pl(Zpe)n−1 ⇒ (n1, . . . , nr) ∈ (plZpe)r. This
shows, by Definition [2, 32.], the p-independence of the rows of B(k) in
[(Zpe)n−1,+] for all k = 1, . . . , n.

The second statement is clear for a representing matrix in Hermite
normal form.

Definition 3.5. Let R be the regulator of X such that X/R ∼=⊕r
i=1(Z/p

eiZ), where e = e1 ≥ · · · ≥ er ≥ 1. Let B = (βij) i=1,... ,r
j=1,... ,n

be

some matrix over Zpe such that

M = diag (pe−e1 , . . . , pe−er) ·B
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is the representing matrix of X over R relative to bases a and x̄.

Then the subset {τj1 , . . . , τjr
} of T corresponding to some pivot set

{j1, . . . , jr} ⊆ {1, . . . , n} of the columns of B is called a pivot set of X.
A pivot set of B does not depend on the bases a and x̄. In particular,
pivot sets are invariants of X.

The n-tuple T = (τ1, . . . , τr, τr+1, . . . , τn) is said to be an admissible
indexing of the critical typeset of X if there is a basis a′ of X/R such
that B = (E | A) is the Hermite normal form (3.2).

4. Matrix (near-)isomorphism criterion for p-local groups.
The following result is a generalization of [1, Theorem 2.10].

Theorem 4.1. Pivot sets are near-isomorphism invariants for
reduced p-local rigid groups, in other words admissible indexings of the
critical typeset are near-isomorphism invariants.

Proof. Fix an admissible indexing of the group X. Let X have a
representing matrix Λ(E | A) in Hermite normal form (3.2), where Λ is
a diagonal matrix with p-power entries and E = (mi,j)i,j is an upper
triangular matrix. Let Y be nearly isomorphic to X. Let Λ(E′ | B)
be the representing matrix of Y relative to the same indexing of the
critical typeset. Use [6, Theorem 4.2] for this situation. Then near-
isomorphism means a diagonal equivalence of the representing matrices,
where the diagonal matrixD of a type-automorphism is multiplied from
the right. By comparison of the left (r× r)-blocks, there is a matrix P
of an automorphism of Y/R(Y ) and an invertible diagonal matrix D≤r

such that PE′ = ED≤r. Then

D−1
≤rPE

′ = D−1
≤rED≤r =



1 d−1

i mijdj

. . .
0 1




is the upper triangular form (3.2) too. Thus the indexing of the columns
is also admissible for Y .

Definition 4.2. Let m be a natural number and τ any type. Define

Z∗
m(τ ) := 〈−1 +mZ, q +mZ∈ Z∗

m | q prime number, τ (q)=∞〉mult .
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We investigate p-local groups with a simultaneous admissible indexing
of the critical typeset:

Theorem 4.3 (Matrix [near-]isomorphism criterion for p-local groups).
Let r < n be natural numbers and e = e1 ≥ · · · ≥ er ≥ 1 integers. Let
X and Y be p-reduced rigid groups of rank n with a common regulator
R such that

X/R ∼=
r⊕

i=1

(Z/peiZ) ∼= Y/R.

Let x̄ = (x̄1, . . . , x̄n) be an induced decomposition basis of R = p−eR/R
ordered by a simultaneous admissible indexing T = (τ1, . . . , τn) of the
critical typeset for X and Y . Let a = (a1, . . . , ar) be a basis of X/R
and b = (b1, . . . , br) a basis of Y/R with 〈ai〉 ∼= Z/peiZ ∼= 〈bi〉. Set
Λ = diag (pe−e1 , . . . , pe−er). Let the representing matrix M = Λ(A≤r |
A>r) of X over R and the representing matrix N = Λ(B≤r | B>r) of
Y over R be in the Hermite normal form, where

A≤r =



1 m12 · · · m1r

0 1 · · · m2r
...

...
. . .

...
0 0 · · · 1


 and B≤r =



1 n12 · · · n1r

0 1 · · · n2r
...

...
. . .

...
0 0 · · · 1


 .

(1) The groups X and Y are nearly isomorphic, X ∼=nr Y , if and only
if there is a matrix D = diag (d1, . . . , dn) with dj ∈ Z∗

pe and an upper
triangular matrix

P =



d−1
1 ∗

. . .
0 d−1

r




such that
N = PMD.

(2) The groups X and Y are isomorphic, X ∼= Y , if and only if
there is a matrix F = diag (f1, . . . , fn) with fj ∈ Z∗

pe(τj) and an upper
triangular matrix

P =



f−1
1 ∗

. . .
0 f−1

r
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such that
N = PMF.

Proof. (1) “⇐.” The invertible matrix D = diag (d1, . . . , dn) defines
a type automorphism ξ of R via ξx̄j := dj x̄j . The invertible upper
triangular matrix P represents an automorphism Γ : (Y/R) → (Y/R)
which maps the new basis elements ξai = b′i to the old ones bi.
Then N ′ := MD is the representing matrix of Y over R relative to
b′ := (b′1, . . . , b′r). We get (Y/R) = 〈b′1, . . . , b′r〉 = 〈ξa1, . . . , ξar〉 =
ξ(〈a1, . . . , ar〉) = ξ(X/R). Therefore, X ∼=nr Y .

“⇒.” Assume that X ∼=nr Y . Then X is type isomorphic to Y
and (X/R) ∼= (Y/R). By [6, Theorem 4.2], there exist a matrix
D = diag (d1, . . . , dn) of a type-automorphism ξ ∈ TypAutR and a
matrix P of an automorphism Γ ∈ Aut (X/R) such that PMD = N .
We compare the left (r × r)-blocks of this matrix equation

(4.4) PΛ



1 mij

. . .
0 1




︸ ︷︷ ︸
=A≤r

D≤r = Λ



1 nij

. . .
0 1




︸ ︷︷ ︸
=B≤r

.

All appearing matrices are invertible except Λ. Then
PΛ = ΛB≤rD

−1
≤rA

−1
≤r is an upper triangular matrix. Hence we can

choose P = (γij)1≤i
j≤r

to be an upper triangular matrix, too. Note that

the entry γij is unique modulo pejZpe . The coefficient (i, i) of the ma-
trix equation (4.4) is γii · pe−ei · 1 · di = pe−ei · 1. Hence we can assume
that γii = d−1

i for P = (γij)i,j .

(2) Use a matrix F = diag (f1, . . . , dn), fj ∈ Z∗
pe(τj), of an induced

automorphism ζ ∈ AutR instead of D in part (1) of this proof. All
conclusions are the same.

Definition 4.5. Let p be a prime and e, n, r ∈ N natural numbers
with r<n. Let T =(τ1, . . . , τn) be an ordered n-tuple of types. We set

DIAG (T ;Z∗
pe) : = DIAG(Z∗

pe(τ1), . . . ,Z∗
pe(τn))

= {diag (f1, . . . , fn) | ∀j=1,... ,nfj ∈ Z∗
pe(τj)},
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the set of T -diagonal matrices over Zpe .

Let A and B be [r × (n − r)]-matrices over Zpe . Then A and
B are called T -diagonally equivalent if there is a T -diagonal matrix
F ∈ DIAG(T ;Z∗

pe) such that

B = F−1
≤rAF>r.

Corollary 4.6 (Matrix [near-] isomorphism criterion for uni-
form groups). Let X,Y ∈ C(T, p, e, r) be uniform groups with a com-
mon regulator R. Let x̄ = (x̄1, . . . , x̄n) be an induced decomposition
basis of R = p−eR/R ordered by a simultaneous admissible indexing
T = (τ1, . . . , τn) of the critical typeset for X and Y . Let M = (Ir | A)
and N = (Ir | B) be the representing matrices of X and Y over R
relative to x̄ in Hermite normal form, where A and B are [r× (n− r)]-
matrices over Zpe .

(1) The groups X and Y are nearly isomorphic, X ∼=nr Y , if and only
if A and B are diagonally equivalent.

(2) The groups X and Y are isomorphic, X ∼= Y , if and only if A
and B are T -diagonally equivalent.

5. Isomorphism classes of uniform groups. We count iso-
morphism classes of groups within a fixed near-isomorphism class in
C(T, p, e, r). A representative of this class has a representing matrix
(Ir | C) with a primitive rest block C ∈ Mr×(n−r)(Zpe).

Theorem 5.1. Let R =
⊕n

j=1Rτj
be a rigid and p-reduced com-

pletely decomposable group of rank n with an indexing T = (τ1, . . . , τn)
of its critical typeset. Let C ∈ Mr×(n−r)(Zpe) be a primitive matrix.
Let Stab∼=nr(C) = {D = diag (d1, . . . , dn) | dj ∈ Z∗

pe , D−1
≤rCD>r = C}

and Stab∼=(C)={F = diag (f1, . . . , fn) | fj ∈ Z∗
pe(τj), F−1

≤rCF>r=C}.
Each near-isomorphism class is the union of isomorphism classes all

of equal length. The number of distinct isomorphism classes contained
in the near-isomorphism class of C and with regulator R is

(pe−1(p−1))n∏n
j=1 |Z∗

pe(τj)| · [Stab∼=nr(C) : Stab∼=(C)]
=

(pe−1(p−1))n

|DIAG(T ;Z∗
pe) · Stab∼=nr(C)| .
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Proof. Here DIAG (n;Z∗
pe) acts on Mr×(n−r) via diagonal equiva-

lence. The stabilizer of A under this action is Stab∼=nr(A) and the orbit
of A is Orb∼=nr(A) = {D−1

≤rAD>r | D ∈ DIAG (n;Z∗
pe)}. In addition

DIAG (T ;Z∗
pe) acts on Mr×(n−r) via diagonal equivalence, too. The

stabilizer of A under this action is Stab∼=(A) and the orbit of A is
Orb∼=(A) = {F−1

≤rAF>r | F ∈ DIAG (T ;Z∗
pe)}.

Firstly, we show that the isomorphism classes of near-isomorphic
groups have equal length. For that, let C ′ be diagonally equivalent
to C, i.e., C ′ = D−1

≤rCD>r, where D ∈ DIAG (n;Z∗
pe). Then

F ∈ Stab∼=(C)⇔ F−1
≤rCF>r = C ⇔ D−1

≤r(F
−1
≤rCF>r)D>r

= D−1
≤rCD>r ⇔ F−1

≤r (D
−1
≤rCD>r)︸ ︷︷ ︸

C′

F>r

= D−1
≤rCD>r︸ ︷︷ ︸

C′

⇔ F ∈ Stab∼=(C
′).

Hence Stab∼=(C) = Stab∼=(C ′) and therefore |Orb∼=(C)| = |Orb∼=(C ′)|.
The number of groups contained in the near-isomorphism class of C

is |Orb∼=nr(C)| = [DIAG (n;Z∗
pe) : Stab∼=nr(C)]. Similarly |Orb∼=(C)| =

[DIAG (T ;Z∗
pe) : Stab∼=(C)]. We compute

|{Orb∼=(A) | A ∈ Orb(C)}| = |Orb∼=nr(C)|
|Orb∼=(C)|

=
(pe−1(p− 1))n∏n

j=1 |Z∗
pe(τj)| · [Stab∼=nr(C) : Stab∼=(C)]

.

We have DIAG (T ;Z∗
pe) ∩ Stab∼=nr(C) = Stab∼=(C). Therefore the

denominator simplifies:

|DIAG (T ;Z∗
pe)| · [Stab∼=nr(C) : Stab∼=(C)]

=
|DIAG (T ;Z∗

pe)| · |Stab∼=nr(C)|
|Stab∼=(C)|

= |DIAG (T ;Z∗
pe) · Stab∼=nr(C)|,

and the claim follows.
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Corollary 5.2. There are at most
n∏

j=1

[Z∗
pe : Z∗

pe(τj)] =
(pe−1(p− 1))n∏n

j=1 |Z∗
pe(τj)|

pairwise nonisomorphic groups within the near-isomorphism class of
the primitive matrix C ∈ Mr×(n−r)(Zpe).

Proof. Since [Stab∼=nr(C) : Stab∼=(C)] ≥ 1, Theorem 5.1 shows the
claim.

Remark 5.3. Let us investigate uniform groups of even rank n = 2r.
Then a fixed near-isomorphism class is represented by a modified
diagonal similarity class of normed (r × r)-matrices, cf. [7, Theorem
4.3]. These are the rest blocks of the representing matrices.

There are at least
r∏

m=1

[Z∗
pe : Z∗

pe(τm ∨ τr+m)] =
(pe−1(p− 1))r∏r

m=1 |Z∗
pe(τm ∨ τr+m)|

pairwise nonisomorphic groups contained in the near-isomorphism class
relative to a normed and invertible (r× r)-matrix. This is shown in [8,
Theorem 9.8].

Example 5.4. Let τ1 = Z[3−1] = { n
3k | n ∈ Z, k ∈ N0} and

τ2 = Z[5−1]. Then R := τ1x1 ⊕ τ2x2 is 17-reduced.

Consider the almost completely decomposable group

Z = R + Z
1
17
(x1 + x2)

with corresponding representing matrix M = (1 | 1).
We compute 38 ≡ −1 (mod 17) and 58 ≡ −1 (mod 17). Then we

obtain Z∗
17(τ1) = Z∗

17(τ2) = Z∗
17

∼= Z16, since ord (3+17Z) = 16 =
ord (5+17Z). Hence Z∗

17(τ1 ∨ τ2) = Z∗
17 and therefore the formulas

of 5.2 and 5.3 simplify:

162∏2
j=1 |Z∗

17(τj)|
=
162

162
= 1 and

161∏1
m=1 |Z∗

17(τm ∨ τ1+m)|
= 1.
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This means that the upper and lower bounds of 5.2 and 5.3 are sharp.
All groups in the near-isomorphism class of Z are isomorphic.

Corollary 5.5. Let R = τ1x1 ⊕ · · · ⊕ τ4x4 be a rigid and p-reduced
completely decomposable group with critical typeset T = (τ1, . . . , τ4).
Let X ∈ C(T ; p, e, 2) be an almost completely decomposable group with
regulator R such that X/R = (Zpe)2. Let x̄ = (x̄1, . . . , x̄4) be the
induced decomposition basis of R = p−eR/R and a be an ordered basis
of X/R. Let the representing matrix M of X over R relative to x̄ and
a be in Hermite normed form with invertible rest block

M = (I2 | A) =
(
1 0
0 1

∣∣∣∣ 1 α
β 1 + αβ

)
,

where α = λpm, β = µpl for some units λ, µ and some integers
0 ≤ m, l ≤ e. Recall that Stab∼=(A) = {F = diag (f1, . . . , f4) |
fj ∈ Z∗

pe(τj), F−1
≤2AF>2 = A} denotes the stabilizer of A relative to the

T -diagonal equivalence.

Let A =
(

1 0

0 1

)
. Then

Stab∼=(A) = {diag (f1, f2, f1, f2) | f1∈ Z∗
pe(τ1) ∩ Z∗

pe(τ3),

f2∈ Z∗
pe(τ2) ∩ Z∗

pe(τr), such that f2−f1∈ pe−min(m,l) · Zpe}.

The number of distinct isomorphism classes contained in the near-
isomorphism class of X is

N =
ϕ(pe)3p−min(m,l) · |Stab∼=(A)|∏4

j=1 |Z∗
pe(τj)|

.

If α or β is a unit in Zpe , then

N =
(pe−1(p− 1))3 · |⋂4

j=1 Z∗
pe(τj)|∏4

j=1 |Z∗
pe(τj)|

.

Proof. Let Stab∼=nr(A) = {D = diag (d1, . . . , d4) | dj ∈ Z∗
pe , D−1

≤2 ×
AD>2 = A} denote the stabilizer of A relative to arbitrary diagonal
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equivalence. Let Orb∼=(A) = {F−1
≤2AF>2 | F ∈ DIAG (T ;Z∗

pe)} de-
note the T -diagonal equivalence class of A. Recall from Example 2.6
that Stab∼=nr(A) = {D = diag (d1, d2, d1, d2) | d1, d2 ∈ Z∗

pε such that
d2 − d1 ∈ pe−min(m,l)Zpe} and |Orb∼=nr(A)| = ϕ(pe)3p−min(m,l) =
p3e−3−min(l,m)(p − 1)3. We compute Stab∼=(A) = DIAG (T ;Z∗

pe) ∩
Stab∼=nr(A) = {diag (f1, f2, f3, f4) | fj ∈ Z∗

pe , f1 = f3, f2 = f4 such
that f2 − f1 ∈ pe−min(m,l)Zpe}, and we get the claim. Clearly we have
|Orb∼=(A)| = [DIAG (T ;Z∗

pe) : Stab∼=(A)] = (Π4
j=1|Z∗

pe(τj)|)/Stab∼=(A).
By Theorem 5.1 the number of isomorphism classes within the near-
isomorphism class of X is

N =
|Orb∼=nr

(A)|
|Orb∼=(A)|

=
ϕ(pe)3p−min(m,l) · |Stab∼=(A)|∏4

j=1 |Z∗
pe(τj)|

.

If α or β is a unit in Zpe , then min(m, l) = 0 and we compute
Stab∼=(A) = {diag (f, f, f, f) | f ∈ ∩4

j=1Z
∗
pe(τj)}. This proves the

last statement.
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