ISOMORPHISM CLASSES OF UNIFORM GROUPS

MICHAEL NAHLER

Abstract

In this paper we count isomorphism classes of uniform groups within a fixed near-isomorphism class.

1. Preliminaries. An almost completely decomposable group X is an extension of a completely decomposable group R by a finite group X / R. If $\exp (X / R)=h$, denote ${ }^{-}: R \rightarrow \bar{R}=h^{-1} R / R$, $x \mapsto \bar{x}=h^{-1} x+R$ the natural epimorphism. Furthermore, - denotes also the induced homomorphism ${ }^{-}$: Aut $R \rightarrow$ Aut $\bar{R}, \alpha \mapsto \bar{\alpha}$, which is well defined by $\bar{\alpha}(\bar{x}):=\overline{\alpha(x)}$. Recall, cf. [6], that

$$
\text { Typ Aut } \bar{R}=\left\{\xi \in \operatorname{Aut} \bar{R} \mid \forall_{\tau \in T_{\mathrm{cr}}(R)} \xi \overline{R(\tau)}=\overline{R(\tau)}\right\}
$$

is the set of type automorphisms of \bar{R}. Let $R=\bigoplus_{j=1}^{n}\left\langle x_{j}\right\rangle_{*}^{R}$, where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is an h-decomposition basis, i.e., $\operatorname{hgt}{ }_{p}^{R}\left(x_{j}\right) \in\{0, \infty\}$ for all j and all primes p dividing h. Then $\overline{\mathbf{x}}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ is called an induced decomposition basis of $h^{-1} R / R$. We write $\mathbf{Z}_{h}:=\mathbf{Z} / h \mathbf{Z}$. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ be a basis of $X / R \subseteq h^{-1} R / R$. Then the basis elements a_{i} may be written as linear combinations of the induced decomposition basis $a_{i}=\sum_{j=1}^{n} \alpha_{i j} \bar{x}_{j}$, for $i=1, \ldots, r$, where $\alpha_{i j} \in \mathbf{Z}_{h}$. The $(r \times n)$ matrix $M=\left(\alpha_{i j}\right)_{\substack{i=1, \ldots, r \\ j=1, \ldots, n}} \in \mathbf{M}^{r \times n}\left(\mathbf{Z}_{h}\right)$ is called representing matrix of X over R relative to a and $\overline{\mathbf{x}}$.

A group X is called p-local for a prime p if the regulator quotient $X / R(X)$ is a (finite) p-group.

Definition 1.1. Let p be a prime and e, n, r natural numbers. Let $T=\left(\tau_{1}, \ldots, \tau_{n}\right)$ be an ordered n-tuple of pairwise incomparable types, where $\tau_{i}(p) \neq \infty$ each i. Then $\mathcal{C}(T, p, e, r)$ denotes the class of almost completely decomposable groups X such that
(1) $T=T_{\mathrm{cr}}(X)$ is the critical typeset of X,

[^0] 2001.
(2) X is rigid, i.e., $X(\tau)$ has rank 1 for all $\tau \in T$,
(3) the regulator quotient is homocyclic of exponent p^{e}, i.e., $X / R(X) \cong$ $\left(\mathbf{Z}_{p^{e}}\right)^{r}=\underbrace{\mathbf{Z}_{p^{e}} \oplus \mathbf{Z}_{p^{e}} \oplus \cdots \oplus \mathbf{Z}_{p^{e}}}_{r}$ is a direct sum of r copies of $\mathbf{Z}_{p^{e}}$.

We call such groups X uniform.
Note that a group in $\mathcal{C}(T, p, e, r)$ has rank n and is p-reduced which is equivalent to the assumption $\tau_{i}(p) \neq \infty$.

The following lemma is folklore.

Lemma 1.2. Let X be an almost completely decomposable group. Let $R=\oplus_{j=1}^{n} R_{\tau_{j}}$ be a rigid completely decomposable subgroup of finite index and X / R of exponent $m \in \mathbf{N}$. The following are equivalent:
(1) $R(X)=R$.
(2) $\left(R_{\tau_{j}}\right)_{*}^{X}=R_{\tau_{j}}$ for $j=1, \ldots, n$.
(3) $X / R \cap\left(m^{-1} R_{\tau_{j}}+R\right) / R=0$ for $j=1, \ldots, n$.

In Lemma 3.4 we derive a regulator criterion for the representing matrix of a p-local group.
Let X and Y be groups with a common regulator $R(X)=R(Y)=R$ and $\exp (X / R)=\exp (Y / R)=h$. Let M be the representing matrix of X and N be the representing matrix of Y over R relative to some bases. Then the near-isomorphism criterion [6, Theorem 2.15] and the isomorphism criterion [6, Theorem 4.2] have the following matrix forms:
(1) The groups X and Y are nearly isomorphic, $X \cong_{\mathrm{nr}} Y$, if and only if $N=P M D$, where P is the matrix of an automorphism of Y / R and D is the matrix of a type-automorphism $\xi \in \operatorname{Typ}$ Aut \bar{R}, or equivalently $\xi(X / R)=(Y / R)$.
(2) The groups X and Y are isomorphic if and only if $N=P M F$, where P is the matrix of an automorphism of Y / R and F is the matrix of an induced automorphism $\zeta \in \overline{\operatorname{Aut} R}$ or equivalently $\zeta(X / R)=$ (Y / R).
If we specialize to rigid groups, then these matrix equations simplify, since typ-automorphisms have diagonal matrices in this case. We
achieve reductions by using a special form of the representing matrices in Theorem 4.3. In Theorem 5.1 we use such matrix equations to determine the number of distinct isomorphism classes contained in a fixed near-isomorphism class. We will find it easy to calculate upper and lower bounds for that number.

2. Matrix theory.

Definition 2.1. Let S be a commutative ring with 1 , let r, n be natural numbers. Let S^{*} denote the set of units in S. Let the set of $(r \times n)$-matrices over S be denoted by $\mathbf{M}^{r \times n}(S)$. A matrix which is obtained by striking out rows and columns of a matrix A is called a submatrix of A. The maximal natural number k such that there is an invertible k-rowed submatrix of A is called determinantal rank of A. Write $\operatorname{rk}_{\text {det }}(A)=k$. Abbreviate a diagonal matrix by

$$
\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \in \mathbf{M}^{n \times n}(S)
$$

If $r<n$ and $D=\operatorname{diag}\left(d_{1}, \ldots, d_{r}, d_{r+1}, \ldots, d_{n}\right)$, then define the submatrices $D_{\leq r}:=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right)$ and $D_{>r}:=\operatorname{diag}\left(d_{r+1}, \ldots, d_{n}\right)$.
Let U, U_{1}, \ldots, U_{n} be subgroups of $\left(S^{*}, \cdot\right)$. Write

$$
\operatorname{DIAG}(n ; U):=\left\{\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \mid \forall_{j=1, \ldots, n} d_{j} \in U\right\}
$$

for the set of all $(n \times n)$-diagonal matrices over U. This definition can be generalized to

$$
\operatorname{DIAG}\left(U_{1}, \ldots, U_{n}\right):=\left\{\operatorname{diag}\left(f_{1}, \ldots, f_{n}\right) \mid \forall_{j=1, \ldots, n} f_{j} \in U_{j}\right\}
$$

The matrices $M, N \in \mathbf{M}^{r \times n}(S)$ are said to be diagonally equivalent if there are invertible diagonal matrices D_{1}, D_{2} such that

$$
N=D_{1} M D_{2}
$$

The matrices $A, B \in \mathbf{M}^{r \times r}(S)$ are said to be diagonally similar if there is an invertible diagonal matrix D such that $B=D^{-1} A D$.

Remark 2.2. Note that DIAG $\left(U_{1}, \ldots, U_{n}\right) \cong \prod_{j=1}^{n} U_{j}$ is an abelian subgroup of GL (n, S). This group acts on $\mathbf{M}^{r \times(n-r)}(S)$ via diagonal
equivalence:

$$
\begin{gathered}
\operatorname{DIAG}\left(U_{1}, \ldots, U_{n}\right) \times \mathbf{M}^{r \times(n-r)}(S) \longrightarrow \mathbf{M}^{r \times(n-r)}(S), \\
(F, M) \longmapsto F_{\leq r}^{-1} M F_{>r} .
\end{gathered}
$$

Let $A \in \mathbf{M}^{r \times(n-r)}(S)$. The stabilizer of A in $\operatorname{DIAG}\left(U_{1}, \ldots, U_{n}\right)$ is defined as

$$
\begin{equation*}
\operatorname{Stab}_{\text {DIAG }\left(U_{1}, \ldots, U_{n}\right)}(A)=\left\{F \in \operatorname{DIAG}\left(U_{1}, \ldots, U_{n}\right) \mid F_{\leq r}^{-1} A F_{>r}=A\right\} \tag{2.3}
\end{equation*}
$$

The DIAG $\left(U_{1}, \ldots, U_{n}\right)$-orbits are known as diagonal equivalence classes in $\mathbf{M}^{r \times(n-r)}(S)$. The orbit of A is

$$
\operatorname{Orb}(A)=\left\{\begin{array}{l|l}
F_{\leq r}^{-1} A F_{>r} & \begin{array}{l}
F_{\leq r}=\operatorname{diag}\left(f_{1}, \ldots, f_{r}\right), \\
F_{>r}=\operatorname{diag}\left(f_{r+1}, \ldots, f_{n}\right), \quad \text { where } f_{j} \in U_{j}
\end{array}
\end{array}\right\} .
$$

Lemma 2.4. The number of matrices which are DIAG $\left(U_{1}, \ldots, U_{n}\right)$ diagonally equivalent to A is

$$
\left[\operatorname{DIAG}\left(U_{1}, \ldots, U_{n}\right): \operatorname{Stab}_{\mathrm{DIAG}\left(U_{1}, \ldots, U_{n}\right)}(A)\right]=\frac{\prod_{j=1}^{n}\left|U_{j}\right|}{\left|\operatorname{Stab}_{\operatorname{DIAG}\left(U_{1}, \ldots, U_{n}\right)}(A)\right|}
$$

Proof. This is the well-known fact that the length of the orbit of A is the index of the stabilizer of A in the group of all DIAG $\left(U_{1}, \ldots, U_{n}\right)$ matrices.

Definition 2.5. Let p be a prime and $e \in \mathbf{N}$ a natural number. A matrix $C=\left(\gamma_{i j}\right)_{1 \leq i \leq r}$ over $\mathbf{Z}_{p^{e}}$ is said to be normed if all the main submatrices $C_{m} \stackrel{1 \leq j \leq k}{=}\left(\gamma_{i j}\right)_{\substack{1 \leq i \\ j \leq m}}$ for $m=1,2, \ldots, \min (r, k)$ have determinant 1.

Let M be an $(r \times n)$-matrix over $\mathbf{Z}_{p^{e}}$ with determinantal rank r. Then there are invertible submatrices of size $r \times r$. The set of indices of the columns for such an invertible submatrix is called a pivot set of the matrix M. A pivot set is not uniquely determined in general.

Example 2.6. We want to determine the cardinality of an arbitrary diagonal equivalence class of normed invertible (2×2)-matrices over $\mathbf{Z}_{p^{e}}=\mathbf{Z} / p^{e} \mathbf{Z}$. A 2-rowed matrix A is invertible and normed if and only if

$$
A=\left(\begin{array}{cc}
1 & \alpha \\
\beta & 1+\alpha \beta
\end{array}\right)
$$

where $\alpha=\lambda p^{m}, \beta=\mu p^{l}$ and λ, μ are units, $0 \leq m, l \leq e$.
By Lemma 2.4, we have to calculate the cardinality of $\operatorname{Stab}_{\text {DIAG }\left(4 ; \mathbf{Z}_{p^{e}}^{*}\right)}(A)$. By Definition 2.3 we have $D=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}, d_{4}\right) \in$ $\operatorname{Stab}_{\text {DIAG }}^{\left(4 ; \mathbf{Z}_{p^{e}}^{*}\right)}(A)$ if and only if

$$
\begin{aligned}
\left(\begin{array}{cc}
d_{1}^{-1} & 0 \\
0 & d_{2}^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & \alpha \\
\beta & 1+\alpha \beta
\end{array}\right)\left(\begin{array}{cc}
d_{3} & 0 \\
0 & d_{4}
\end{array}\right) & =\left(\begin{array}{cc}
d_{1}^{-1} d_{3} & d_{1}^{-1} d_{4} \alpha \\
d_{2}^{-1} d_{3} \beta & d_{2}^{-1} d_{4}(1+\alpha \beta)
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & \alpha \\
\beta & 1+\alpha \beta
\end{array}\right)
\end{aligned}
$$

It can be shown that therefore $d_{3}=d_{1}$ and $d_{4}=d_{2}$ and $\left(d_{2}-d_{1}\right) \cdot \alpha=0$ and $\left(d_{2}-d_{1}\right) \cdot \beta=0$.

We count the possibilities of the solutions to determine $\left|\operatorname{Stab}_{\text {DIAG }\left(4 ; \mathbf{Z}_{p^{e}}^{*}\right)}(A)\right|$.

Case 1. $A=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$. Then $\left|\operatorname{Stab}_{\text {DIAG }\left(4 ; \mathbf{Z}_{p^{e}}^{*}\right)}(A)\right|=\varphi\left(p^{e}\right)^{2}$ and

$$
|\operatorname{Orb}(A)|=\varphi\left(p^{e}\right)^{2}=\left(p^{e-1}(p-1)\right)^{2}
$$

Case 2. $A \neq\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$. Then $\left|\operatorname{Stab}_{\text {DIAG }\left(4 ; \mathbf{Z}_{p^{e}}^{*}\right)}(A)\right|=\varphi\left(p^{e}\right) \cdot p^{\min (l, m)}$ and

$$
|\operatorname{Orb}(A)|=\varphi\left(p^{e}\right)^{3} \cdot p^{-\min (l, m)}=p^{3 e-3-\min (l, m)}(p-1)^{3} .
$$

Here $|\operatorname{Orb}(A)|$ is the number of (2×2)-matrices over $\mathbf{Z}_{p^{e}}$ which are diagonally equivalent to A. Recall that φ denotes the Euler φ-function.

3. Representing matrices.

Theorem 3.1 [5, Theorem 3.7]. Let p be a prime and e, n, r natural numbers. Let X be a p-reduced almost completely decomposable group of rank n with completely decomposable subgroup R such that

$$
X / R \cong\left(\mathbf{Z} / p^{e_{1}} \mathbf{Z}\right) \oplus \cdots \oplus\left(\mathbf{Z} / p^{e_{r}} \mathbf{Z}\right), \quad \text { with } e=e_{1} \geq \cdots \geq e_{r} \geq 1
$$

Then there is an ordered induced decomposition basis $\overline{\mathbf{x}}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ of $p^{-e} R / R$ and an ordered basis $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ of X / R with $\left\langle a_{i}\right\rangle \cong$ $\mathbf{Z} / p^{e_{i}} \mathbf{Z}$ such that the representing matrix of X over R relative to $\overline{\mathbf{x}}$ and \mathbf{a} is in Hermite normal form

$$
M=\Lambda(E \mid A), \quad \text { where } \Lambda=\operatorname{diag}\left(p^{e-e_{1}}, \ldots, p^{e-e_{r}}\right), \quad \text { and }
$$

$$
E=\left(\begin{array}{cccc}
1 & m_{1,2} & \cdots & m_{1, r} \tag{3.2}\\
0 & 1 & \cdots & m_{2, r} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right), \quad m_{i, j} \in \mathbf{Z} / p^{e} \mathbf{Z}
$$

If especially $e_{i}=e_{j}$, then $m_{i, j}=0$. In particular, when $e=e_{1}=\cdots=$ e_{r}, there are bases $\overline{\mathbf{x}}$ and \mathbf{a} such that X has a representing matrix in Hermite normal form $M=\left(I_{r} \mid A\right)$ where I_{r} is the $(r \times r)$-identity matrix.

Definition 3.3. The matrix $A \in \mathbf{M}^{r \times k}\left(\mathbf{Z}_{p^{e}}\right)$ is called primitive if each row of A has an entry which is a unit in $\mathbf{Z}_{p^{e}}$.

Lemma 3.4. Let p be a prime and e, $n, r \in \mathbf{N}$ natural numbers with $r<n$. Let X be a p-reduced rigid almost completely decomposable group of rank n with a completely decomposable subgroup R such that $X / R \cong \bigoplus_{i=1}^{r}\left(\mathbf{Z} / p^{e_{i}} \mathbf{Z}\right)$, where $e=e_{1}, \geq \cdots \geq e_{r} \geq 1$. Let $\overline{\mathbf{x}}$ be an ordered basis of $p^{-e} R / R$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ an ordered basis of X / R with $\left\langle a_{i}\right\rangle \cong \mathbf{Z} / p^{e_{i}} \mathbf{Z}$. Let $B \in \mathbf{M}^{r \times n}\left(\mathbf{Z}_{p^{e}}\right)$ be some matrix such that

$$
M=\operatorname{diag}\left(p^{e-e_{1}}, \ldots, p^{e-e_{r}}\right) \cdot B
$$

is the representing matrix of X over R relative to a and $\overline{\mathbf{x}}$.

Then $R=R(X)$ is the regulator of X if and only if any submatrix obtained from B by deleting one column has determinantal rank r.

If in addition $e=e_{1}=\cdots=e_{r}$ and $M=\left(I_{r} \mid A\right)$ is in Hermite normal form, then R is the regulator of X if and only if A is primitive.

Proof. Write $R=\bigoplus_{j=1}^{n} R_{\tau_{j}}=\bigoplus_{j=1}^{n}\left\langle x_{j}\right\rangle_{*}^{R}$, where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is an ordered p-decomposition basis with $\operatorname{tp}\left(x_{j}\right)=\tau_{j} \in T_{\text {cr }}(R)$. Let - : $R \rightarrow \bar{R}=p^{-e} R / R, x \mapsto \bar{x}=p^{-e} x+R$ denote the natural epimorphism. Recall that $X / R=\bigoplus_{i=1}^{r} \mathbf{Z}_{p^{e}} a_{i}$ and $\bigoplus_{j=1}^{n}\left(p^{-e} R_{\tau_{j}}+R\right) / R=$ $\left(p^{-e} R\right) / R=\bar{R}=\bigoplus_{j=1}^{n} \bar{R}_{\tau_{j}}=\bigoplus_{j=1}^{n} \mathbf{Z}_{p^{e}} \bar{x}_{j}$. Write $B=\left(\beta_{i j}\right)_{\substack{i=1, \ldots, r \\ j=1, \ldots, n}}$ and $\left.\left(\alpha_{i j}\right)_{i, j}\right)=M=\operatorname{diag}\left(p^{e-e_{1}}, \ldots, p^{e-e_{r}}\right) \cdot B=\left(p^{e-e_{i}} \beta_{i j}\right)_{i, j}$. Let $B^{(k)}$ denote the $[r \times(n-1)]$-matrix over $\mathbf{Z}_{p^{e}}$ obtained from B by deleting the k-th column. This matrix $B^{(k)}$ has p-independent rows if and only if $\mathrm{rk}_{\mathrm{det}} B^{(k)}=r$. By the regulator criterion 1.2 , we have to show

$$
\begin{aligned}
\frac{X}{R} \cap \frac{p^{-e} R_{\tau_{k}}+R}{R}=0 \quad \text { for all } k=1, \ldots, n \quad[\stackrel{1.2}{\Longleftrightarrow} R=R(X)] \\
\Longleftrightarrow B^{(k)} \text { has } p \text {-independent rows for all } k=1, \ldots, n
\end{aligned}
$$

" \Leftarrow." Assume that $k \in\{1, \ldots, n\}$ and $B^{(k)}$ has p-independent rows. Let $\sum_{i=1}^{r} m_{i} a_{i} \in(X / R) \cap\left(p^{-e} R_{\tau_{k}}+R\right) / R \subseteq\left(p^{-e} R_{\tau_{k}}+R\right) / R=\mathbf{Z}_{p^{e}} \bar{x}_{k}$ be an arbitrary element of the intersection. Then

$$
\sum_{i=1}^{r} m_{i} a_{i}=\sum_{i=1}^{r} m_{i}\left(\sum_{j=1}^{n} \alpha_{i j} \bar{x}_{j}\right)=\sum_{j=1}^{n}\left(\sum_{i=1}^{r} m_{i} \alpha_{i j}\right) \bar{x}_{j} \in \mathbf{Z}_{p^{e}} \bar{x}_{k}
$$

Since the sum $\bar{R}=\bigoplus_{j=1}^{n} \mathbf{Z}_{p^{e}} \bar{x}_{j}$ is direct, we conclude $\sum_{i=1}^{r} m_{i} \alpha_{i j}=$ $\sum_{i=1}^{r}\left(m_{i} p^{e-e_{i}}\right) \beta_{i j}=0$ in $\mathbf{Z}_{p^{e}}$ for all $j \neq k$. Hence

$$
\left(m_{1} p^{e-e_{1}}, \ldots, m_{r} p^{e-e_{r}}\right) \cdot B^{(k)}=\underbrace{(0, \ldots, 0)}_{n-1 \text { times }}
$$

So $\left(m_{1} p^{e-e_{1}}, \ldots, m_{r} p^{e-e_{r}}\right)=(0, \ldots, 0)$ as the rows of $B^{(k)}$ are p independent. Thus $\sum_{i=1}^{r} m_{i} a_{i}=\sum_{i=1}^{r} m_{i}\left(\sum_{j=1}^{n} \alpha_{i j} \bar{x}_{j}\right)=\sum_{j=1}^{n} \sum_{i=1}^{r} \times$ $\underbrace{m_{i} k p^{e-e_{i}}}_{=0} \beta_{i j} \bar{x}_{j}=0$ and therefore $X / R \cap\left(p^{-e} R_{\tau_{k}}+R\right) / R=0$. Since this is true for all $k=1, \ldots, n, R(X)=R$ follows.
$" \Rightarrow$." Assume that $k \in\{1, \ldots, n\}$ and $(X / R) \cap\left(p^{-e} R_{\tau_{k}}+R\right) / R=0$. Then $(X / R)[p] \cap\left(p^{-1} R_{\tau_{k}}+R\right) / R=0$. Notice that $(X / R)[p]=$ $\left(p^{-1} R \cap X\right) / R=\left\langle p^{e_{i}-1} a_{i} \mid 1 \leq i \leq r\right\rangle$ is the p-socle of (X / R) and $\left(p^{-1} R_{\tau_{k}}+R\right) / R=\left\langle p^{e-1} \bar{x}_{k}\right\rangle$ is the p-socle of $\bar{R}_{\tau_{k}}=\left(p^{-e} R_{\tau_{k}}+R\right) / R$. Let $m_{1}, \ldots, m_{r} \in \mathbf{Z}_{p^{e}}$ be such that $\left(m_{1}, \ldots, m_{r}\right) \cdot B^{(k)} \in p\left(\mathbf{Z}_{p^{\varepsilon}}\right)^{n-1}$. Then

$$
\begin{aligned}
\frac{X}{R}[p] \ni \sum_{i=1}^{r} m_{i} p^{e_{i}-1} a_{i} & =\sum_{i=1}^{r} m_{i} p^{e_{i}-1}(\sum_{j=1}^{n} \underbrace{\alpha_{i j}}_{e^{e-e_{i}}} \bar{x}_{j}) \\
& =\sum_{j=1}^{n} p^{e-1}(\underbrace{\sum_{i=1}^{r} m_{i} \beta_{i j}}_{\in p Z_{p^{e}} \text { for } j \neq k}) \bar{x}_{j} \\
& =p^{e-1}\left(\sum_{i=1}^{r} m_{i} \beta_{i k}\right) \bar{x}_{k} \in\left\langle p^{e-1} \bar{x}_{k}\right\rangle \\
& =\frac{p^{-e} R_{\tau_{k}}+R}{R}[p] .
\end{aligned}
$$

Therefore $p^{e-1}\left(\sum_{i=1}^{r} m_{i} \beta_{i k}\right) \bar{x}_{k} \in(X / R)[p] \cap\left(p^{-e} R_{\tau_{k}}+R\right) / R[p]=0$, so $\left(m_{1}, \ldots, m_{r}\right) .\left(\beta_{1 k}, \ldots, \beta_{r k}\right)^{\operatorname{tr}}=\sum_{i=1}^{r} m_{i} \beta_{i k} \in p \mathbf{Z}_{p^{e}}$, since ord $\bar{x}_{k}=$ p^{e}. Hence

$$
\left(m_{1}, \ldots, m_{r}\right) \cdot B \in p\left(\mathbf{Z}_{p^{e}}\right)^{n}
$$

and therefore $\left(m_{1}, \ldots, m_{r}\right) \in\left(p \mathbf{Z}_{p^{e}}\right)^{r}$, since B has p-independent rows.
We have shown $\left(m_{1}, \ldots, m_{r}\right) \cdot B^{(k)} \in p\left(\mathbf{Z}_{p^{e}}\right)^{n-1}$ implies $\left(m_{1}, \ldots, m_{r}\right)$ $\in\left(p \mathbf{Z}_{p^{e}}\right)^{r}$. For $1 \leq l \leq e$ we get recursively the implication $\left(n_{1}, \ldots, n_{r}\right) \cdot B^{(k)} \in p^{l}\left(\mathbf{Z}_{p^{e}}\right)^{n-1} \Rightarrow\left(n_{1}, \ldots, n_{r}\right) \in\left(p^{l} \mathbf{Z}_{p^{e}}\right)^{r}$. This shows, by Definition [2,32.], the p-independence of the rows of $B^{(k)}$ in $\left[\left(\mathbf{Z}_{p^{e}}\right)^{n-1},+\right]$ for all $k=1, \ldots, n$.
The second statement is clear for a representing matrix in Hermite normal form. \quad.

Definition 3.5. Let R be the regulator of X such that $X / R \cong$ $\bigoplus_{i=1}^{r}\left(\mathbf{Z} / p^{e_{i}} \mathbf{Z}\right)$, where $e=e_{1} \geq \cdots \geq e_{r} \geq 1$. Let $B=\left(\beta_{i j}\right)_{\substack{i=1, \ldots, r \\ j=1, \ldots, n}}$ be some matrix over $\mathbf{Z}_{p^{e}}$ such that

$$
M=\operatorname{diag}\left(p^{e-e_{1}}, \ldots, p^{e-e_{r}}\right) \cdot B
$$

is the representing matrix of X over R relative to bases a and $\overline{\mathbf{x}}$.
Then the subset $\left\{\tau_{j_{1}}, \ldots, \tau_{j_{r}}\right\}$ of T corresponding to some pivot set $\left\{j_{1}, \ldots, j_{r}\right\} \subseteq\{1, \ldots, n\}$ of the columns of B is called a pivot set of X. A pivot set of B does not depend on the bases a and $\overline{\mathbf{x}}$. In particular, pivot sets are invariants of X.

The n-tuple $T=\left(\tau_{1}, \ldots, \tau_{r}, \tau_{r+1}, \ldots, \tau_{n}\right)$ is said to be an admissible indexing of the critical typeset of X if there is a basis \mathbf{a}^{\prime} of X / R such that $B=(E \mid A)$ is the Hermite normal form (3.2).
4. Matrix (near-)isomorphism criterion for p-local groups. The following result is a generalization of [$\mathbf{1}$, Theorem 2.10].

Theorem 4.1. Pivot sets are near-isomorphism invariants for reduced p-local rigid groups, in other words admissible indexings of the critical typeset are near-isomorphism invariants.

Proof. Fix an admissible indexing of the group X. Let X have a representing matrix $\Lambda(E \mid A)$ in Hermite normal form (3.2), where Λ is a diagonal matrix with p-power entries and $E=\left(m_{i, j}\right)_{i, j}$ is an upper triangular matrix. Let Y be nearly isomorphic to X. Let $\Lambda\left(E^{\prime} \mid B\right)$ be the representing matrix of Y relative to the same indexing of the critical typeset. Use [6, Theorem 4.2] for this situation. Then nearisomorphism means a diagonal equivalence of the representing matrices, where the diagonal matrix D of a type-automorphism is multiplied from the right. By comparison of the left $(r \times r)$-blocks, there is a matrix P of an automorphism of $Y / R(Y)$ and an invertible diagonal matrix $D_{\leq r}$ such that $P E^{\prime}=E D_{\leq r}$. Then

$$
D_{\leq r}^{-1} P E^{\prime}=D_{\leq r}^{-1} E D_{\leq r}=\left(\begin{array}{ccc}
1 & & d_{i}^{-1} m_{i j} d_{j} \\
& \ddots & \\
0 & & 1
\end{array}\right)
$$

is the upper triangular form (3.2) too. Thus the indexing of the columns is also admissible for Y.

Definition 4.2. Let m be a natural number and τ any type. Define
$\mathbf{Z}_{m}^{*}(\tau):=\left\langle-1+m \mathbf{Z}, q+m \mathbf{Z} \in \mathbf{Z}_{m}^{*}\right| q$ prime number, $\left.\tau(q)=\infty\right\rangle_{\text {mult }}$.

We investigate p-local groups with a simultaneous admissible indexing of the critical typeset:

Theorem 4.3 (Matrix [near-]isomorphism criterion for p-local groups). Let $r<n$ be natural numbers and $e=e_{1} \geq \cdots \geq e_{r} \geq 1$ integers. Let X and Y be p-reduced rigid groups of rank n with a common regulator R such that

$$
X / R \cong \bigoplus_{i=1}^{r}\left(\mathbf{Z} / p^{e_{i}} \mathbf{Z}\right) \cong Y / R
$$

Let $\overline{\mathbf{x}}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ be an induced decomposition basis of $\bar{R}=p^{-e} R / R$ ordered by a simultaneous admissible indexing $T=\left(\tau_{1}, \ldots, \tau_{n}\right)$ of the critical typeset for X and Y. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right)$ be a basis of X / R and $\mathbf{b}=\left(b_{1}, \ldots, b_{r}\right)$ a basis of Y / R with $\left\langle a_{i}\right\rangle \cong \mathbf{Z} / p^{e_{i}} \mathbf{Z} \cong\left\langle b_{i}\right\rangle$. Set $\Lambda=\operatorname{diag}\left(p^{e-e_{1}}, \ldots, p^{e-e_{r}}\right)$. Let the representing matrix $M=\Lambda\left(A_{\leq r} \mid\right.$ $\left.A_{>r}\right)$ of X over R and the representing matrix $N=\Lambda\left(B_{\leq r} \mid B_{>r}\right)$ of Y over R be in the Hermite normal form, where

$$
A_{\leq r}=\left(\begin{array}{cccc}
1 & m_{12} & \cdots & m_{1 r} \\
0 & 1 & \cdots & m_{2 r} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right) \quad \text { and } \quad B_{\leq r}=\left(\begin{array}{cccc}
1 & n_{12} & \cdots & n_{1 r} \\
0 & 1 & \cdots & n_{2 r} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

(1) The groups X and Y are nearly isomorphic, $X \cong_{\mathrm{nr}} Y$, if and only if there is a matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ with $d_{j} \in \mathbf{Z}_{p^{e}}^{*}$ and an upper triangular matrix

$$
P=\left(\begin{array}{ccc}
d_{1}^{-1} & & * \\
& \ddots & \\
0 & & d_{r}^{-1}
\end{array}\right)
$$

such that

$$
N=P M D
$$

(2) The groups X and Y are isomorphic, $X \cong Y$, if and only if there is a matrix $F=\operatorname{diag}\left(f_{1}, \ldots, f_{n}\right)$ with $f_{j} \in \mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right)$ and an upper triangular matrix

$$
P=\left(\begin{array}{ccc}
f_{1}^{-1} & & * \\
& \ddots & \\
0 & & f_{r}^{-1}
\end{array}\right)
$$

such that

$$
N=P M F
$$

Proof. (1)" \Leftarrow." The invertible matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ defines a type automorphism ξ of \bar{R} via $\xi \bar{x}_{j}:=d_{j} \bar{x}_{j}$. The invertible upper triangular matrix P represents an automorphism $\Gamma:(Y / R) \rightarrow(Y / R)$ which maps the new basis elements $\xi a_{i}=b_{i}^{\prime}$ to the old ones b_{i}. Then $N^{\prime}:=M D$ is the representing matrix of Y over R relative to $\mathbf{b}^{\prime}:=\left(b_{1}^{\prime}, \ldots, b_{r}^{\prime}\right)$. We get $(Y / R)=\left\langle b_{1}^{\prime}, \ldots, b_{r}^{\prime}\right\rangle=\left\langle\xi a_{1}, \ldots, \xi a_{r}\right\rangle=$ $\xi\left(\left\langle a_{1}, \ldots, a_{r}\right\rangle\right)=\xi(X / R)$. Therefore, $X \cong{ }_{\mathrm{nr}} Y$.
" \Rightarrow." Assume that $X \cong{ }_{\mathrm{nr}} Y$. Then X is type isomorphic to Y and $(X / R) \cong(Y / R)$. By [6, Theorem 4.2], there exist a matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ of a type-automorphism $\xi \in \operatorname{Typ}$ Aut \bar{R} and a matrix P of an automorphism $\Gamma \in \operatorname{Aut}(X / R)$ such that $P M D=N$. We compare the left $(r \times r)$-blocks of this matrix equation

$$
P \Lambda \underbrace{\left(\begin{array}{ccc}
1 & & m_{i j} \tag{4.4}\\
& \ddots & \\
0 & & 1
\end{array}\right)}_{=A \leq r} D_{\leq r}=\Lambda \underbrace{\left(\begin{array}{lll}
1 & & n_{i j} \\
& \ddots & \\
0 & & 1
\end{array}\right)}_{=B \leq r} .
$$

All appearing matrices are invertible except Λ. Then $P \Lambda=\Lambda B_{\leq r} D_{\leq r}^{-1} A_{\leq r}^{-1}$ is an upper triangular matrix. Hence we can choose $P=\left(\gamma_{i j}\right)_{\substack{1 \leq i \leq r}}$ to be an upper triangular matrix, too. Note that the entry $\gamma_{i j}$ is unique modulo $p^{e_{j}} \mathbf{Z}_{p^{e}}$. The coefficient (i, i) of the matrix equation (4.4) is $\gamma_{i i} \cdot p^{e-e_{i}} \cdot 1 \cdot d_{i}=p^{e-e_{i}} \cdot 1$. Hence we can assume that $\gamma_{i i}=d_{i}^{-1}$ for $P=\left(\gamma_{i j}\right)_{i, j}$.
(2) Use a matrix $F=\operatorname{diag}\left(f_{1}, \ldots, d_{n}\right), f_{j} \in \mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right)$, of an induced automorphism $\zeta \in \overline{\text { Aut } R}$ instead of D in part (1) of this proof. All conclusions are the same.

Definition 4.5. Let p be a prime and $e, n, r \in \mathbf{N}$ natural numbers with $r<n$. Let $T=\left(\tau_{1}, \ldots, \tau_{n}\right)$ be an ordered n-tuple of types. We set

$$
\begin{aligned}
\operatorname{DIAG}\left(T ; \mathbf{Z}_{p^{e}}^{*}\right): & =\operatorname{DIAG}\left(\mathbf{Z}_{p^{e}}^{*}\left(\tau_{1}\right), \ldots, \mathbf{Z}_{p^{e}}^{*}\left(\tau_{n}\right)\right) \\
& =\left\{\operatorname{diag}\left(f_{1}, \ldots, f_{n}\right) \mid \forall_{j=1, \ldots, n} f_{j} \in \mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right)\right\},
\end{aligned}
$$

the set of T-diagonal matrices over $\mathbf{Z}_{p^{e}}$.
Let A and B be $[r \times(n-r)]$-matrices over $\mathbf{Z}_{p^{e}}$. Then A and B are called T-diagonally equivalent if there is a T-diagonal matrix $F \in \operatorname{DIAG}\left(T ; \mathbf{Z}_{p^{e}}^{*}\right)$ such that

$$
B=F_{\leq r}^{-1} A F_{>r}
$$

Corollary 4.6 (Matrix [near-] isomorphism criterion for uniform groups). Let $X, Y \in \mathcal{C}(T, p, e, r)$ be uniform groups with a common regulator R. Let $\overline{\mathbf{x}}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ be an induced decomposition basis of $\bar{R}=p^{-e} R / R$ ordered by a simultaneous admissible indexing $T=\left(\tau_{1}, \ldots, \tau_{n}\right)$ of the critical typeset for X and Y. Let $M=\left(I_{r} \mid A\right)$ and $N=\left(I_{r} \mid B\right)$ be the representing matrices of X and Y over R relative to $\overline{\mathbf{x}}$ in Hermite normal form, where A and B are $[r \times(n-r)]$ matrices over $\mathbf{Z}_{p^{e}}$.
(1) The groups X and Y are nearly isomorphic, $X \cong_{\mathrm{nr}} Y$, if and only if A and B are diagonally equivalent.
(2) The groups X and Y are isomorphic, $X \cong Y$, if and only if A and B are T-diagonally equivalent.
5. Isomorphism classes of uniform groups. We count isomorphism classes of groups within a fixed near-isomorphism class in $\mathcal{C}(T, p, e, r)$. A representative of this class has a representing matrix $\left(I_{r} \mid C\right)$ with a primitive rest block $C \in \mathbf{M}^{r \times(n-r)}\left(\mathbf{Z}_{p^{e}}\right)$.

Theorem 5.1. Let $R=\bigoplus_{j=1}^{n} R_{\tau_{j}}$ be a rigid and p-reduced completely decomposable group of rank n with an indexing $T=\left(\tau_{1}, \ldots, \tau_{n}\right)$ of its critical typeset. Let $C \in \mathbf{M}^{r \times(n-r)}\left(\mathbf{Z}_{p^{e}}\right)$ be a primitive matrix. Let $\operatorname{Stab} \cong_{\mathrm{nr}}(C)=\left\{D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \mid d_{j} \in \mathbf{Z}_{p^{e}}^{*}, D_{\leq r}^{-1} C D_{>r}=C\right\}$ and $\operatorname{Stab} \cong(C)=\left\{F=\operatorname{diag}\left(f_{1}, \ldots, f_{n}\right) \mid f_{j} \in \mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right), F_{\leq r}^{-1} C F_{>r}=C\right\}$.

Each near-isomorphism class is the union of isomorphism classes all of equal length. The number of distinct isomorphism classes contained in the near-isomorphism class of C and with regulator R is

$$
\frac{\left(p^{e-1}(p-1)\right)^{n}}{\prod_{j=1}^{n}\left|\mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right)\right| \cdot\left[\operatorname{Stab}_{\mathrm{nr}}(C): \operatorname{Stab} \cong(C)\right]}=\frac{\left(p^{e-1}(p-1)\right)^{n}}{\left|\operatorname{DIAG}\left(T ; \mathbf{Z}_{p^{e}}^{*}\right) \cdot \operatorname{Stab}_{\mathrm{nr}}(C)\right|}
$$

Proof. Here DIAG ($n ; \mathbf{Z}_{p^{e}}^{*}$) acts on $\mathbf{M}^{r \times(n-r)}$ via diagonal equivalence. The stabilizer of A under this action is $\operatorname{Stab} \cong_{\mathrm{nr}}(A)$ and the orbit of A is $\operatorname{Orb}_{\cong_{\mathrm{nr}}}(A)=\left\{D_{\leq r}^{-1} A D_{>r} \mid D \in \operatorname{DIAG}\left(n ; \mathbf{Z}_{p^{e}}^{*}\right)\right\}$. In addition $\operatorname{DIAG}\left(T ; \mathbf{Z}_{p^{e}}^{*}\right)$ acts on $\mathbf{M}^{r \times(n-r)}$ via diagonal equivalence, too. The stabilizer of A under this action is $\operatorname{Stab} \cong(A)$ and the orbit of A is $\operatorname{Orb} \cong(A)=\left\{F_{\leq r}^{-1} A F_{>r} \mid F \in \operatorname{DIAG}\left(T ; \mathbf{Z}_{p^{e}}^{*}\right)\right\}$.

Firstly, we show that the isomorphism classes of near-isomorphic groups have equal length. For that, let C^{\prime} be diagonally equivalent to C, i.e., $C^{\prime}=D_{\leq r}^{-1} C D_{>r}$, where $D \in \operatorname{DIAG}\left(n ; \mathbf{Z}_{p^{e}}^{*}\right)$. Then

$$
\begin{aligned}
F \in \mathrm{Stab} \cong(C) \Leftrightarrow F_{\leq r}^{-1} C F_{>r} & =C \Leftrightarrow D_{\leq r}^{-1}\left(F_{\leq r}^{-1} C F_{>r}\right) D_{>r} \\
& =D_{\leq r}^{-1} C D_{>r} \Leftrightarrow F_{\leq r}^{-1} \underbrace{\left(D_{\leq r}^{-1} C D_{>r}\right)}_{C^{\prime}} F_{>r} \\
& =\underbrace{D_{\leq r}^{-1} C D_{>r}}_{C^{\prime}} \Leftrightarrow F \in \operatorname{Stab}_{>}\left(C^{\prime}\right) .
\end{aligned}
$$

Hence $\operatorname{Stab} \cong(C)=\operatorname{Stab} \cong\left(C^{\prime}\right)$ and therefore $|\mathrm{Orb} \cong(C)|=\left|\mathrm{Orb} \cong\left(C^{\prime}\right)\right|$.
The number of groups contained in the near-isomorphism class of C is $\left|\mathrm{Orb}_{\mathrm{nrr}}(C)\right|=\left[\operatorname{DIAG}\left(n ; \mathbf{Z}_{p^{e}}^{*}\right): \mathrm{Stab}_{\cong_{\mathrm{nr}}}(C)\right]$. Similarly $\left|\mathrm{Orb}_{\cong}(C)\right|=$ $\left[\operatorname{DIAG}\left(T ; \mathbf{Z}_{p^{e}}^{*}\right): \operatorname{Stab} \cong(C)\right]$. We compute

$$
\begin{aligned}
|\{\operatorname{Orb} \cong(A) \mid A \in \operatorname{Orb}(C)\}| & =\frac{\mid \operatorname{Orb}_{\mathrm{nr}(C) \mid}^{\left|\operatorname{Orb}_{\cong}(C)\right|}}{} \\
& \left.=\frac{\left(p^{e-1}(p-1)\right)^{n}}{\prod_{j=1}^{n}\left|\mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right)\right| \cdot\left[\operatorname{Stab} \cong{ }_{\mathrm{nr}}\right.}(C): \operatorname{Stab} \cong(C)\right]
\end{aligned} .
$$

We have $\operatorname{DIAG}\left(T ; \mathbf{Z}_{p^{e}}^{*}\right) \cap \operatorname{Stab} \cong_{\mathrm{nr}}(C)=\operatorname{Stab} \cong(C)$. Therefore the denominator simplifies:
\mid DIAG $\left(T ; \mathbf{Z}_{p^{e}}^{*}\right) \mid \cdot\left[\operatorname{Stab}_{\cong_{\mathrm{nr}}}(C): \operatorname{Stab} \cong^{(C)]}\right.$

$$
\begin{aligned}
& =\frac{\left|\operatorname{DIAG}\left(T ; \mathbf{Z}_{p^{e}}^{*}\right)\right| \cdot\left|\operatorname{Stab}_{\cong_{\mathrm{nr}}}(C)\right|}{\left|\operatorname{Stab}^{\cong}(C)\right|} \\
& =\left|\operatorname{DIAG}\left(T ; \mathbf{Z}_{p^{e}}^{*}\right) \cdot \operatorname{Stab}_{\cong_{\mathrm{nr}}}(C)\right|
\end{aligned}
$$

and the claim follows.

Corollary 5.2. There are at most

$$
\prod_{j=1}^{n}\left[\mathbf{Z}_{p^{e}}^{*}: \mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right)\right]=\frac{\left(p^{e-1}(p-1)\right)^{n}}{\prod_{j=1}^{n}\left|\mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right)\right|}
$$

pairwise nonisomorphic groups within the near-isomorphism class of the primitive matrix $C \in \mathbf{M}^{r \times(n-r)}\left(\mathbf{Z}_{p^{e}}\right)$.

Proof. Since $\left[\operatorname{Stab}_{\cong_{\mathrm{nr}}}(C): \operatorname{Stab} \cong(C)\right] \geq 1$, Theorem 5.1 shows the claim.

Remark 5.3. Let us investigate uniform groups of even rank $n=2 r$. Then a fixed near-isomorphism class is represented by a modified diagonal similarity class of normed $(r \times r)$-matrices, cf. [7, Theorem 4.3]. These are the rest blocks of the representing matrices.

There are at least

$$
\prod_{m=1}^{r}\left[\mathbf{Z}_{p^{e}}^{*}: \mathbf{Z}_{p^{e}}^{*}\left(\tau_{m} \vee \tau_{r+m}\right)\right]=\frac{\left(p^{e-1}(p-1)\right)^{r}}{\prod_{m=1}^{r}\left|\mathbf{Z}_{p^{e}}^{*}\left(\tau_{m} \vee \tau_{r+m}\right)\right|}
$$

pairwise nonisomorphic groups contained in the near-isomorphism class relative to a normed and invertible $(r \times r)$-matrix. This is shown in [8, Theorem 9.8].

Example 5.4. Let $\tau_{1}=\mathbf{Z}\left[3^{-1}\right]=\left\{\left.\frac{n}{3^{k}} \right\rvert\, n \in \mathbf{Z}, k \in \mathbf{N}_{0}\right\}$ and $\tau_{2}=\mathbf{Z}\left[5^{-1}\right]$. Then $R:=\tau_{1} x_{1} \oplus \tau_{2} x_{2}$ is 17 -reduced.

Consider the almost completely decomposable group

$$
Z=R+\mathbf{Z} \frac{1}{17}\left(x_{1}+x_{2}\right)
$$

with corresponding representing matrix $M=(1 \mid 1)$.
We compute $3^{8} \equiv-1(\bmod 17)$ and $5^{8} \equiv-1(\bmod 17)$. Then we obtain $\mathbf{Z}_{17}^{*}\left(\tau_{1}\right)=\mathbf{Z}_{17}^{*}\left(\tau_{2}\right)=\mathbf{Z}_{17}^{*} \cong \mathbf{Z}_{16}$, since ord $(3+17 \mathbf{Z})=16=$ ord $(5+17 \mathbf{Z})$. Hence $\mathbf{Z}_{17}^{*}\left(\tau_{1} \vee \tau_{2}\right)=\mathbf{Z}_{17}^{*}$ and therefore the formulas of 5.2 and 5.3 simplify:

$$
\frac{16^{2}}{\prod_{j=1}^{2}\left|\mathbf{Z}_{17}^{*}\left(\tau_{j}\right)\right|}=\frac{16^{2}}{16^{2}}=1 \quad \text { and } \quad \frac{16^{1}}{\prod_{m=1}^{1}\left|\mathbf{Z}_{17}^{*}\left(\tau_{m} \vee \tau_{1+m}\right)\right|}=1
$$

This means that the upper and lower bounds of 5.2 and 5.3 are sharp. All groups in the near-isomorphism class of Z are isomorphic.

Corollary 5.5. Let $R=\tau_{1} x_{1} \oplus \cdots \oplus \tau_{4} x_{4}$ be a rigid and p-reduced completely decomposable group with critical typeset $T=\left(\tau_{1}, \ldots, \tau_{4}\right)$. Let $X \in \mathcal{C}(T ; p, e, 2)$ be an almost completely decomposable group with regulator R such that $X / R=\left(\mathbf{Z}_{p^{e}}\right)^{2}$. Let $\overline{\mathbf{x}}=\left(\bar{x}_{1}, \ldots, \bar{x}_{4}\right)$ be the induced decomposition basis of $\bar{R}=p^{-e} R / R$ and \mathbf{a} be an ordered basis of X / R. Let the representing matrix M of X over R relative to $\overline{\mathbf{x}}$ and a be in Hermite normed form with invertible rest block

$$
M=\left(I_{2} \mid A\right)=\left(\begin{array}{cc|cc}
1 & 0 & 1 & \alpha \\
0 & 1 & \beta & 1+\alpha \beta
\end{array}\right),
$$

where $\alpha=\lambda p^{m}, \beta=\mu p^{l}$ for some units λ, μ and some integers $0 \leq m, l \leq e$. Recall that $\operatorname{Stab} \cong(A)=\left\{F=\operatorname{diag}\left(f_{1}, \ldots, f_{4}\right) \mid\right.$ $\left.f_{j} \in \mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right), F_{\leq 2}^{-1} A F_{>2}=A\right\}$ denotes the stabilizer of A relative to the T-diagonal equivalence.

$$
\text { Let } A \neq\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text {. Then }
$$

$\operatorname{Stab} \cong(A)=\left\{\operatorname{diag}\left(f_{1}, f_{2}, f_{1}, f_{2}\right) \mid f_{1} \in \mathbf{Z}_{p^{e}}^{*}\left(\tau_{1}\right) \cap \mathbf{Z}_{p^{e}}^{*}\left(\tau_{3}\right)\right.$,

$$
\left.f_{2} \in \mathbf{Z}_{p^{e}}^{*}\left(\tau_{2}\right) \cap \mathbf{Z}_{p^{e}}^{*}\left(\tau_{r}\right), \text { such that } f_{2}-f_{1} \in p^{e-\min (m, l)} \cdot \mathbf{Z}_{p^{e}}\right\} .
$$

The number of distinct isomorphism classes contained in the nearisomorphism class of X is

$$
N=\frac{\varphi\left(p^{e}\right)^{3} p^{-\min (m, l) \cdot|\operatorname{Stab}(A)|}}{\prod_{j=1}^{4}\left|\mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right)\right|} .
$$

If α or β is a unit in $\mathbf{Z}_{p^{e}}$, then

$$
N=\frac{\left(p^{e-1}(p-1)\right)^{3} \cdot\left|\bigcap_{j=1}^{4} \mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right)\right|}{\prod_{j=1}^{4}\left|\mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right)\right|} .
$$

Proof. Let $\operatorname{Stab}_{\cong_{\mathrm{nr}}}(A)=\left\{D=\operatorname{diag}\left(d_{1}, \ldots, d_{4}\right) \mid d_{j} \in \mathbf{Z}_{p^{e}}^{*}, D_{\leq 2}^{-1} \times\right.$ $\left.A D_{>2}=A\right\}$ denote the stabilizer of A relative to arbitrary diagonal
equivalence. Let $\operatorname{Orb} \cong(A)=\left\{F_{<2}^{-1} A F_{>2} \mid F \in \operatorname{DIAG}\left(T ; \mathbf{Z}_{p^{e}}^{*}\right)\right\}$ denote the T-diagonal equivalence class of A. Recall from Example 2.6 that $\operatorname{Stab}_{\cong_{\mathrm{nr}}}(A)=\left\{D=\operatorname{diag}\left(d_{1}, d_{2}, d_{1}, d_{2}\right) \mid d_{1}, d_{2} \in \mathbf{Z}_{p^{\varepsilon}}^{*}\right.$ such that $\left.d_{2}-d_{1} \in p^{e-\min (m, l)} \mathbf{Z}_{p^{e}}\right\}$ and $\left|\operatorname{Orb}_{\cong_{\mathrm{nr}}}(A)\right|=\varphi\left(p^{e}\right)^{3} p^{-\min (m, l)}=$ $p^{3 e-3-\min (l, m)}(p-1)^{3}$. We compute $\operatorname{Stab} \cong(A)=\operatorname{DIAG}\left(T ; \mathbf{Z}_{p^{e}}^{*}\right) \cap$ $\operatorname{Stab}_{\cong_{\mathrm{nr}}}(A)=\left\{\operatorname{diag}\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \mid f_{j} \in \mathbf{Z}_{p^{e}}^{*}, f_{1}=f_{3}, f_{2}=f_{4}\right.$ such that $\left.f_{2}-f_{1} \in p^{e-\min (m, l)} \mathbf{Z}_{p^{e}}\right\}$, and we get the claim. Clearly we have $|\operatorname{Orb} \cong(A)|=\left[\operatorname{DIAG}\left(T ; \mathbf{Z}_{p^{e}}^{*}\right): \operatorname{Stab} \cong(A)\right]=\left(\Pi_{j=1}^{4}\left|\mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right)\right|\right) / \operatorname{Stab} \cong(A)$. By Theorem 5.1 the number of isomorphism classes within the nearisomorphism class of X is

$$
N=\frac{\left|\operatorname{Orb}_{\cong}{ }_{n r}(A)\right|}{\left|\operatorname{Orb}^{\cong}(A)\right|}=\frac{\varphi\left(p^{e}\right)^{3} p^{-\min (m, l)} \cdot|\operatorname{Stab} \cong(A)|}{\prod_{j=1}^{4}\left|\mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right)\right|} .
$$

If α or β is a unit in $\mathbf{Z}_{p^{e}}$, then $\min (m, l)=0$ and we compute $\operatorname{Stab}_{\cong}(A)=\left\{\operatorname{diag}(f, f, f, f) \mid f \in \cap_{j=1}^{4} \mathbf{Z}_{p^{e}}^{*}\left(\tau_{j}\right)\right\}$. This proves the last statement.

REFERENCES

1. M. Dugas and E. Oxford, Near isomorphism invariants for a class of almost completely decomposable groups, in Abelian Groups, Proceedings of the 1991 Curaçao Conference, Marcel Dekker, New York, 1993, pp. 129-150
2. L. Fuchs, Infinite abelian groups, Vol. I, II, Acad. Press, New York, 1970, 1973.
3. K-J. Krapf and O. Mutzbauer, Classification of almost completely decomposable groups, in Abelian Groups and Modules, Proc. of Udine Conference 1984, CISM Courses and Lecture Notes, vol. 287, Springer, New York, 1984, pp. 151-161.
4. A. Mader, Almost completely decomposable groups, Algebra, Logic Appl., vol. 13, Gordon and Breach Science Publ., New York, 2000.
5. A. Mader, O. Mutzbauer and L. Nongxa, Representing matrices of almost completely decomposable groups, J. Appl. Algebra 158 (2001), 247-265.
6. A. Mader and C. Vinsonhaler, Classifying almost completely decomposable groups, J. Algebra 170 (1994), 754-780.
7. O. Mutzbauer, Normal forms of matrices with applications to almost completely decomposable groups, in Abelian Groups, Trends Math. Modules, 1999, pp. 121-134.
8. M. Nahler, Isomorphism classes of almost completely decomposable groups, Doktorarbeit (Würzburg 2001). http://erl.bibliothek.uni-wuerzburg.de/DISS/ Mathe-Info/2001/X117763/

Michael Nahler, Rudolf-Clausius-Str. 63A, D-97080 Würzburg, Germany
E-mail address: nahler@mathematik.uni-wuerzburg.de

[^0]: 1991 AMS Mathematics Subject Classification. Primary 20 K 15.
 Received by the editors on July 23, 2001, and in revised form on September 27,

