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Dedicated to Jim Reid on the occasion of his retirement

ABSTRACT. A generalized and canonical definition of
“sharp type” is given and a decomposition theorem is proved
for arbitrary almost completely decomposable groups. As an
application we show that an almost completely decomposable
group whose critical typeset is a garland is a direct sum of
rank-one and rank-two groups.

1. Introduction. An almost completely decomposable group X
is a finite (torsion-free abelian) extension of a completely decompos-
able group A of finite rank. In 1974, Lady [4] initiated a systematic
theory of such groups based on the fundamental concept of regulating
subgroup. The regulating subgroups can be defined as the completely
decomposable subgroups of least index in an almost completely de-
composable group X. This least index is the regulating index rgiX.
An almost completely decomposable group is local if its regulating in-
dex is a prime power; otherwise it is a global group. An accessible
class of almost completely decomposable groups with arbitrary critical
typeset is the class of crq-groups, namely those groups X containing a
completely decomposable subgroup A such that X/A is a finite cyclic
group. Campagna [2] showed that this is equivalent to the existence of
a regulating subgroup A such that X/A is cyclic. The local and global
crq-groups have been studied in [7] and [3]. For local crq-groups the di-
rect decompositions with indecomposable summands were completely
determined in [7]. The concept of “sharp type” was essentially involved
in this determination and in [3] “sharp type” was defined for global crq-
groups and a decomposition theorem was proved. Both definitions of
sharp type were based on special representations of crq-groups. In [6] it
was demonstrated that crq-groups are largely determined by the invari-
ants rgiX[τ ] (see Theorem 3.1). This leads to a generalized concept
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of “sharp type” that is independent of any particular representation
and surprisingly implies in all generality that X�(σ) is a direct sum-
mand of X whenever σ is a sharp type of X (see Definition 3.2 and
Theorem 3.5). As an application we show that an almost completely
decomposable group whose typeset is a garland is a direct sum of rank-
one and rank-two groups (Theorem 3.14).

Details on the theory of almost completely decomposable groups can
be found in the monograph [5]. Rather than citing the original sources
we will quote [5], which contains an extensive bibliography.

2. Background. The purification of a subgroup H in a torsion-
free group G is denoted by HG

∗ . We take it for granted that the
reader is familiar with the usual type subgroups, namely the socles
G(τ ), G∗(τ ), G�(τ ) = G∗(τ )G

∗ and the radicals G[τ ], G�[τ ] =∩ρ<τG[ρ].
A type τ is critical for G if G(τ )/G�(τ ) �=0. The critical typeset Tcr(G)
is the set of all critical types of G. If A is a completely decomposable
group, then A = ⊕ρ∈Tcr(A)Aρ is always assumed to be a decomposition
of A into (nonzero) ρ-homogeneous components. The typeset of a group
G is denoted by Tst (G). If G is an almost completely decomposable
group, then its typeset is the meet closure of its critical typeset. An
almost completely decomposable group is clipped if it has no completely
decomposable direct summands.

The purification lemma [5, Lemma 11.4.1] and [5, Corollary 11.2.5] is
an important tool in calculating the invariants of purifications of direct
summands of regulating subgroups of almost completely decomposable
groups. The purification lemma is based on the so-called standard
description [5, Chapter 11], of an almost completely decomposable
group X. We can write X = A + �ZN−1a� where N is an integral
k × k matrix with detN �= 0, a� = [a1, . . . , ak]tr, ai ∈ A, and
juxtaposition is matrix multiplication as usual. The “base group” A
need not be a regulating subgroup but can be any subgroup that has
finite index in X. It may be assumed that N is in Smith normal form,
N = diag (d1, . . . , dk) where di divides di+1 for i = 1, . . . , k − 1. If so,
the standard description is just shorthand for X = A + Z(1/d1)a1 +
· · · + Z(1/dk)ak. Later it will be necessary to simplify the system of
generators and we state here certain replacements of generators that do
not change the group or N . Typically, A will be decomposed as a direct
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sum A = A1 ⊕ · · · ⊕Ar, and correspondingly we have decompositions

ai = ai1 + · · · + air.

So typically we have “generators” gi = (1/di)(ai1 + · · · + air) which,
together with A, generate the group X. Without changing the group,
the generators can be replaced by other generators as follows.

Lemma 2.1. Let X = A + Z(1/d1)a1 + · · · + Z(1/dk)ak, di divides
di+1, A = A1 ⊕ · · · ⊕Ar, ai = ai1 + · · · + air and gi = (1/di)ai.

1. For j>i, and any integer α, gi may be replaced by (1/di)(gi+αgj) =
(1/di)gi + α(dj/di)(1/dj)gj.

2. If α is an integer with gcd (di, α) = 1 and 1 ≤ j ≤ m, then
(1/di)(ai1 + · · ·+αaij + · · ·+air) may be replaced by (1/di)(αai1 + · · ·+
aij + · · · + vair), where 1 = udi + vα.

We only need the following part of the purification lemma. It involves
a generalized greatest common divisor gcd A(N, a) of a nonsingular
integral k × k matrix N and a column vector a of k elements of A [5,
Chapter 11].

Lemma 2.2 (Purification lemma). Let X be an almost completely
decomposable group and A a subgroup of finite index in X. Suppose
that A = B ⊕ C and X = A+�ZN−1a� with a� = b� +c� where a� ∈A�,
b� ∈B� and c� ∈C�. Then BX

∗ =B+�ZN−1
B b� where NB = gcdA(N, c�).

If A is a regulating subgroup of X, then B is regulating in BX
∗ .

Let A be a regulating subgroup of the almost completely decompos-
able group X. Lemma 2.2 implies the well-known facts that A(τ ) is
regulating in X(τ ), A�(τ ) is regulating in X�(τ ), A[τ ] is regulating in
X[τ ], A�[τ ] is regulating in X�[τ ] but also less evidently that A[τ ](σ)
is regulating in X[τ ](σ), A�(τ )[τ ] is regulating in X�(τ )[τ ] and more.

Recall that a completely decomposable subgroup A = ⊕ρ∈Tcr(A)Aρ of
an almost completely decomposable group X is regulating in X if and
only if X(τ ) = Aτ ⊕X�(τ ) for every τ ∈ Tcr(X). An almost completely
decomposable group X decomposes if and only if there is a regulating
subgroup A and a decomposition A = B⊕C such that X = BX

∗ ⊕CX
∗ .



1508 A. MADER, L.G. NONGXA AND C. VINSONHALER

To employ this idea we need to get a grip on the totality of regulating
subgroups of an almost completely decomposable group.

Proposition 2.3 [5, Proposition 4.1.11]. Let X be an almost
completely decomposable group and A = ⊕ρ∈Tcr(X)Aρ a regulating
subgroup of X. Then the regulating subgroups of X are exactly the
groups ⊕

ρ∈Tcr(X)

Aρ(1 + φρ), φτ ∈ Hom (Aτ , X
�(τ )).

This means that we need to deal with Hom (Aτ , X
�(τ )) which, since

Aτ is τ -homogeneous completely decomposable, reduces to the study of
Hom (〈v〉X∗ , X�(τ )) where v ∈ Aτ . The existence of maps is a matter
of characteristics. In place of the characteristic or height sequence
of an element x in a torsion-free group G we will use the coefficient
group QG

x = {r ∈ Q : rx ∈ G}. Some of the important properties of
coefficient groups are listed below (see [5, Lemma 2.1.5]).

Lemma 2.4. Let G be a torsion-free group and 0 �= x ∈ G. Then
the following hold.

1. QG
x
∼= QG

x x and QG
x x = 〈x〉G∗ .

2. If H is a pure subgroup of G and x ∈ H, then QH
x = QG

x .

3. QG
rx = r−1QG

x for 0 �= r ∈ Q.

4. If x, y ∈ QG, then QG
x+y ⊇ QG

x ∩QG
y .

5. Suppose that G = ⊕iGi and x =
∑

i xi ∈ G where xi ∈ Gi. Then
QG

x = ∩iQGi
xi

.

6. If φ ∈ Hom (G,H), then QG
x ⊆ QH

xφ.

7. Let y ∈ H. There is a well-defined homomorphism φ : QG
x x → H :

xφ = y if and only if QG
x ⊆ QH

y .

Remark 2.5. Consider Hom (〈v〉X∗ , X�(σ)) where X is an almost
completely decomposable group with regulating index n and the type
of 〈v〉X∗ is σ. We can write 〈v〉X∗ = σv where σ = QX

v . So σ is now
a subgroup of the additive group of rationals containing Z, a rational
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group for short, while σ at the same time is used to designate its type
(isomorphism class). We may assume that v is n-adjusted; i.e., for a
prime divisor p of n, either pσ = σ or p−1 /∈ σ. This can be achieved
by replacing v by v′ where v = pev′ and hgt p(v′) = 0. Let x ∈ X�(σ).
We wish to map v to x. While the type of x is ≥ σ it need not be true
that σ ⊆ QX

x . However, since v is n-adjusted, there exists an integer m
relatively prime to n such that σ ⊆ m−1QX

x = QX
mx. By Lemma 2.4.7

there is a well-defined map σv → X�(σ) : v �→ mx.

3. Sharp types. In the setting of clipped p-local crq-groups the
indecomposable decompositions were described by means of special
critical types called “sharp types” [5, Section 6.5]. The definition
was based on a special representation of the group in which certain p-
powers appeared that could be shown with some effort to be invariants
of the group. The following theorem from [6] shows that the obvious
invariants rgiX[τ ] largely determine the crq-group X.

Theorem 3.1. Two crq-groups X and Y are nearly isomorphic if
and only if

1. R(X) ∼= R(Y )

2. rgi (X) = rgi (Y )

3. rgiX[τ ] = rgiY [τ ] for every τ ∈ Tcr(X) = Tcr(Y ).

This result caused us to search for a canonical definition of “sharp
type” which is given below. It generalizes the concept in two ways: the
following definition makes sense for any almost completely decompos-
able group and any type.

Definition 3.2. Let X be any almost completely decomposable
group and σ any type. Then σ is called sharp if rgiX�(σ) = rgiX[σ].

If X is a crq-group, then rgiX�(σ) = exp(X�(σ)/R(X�(σ))) = βX
σ ,

the Burkhardt invariant, and in the setting of [7], rgiX[σ] = sσ

provided that σ is critical. Hence, for clipped local crq-groups, the
critical type σ is sharp if and only if βX

σ = sσ which is the definition
in [7] except that σ was required to be nonmaximal in Tcr(X) in order
to avoid that X�(σ) = 0.
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There are some immediate consequences if a type is sharp. By σ ⊥ τ
we mean that σ and τ are incomparable.

Proposition 3.3. Let A = ⊕ρ∈Tcr(X)Aρ be a regulating subgroup of
the almost completely decomposable group X. Then the following hold.

1. σ is a sharp type of X if and only if

X[σ] = ⊕{Aρ : ρ ⊥ σ} ⊕X�(σ).

2. If σ1 and σ2 are incomparable sharp types, then rgiX�(σ1) =
rgiX�(σ2) and, moreover,

X[σ1] =
( ⊕

{Aρ : ρ �≤ σ1, ρ �> σ2}
)
⊕X�(σ2),

and

X[σ2] =
( ⊕

{Aρ : ρ �≤ σ2, ρ �> σ1}
)
⊕X�(σ1).

3. If σ1 and σ2 are incomparable sharp types, then

X�(σ1) =
( ⊕

{Aρ : ρ ⊥ σ2, ρ > σ1}
)
⊕ (X�(σ1) ∩X�(σ2)),

and

X�(σ2) =
( ⊕

{Aρ : ρ ⊥ σ1, ρ > σ2}
)
⊕ (X�(σ1) ∩X�(σ2)).

Proof. 1. Suppose that σ is sharp. We note that A[σ] = B ⊕ A�(σ)
where B = ⊕{Aρ : ρ ⊥ σ}, A[σ] is regulating in X[σ], and also
B ⊕ A�(σ) is regulating in B ⊕ X�(σ). By the product formula [5,
Proposition 4.2.14], and the assumption that σ is a sharp type we have

rgiX[σ] = [X[σ] : A[σ]] = [X[σ] : B ⊕X�(σ)][B ⊕X�(σ) : B ⊕A�(σ)]
= [X[σ] : B ⊕X�(σ)]rgi (B ⊕X�(σ))
= [X[σ] : B ⊕X�(σ)]rgi (X�(σ))
= [X[σ] : B ⊕X�(σ)]rgi (X[σ]).

Consequently [X[σ] : B ⊕X�(σ)] = 1 which establishes the claim.
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The converse is an immediate consequence of the product formula for
regulating indices [5, Proposition 4.2.14]:

rgiX[σ] = rgi (⊕{Aρ : ρ ⊥ σ})rgiX�(σ) = rgiX�(σ).

2. Suppose that σ1 and σ2 are incomparable types. Then X�(σ1) ⊆
X[σ2]. If Aσ ⊆ X�(σ1), then σ �≤ σ2 and this implies that Aσ ⊆
⊕ρ �≤σ2Aρ = A[σ2]. Thus A[σ2] = A�(σ1) ⊕ C where C = ⊕{Aρ : ρ �≤
σ2, ρ �> σ1}. Note that C ⊕A�(σ1) is regulating in C ⊕X�(σ1) and

[X[σ2] : A[σ2]] = [X[σ2] : C ⊕X�(σ1)][C ⊕X�(σ1) : C ⊕A�(σ1)]
= [X[σ2] : C ⊕X�(σ1)][X�(σ1) : A�(σ1)].

Hence, rgi (X�(σ1)) divides rgi (X[σ2]) and by symmetry rgi (X�(σ2))
divides rgi (X[σ1]).

Now if σ1 and σ2 are sharp types, then by the previous paragraph,
rgi (X�(σi)) divides rgi (X[σj ]) = rgi (X�(σj)) where i, j ∈ {1, 2} and
i �= j. This means that rgiX�(σ1)) = rgi (X�(σ2)). The claimed
decompositions are established as was the decomposition in part 1,
mutatis mutandis.

3. We have by 2 that X�(σ1) ⊂ X[σ2] and hence by 1 with σ = σ2,
that X�(σ1) = (

⊕{Aρ : ρ ⊥ σ2, ρ > σ1} ⊕
⊕{Aρ : ρ > σ2, ρ > σ1})∗

where the purification is the same whether taken in X or X[σ2]. Now
⊕{Aρ : ρ ⊥ σ2, ρ > σ1} is a summand of X[σ2] and hence pure in
X[σ2]. It follows that X�(σ1) = ⊕{Aρ : ρ ⊥ σ2, ρ > σ1} ⊕ (⊕{Aρ : ρ >
σ2, ρ > σ1})∗ = ⊕{Aρ : ρ ⊥ σ2, ρ > σ1}⊕X�(σ1)∩X�(σ2). The second
claim follows with roles of σ1 and σ2 exchanged.

The equality rgiX�(σ1) = rgiX�(σ2) generalizes the first part of [5,
Lemma 6.5.3.1].

The new definition of sharp type allows for a comparison of sharp
types of summands and sums.

Proposition 3.4. Let X be an almost completely decomposable group
and suppose that X = Y ⊕Z. Then σ is a sharp type of X if and only
if σ is a sharp type for both Y and Z.
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Proof. Observe that rgiX�(σ) divides rgiX[σ]. Furthermore,
X�(σ) = Y �(σ) ⊕ Z�(σ) and X[σ] = Y [σ] ⊕ Z[σ]; hence, by the prod-
uct rule for regulating indices [5, Proposition 4.2.14], rgiX�(σ) =
(rgiY �(σ)) · (rgiZ�(σ)) and rgiX[σ] = (rgiY [σ])(rgiZ[σ]). Thus
rgiX�(σ) = rgiX[σ] if and only if rgiY �(σ) = rgiY [σ] and rgiZ�(σ) =
rgiZ[σ].

We will now prove a general decomposition theorem. Note that the
decomposition may be trivial either because X�(σ) = 0 or because
X�(σ) = X.

Theorem 3.5. Let X be an almost completely decomposable group
and suppose that σ is a sharp type of X. Then X = Y ⊕ X�(σ) for
some (almost completely decomposable) subgroup Y .

The proof requires a number of steps. In particular, we first settle
the local case (rgiX is a prime power), which is then used to prove
the general case. An almost completely decomposable group is a finite
extension of a regulating subgroup. We will first replace the regulating
subgroup by a larger “base group” and inspect the consequences.

Changing the base group. Let σ be a type. For the time being
σ need not be sharp. Let A = ⊕ρ∈Tcr(A)Aρ be a regulating subgroup
of X and set A≤σ = ⊕ρ≤σAρ. Then X is a finite essential extension of
the base group W = A≤σ ⊕X[σ] ≥ A. There is a standard description

(3.6) X = W (A) + �ZN−1(a�
≤σ + x�

[σ]), W (A) = A≤σ ⊕X[σ],

and without loss of generality we may assume that gcdW (N, a�
≤σ +

x�
[σ]) = I and that N = diag (d1, . . . , dk) is in Smith normal form

with d1 > 1. The purification lemma and the fact that X[σ] is pure
in X imply that gcdW (N, a�

≤σ) = I. This property has important
implications that we will exploit in more detail. For example, a�

≤σ

cannot be a column of zeros since N �= I by assumption.

Set n = detN . Write [5, Lemma 2.4.8] A≤σ = σ1v1 ⊕ · · · ⊕ σsvs

as a direct sum of rank-one groups; i.e., the vi ∈ A≤σ form a set of
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linearly independent elements and σi = QA
vi

. We assume without loss
of generality ([5, Section 11.3]) that

1. {v1, . . . , vs} is an n-basis; i.e., for every prime p dividing n, the
p-height of vi is 0 or ∞.

2. a�
≤σ = M≤σ[v1, . . . , vs]tr for some integral k × s-matrix M≤σ,

3. gcdW (N, a�
≤σ) = gcd (N,M≤σ).

The nontrivial item 3 uses [5, Theorem 11.3.3]. We have that
gcd (N,M≤σ) = gcdW (N, a�

≤σ) = I and, by [5, Theorem 11.2.6], there
exist integral matrices U1, U2 such that I = NU1 +M≤σU2. Recall that
N is a diagonal matrix with d1 dividing all other diagonal entries. It
follows that M≤σU2 ≡ I mod d1 or, equivalently, that M≤σU2 = I con-
sidered as matrices over the ring Z/d1Z. By [8, Main Theorem], there
exist k×k submatrices of M≤σ whose determinants generate Z/d1Z or,
in other words, for every prime divisor p of d1 there is a k×k submatrix
of M≤σ whose determinant is relatively prime to p.

The local case. The type σ is still an arbitrary type but we assume
that n = detN is a power of a prime p. Then M≤σ contains a k × k
submatrix whose determinant is relatively prime to p. Certainly, by
relabeling if necessary, we may assume that the submatrix M0 formed
by the first k columns of M≤σ has determinant relatively prime to
p. Write x�

[σ] = [x1, . . . , xk]tr and M≤σ = [mij ]. Then the elements
gi = (1/di)(xi +

∑s
j=1 mijvj) generate X together with the base group

W .

Now suppose that σ is sharp, i.e., X[σ] = A⊥σ ⊕X�(σ) (Proposition
3.3). Writing yi = ai + xi where ai ∈ A⊥σ and xi ∈ X�(σ), (3.6)
becomes

X = W + �ZN−1


M≤σ



v1
...
vs


 +



a1
...
ak


 +



x1
...
xk





 .

Using permitted row transformations (Lemma 2.1) and permutations
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of columns, we will achieve the form

M≤σ =




1 0 · · · 0 m1,k+1 · · · m1s

m21 1 · · · 0 m2,k+1 · · · m2s

...
... · · · ...

...
...

...
mk1 mk2 · · · 1 mk,k+1 · · · mks


 ,

as follows. Since detM0 is relatively prime to p, the last row of M0

contains an entry relatively prime to p and by a column exchange we
can move it to the kth column. The entry can now be turned into a 1
and, by row transformations, can be used to produce 0 entries above
the 1. The process can be repeated from the bottom to the top to
achieve the desired form.

Combining Lemma 2.1 and Remark 2.5 we may assume that, for all i
and j, we have QX

vi
⊂ QX

xj
. Hence there is a well-defined basis change

w1 = v1 +x1 that produces a new regulating subgroup A1 = σ1w1⊕· · ·
and, with respect to W (A1) = σ1w1⊕σ2v2⊕· · ·⊕σsvs ⊕A⊥σ ⊕X�(σ),
we have the description

X = W1 + �ZN−1


M≤σ



w1

v2
...
vs


 +



a1
...
ak


 +




0
x2 −m21x1

...
xk −mk1x1





 .

The next basis change (permissible since QX
vi

⊂ QX
xj

) is w2 = v2 +x2 −
m21x1 and, with respect to A2 = σ1w1 ⊕ σ2w2 ⊕ · · · and W (A2) =
σ1w1⊕σ2w2⊕σ3v3⊕· · ·⊕σsvs⊕A⊥σ ⊕X�(σ), we have the description

X = W2 + �ZN−1

·


M≤σ




w1

w2

v3
...
vs


+



a1
...
ak


+




0
0

x3−(m31−m32m21)x1−m32x2

...
xk−(mk1−mk2m21)x1−mk2x2





 .

Continuing in this fashion we finally arrive at Ak = σ1w1⊕· · ·⊕σkwk⊕
· · · , W (Ak) = σ1w1 ⊕ · · · ⊕ σkwk ⊕ σk+1vk+1 ⊕ · · · ⊕ σsvs ⊕X[σ], and
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the description

X = W (Ak) + �ZN−1




M≤σ




w1
...
wk

vk+1

...
vs




+



a1
...
ak


 +


 0

...
0







.

Setting Vk = [w1, . . . , wk, vk+1, . . . , vs]tr, it is now clear that

X = W (Ak) + �ZN−1(M≤σVk + a�
⊥σ)

= [(M≤σVk ⊕A⊥σ) + �ZN−1(M≤σVk + a�
⊥σ)] ⊕X�(σ)

= 〈(Ak)≤σ ⊕A⊥σ〉X∗ ⊕X�(σ).

We will derive the global theorem from the local result. To do so we
need two preparatory lemmas. We denote by Zq the localization of
the ring of integers at the prime q and for any abelian group G we
have its localization Gq = Zq ⊗G. Note that for a torsion-group T the
localization Tq is isomorphic to the q-primary component of T .

Lemma 3.7. Let G be a torsion-free group and H a subgroup
of G such that G/H is a torsion group. Then (G/H)q

∼= Gq/Hq.
Furthermore, if G is torsion-free and G/H is bounded by qd, then
Gq/Hq = (Gq ∩ q−dHq)/Hq.

Proof. Since Zq is torsion-free, hence flat, the short exact sequence
H �→ G � G/H implies the short exact sequence Hq �→ Gq � (G/H)q

and the rest follows easily.

Lemma 3.8. Let A be any torsion-free group, QA some divisible
hull of A, and X a group with A ≤ X ≤ QA and X/A finite.
Let |X/A| = mn be a factorization of |X/A| into relatively prime
factors. Suppose further that A = B ⊕ Y and φ ∈ Hom (B, Y ). Then
A = B ⊕ Y = B(1 + mφ) ⊕ Y and for a prime factor q of m,∣∣∣∣

(
X

B(1 + mφ)X∗ ⊕ Y

)
q

∣∣∣∣ divides
∣∣∣∣
(

X

BX∗ ⊕ Y

)
q

∣∣∣∣ .
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Proof. By Lemma 3.7 we have that
(

X

BX∗ ⊕ Y

)
q

∼= Xq

(BX∗ ⊕ Y )q

and (
X

B(1 + mφ)X∗ ⊕ Y

)
∼= Xq

(B(1 + mφ)X∗ ⊕ Y )q
.

Hence it suffices to show that (BX
∗ ⊕ Y )q ⊂ (B(1 + mφ)X

∗ ⊕ Y )q. Let
x ∈ (BX

∗ ⊕ Y )q. Then x = q−dαb + βy where α, β ∈ Zq, b ∈ B, y ∈ Y
and d is a nonnegative integer. Moreover, since [X/(BX

∗ ⊕ Y )]q ∼=
[Xq/(BX

∗ ⊕ Y )q] is bounded by m, we may assume without loss of
generality that qd divides m. This implies that βy − q−dαbmφ ∈ Yq

and we conclude that x = q−dαb(1 + mφ) + (βy − q−dmαbφ) ∈
(B(1 + mφ)X

∗ ⊕ Y )q.

The global case. We assume that σ is a sharp type of X so that
there is a decomposition X[σ] = A⊥σ⊕X�(σ) (Proposition 3.3). Recall
that A is a regulating subgroup of X and put W (A) = A≤σ ⊕ A⊥σ ⊕
X�(σ) ≥ A and W∗(A) = (A≤σ ⊕A⊥σ)X

∗ ⊕X�(σ). We claim that there
is another regulating subgroup B such that W∗(B) = X as desired to
complete the proof.

Suppose that (X/W∗(A))p �= 0. Write |X/W (A)| = pem such
that e ≥ 1 and p and m are relatively prime. We will replace the
regulating subgroup A by a regulating subgroup A′ in such a way
that (X/W∗(A′))p = 0, and |X/W∗(A′)| divides |X/W∗(A)| so that
|X/W∗(A′)| contains fewer prime factors (at least p is eliminated) than
|X/W∗(A)|. Then an induction on the number of prime factors in
|X/W∗(A)| establishes the theorem. Let X(p) be the subgroup of X
determined by the identity X(p)/W (A) = (X/W (A))p. Using that σ
is sharp, the description (3.6) can be refined to read

X = W (A) + �ZN−1(a�
≤σ + a�

⊥σ + x�),

where the entries of a�
⊥σ are from A⊥σ and x� = [x1, . . . , xk]tr with

xi ∈ X�(σ). It is easy to see that (di(p) denotes the highest p-power
factor of di)

X(p) = W (A) + �ZN−1
p (a�

≤σ + a�
⊥σ + x�)(3.9)
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where

Np = diag (d1(p), . . . , dk(p)).

Then A is regulating in X(p), X(p) ⊃ X[σ] ⊃ X�(σ), X(p)[σ] = X[σ],
X(p)�(σ) = X�(σ) and X(p)[σ] = A⊥σ ⊕ X(p)�(σ), so σ is a sharp
type of X(p). Write A≤σ = σ1v1 ⊕ · · · ⊕ σsvs. Using Lemma 2.1 we
can replace the generator x� in (3.9) by cx� such that m divides c and
σj ⊆ QX

cxi
for all i, j and obtain that

(3.10) X(p) = W (A) + �ZN−1
p (a�

≤σ + a�
⊥σ + cx�)

By the local case there is a basis change of the form

wi = vi + cyi, yi ∈ X�(σ), i = 1, . . . , k,

such that X(p) = 〈A′
≤σ ⊕ A⊥σ〉X(p)

∗ ⊕ X�(σ) where A′ = σ1w1 ⊕
· · · ⊕ σkwk ⊕ σk+1vk+1 ⊕ · · · ⊕ σsvs ⊕ A⊥σ ⊕ A�(σ) is regulating in
X,W (A′) = A′

≤σ⊕A⊥σ⊕X�(σ) = W (A) and W∗(A′) = (A′
≤σ⊕A⊥σ)X

∗ .
Since X(p) ⊆ W∗(A′), (X/W∗(A′))p = 0 and, by Lemma 3.8 (with
B = A≤σ ⊕ A⊥σ, Y = X�(σ), φ = 0 on A⊥σ, viφ = wi = vi + cyi

for i = 1, . . . , k, and viφ = 0 otherwise), |(X/W∗(A′))q| divides
|(X/W∗(A))q| for the prime factors q of m. We have achieved our
goal of decreasing the number of different prime factors of |X/W∗(A)|
and, by induction, the proof is complete.

Corollary 3.11. Let X be an almost completely decomposable group
and σ a type that is comparable with every type in Tst (X). Then
X = Y ⊕X�(σ) for some subgroup Y .

Proof. In this case

X[σ] =
( ⊕

{Aρ : ρ ∈ Tcr(X), ρ �≤ σ}
)X

∗

=
( ⊕

{Aρ : ρ ∈ Tcr(X), ρ > σ}
)X

∗
= X�(σ).

In particular, σ is a sharp type and Theorem 3.5 applies.
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Corollary 3.12. Suppose that σ1 and σ2 are incomparable sharp
types of the clipped group X. Then X�(σ1) = X�(σ2).

Proof. By Theorem 3.5 and Proposition 3.3 there is a group Y and
a completely decomposable group Z such that X = Y ⊕ X�(σ1) =
Y ⊕ Z ⊕ X�(σ1) ∩ X�(σ2). Since X is clipped, it follows that Z = 0
and so X�(σ1) = X�(σ1) ∩X�(σ2) = X�(σ2).

We proceed to an application.

Definition 3.13. A poset T is called a garland if it is not a chain
and every subset of T with exactly three elements either has a largest
element or a smallest element.

Theorem 3.14. If X is an almost completely decomposable group
whose critical typeset Tcr(X) is a garland, then X decomposes into a
direct sum of rank-one and rank-two groups.

Proof. The proof is by induction on the depth, depth (Tcr(X)), of
the critical typeset of X. If depth (Tcr(X)) = 0, then Tcr(X) consists
of two incomparable types and the group is a direct sum of rank one
and rank two groups by [5, Theorem 12.3.4]. The claim is true also if
depth (Tcr(X)) = 1 as will be seen next. In this case Tcr(X) is one of
the following

In the first case we have the Butler decomposition X = X(µ) =
Aµ ⊕ X�(µ) where µ is the least critical type. Here X�(µ) is an
almost completely decomposable group with two critical types and
therefore a direct sum of rank-one and rank-two groups by [5, Theorem
12.3.4]. In the second case, by [5, Proposition 7.2.9], X decomposes
as X = Y ⊕ X(ν) where ν is the largest critical type. In the third
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case let σ1 and σ2 denote the two minimal types. Observe that
X�(σ1) = X�(σ2) and that X[σ1] = X(σ2). It follows that rgiX[σ1] =
rgiX(σ2) = rgiX�(σ2) = rgiX�(σ1). This says that σ1 is a sharp type
of X and by Theorem 3.5 we have a decomposition X = Y ⊕X�(σ1).
Both summands have two critical types and decompose into a direct
sum of rank-one and rank-two groups.

Assume now that the result holds for all Y for which Tcr(Y ) is a
garland and depth (Tcr(Y )) < depth (Tcr(X)). If X has a smallest
critical type µ, then X = X(µ) = Aµ ⊕X�(µ) where Aµ is completely
decomposable and X�(µ) is a direct sum of rank-one and rank-two by
induction hypothesis. Otherwise, since Tcr(X) is a garland, it contains
two minimal types. Let σ1 and σ2 denote the two minimal types. Note
that, as above, X�(σ1) = X�(σ2) and that X[σ1] = X(σ2). Again it
follows that rgiX[σ1] = rgiX(σ2) = rgiX�(σ2) = rgiX�(σ1) which
says that σ1 is a sharp type of X. By Theorem 3.5 X = Y ⊕ X�(σ1)
where Y has two critical types, namely σ1, σ2, and X�(σ1) is a direct
sum of rank-one and rank-two groups by induction.

We mention that the local version of Theorem 3.14 is a corollary of
[1, Proposition 4.1.6]. In fact, for an almost completely decomposable
group X whose critical typeset is a garland, the poset S = Tcr(X)opp

is also a garland and, in the local case, Richman’s category equivalence
[1, Corollary 4.3.2] applies.

The converse of Theorem 3.5 does not hold as the following example
illustrates.

Example 3.15. There exist crq-group X and a type τ ∈ Tst (X)
such that X = Y ⊕X�(τ ) nontrivially but τ is not a sharp type.

Proof. Let T1 and T2 be finite sets of types each with at least two
minimal elements such that for any τ in the meet closure of T1 and any
σ in the meet closure of T2 we have that τ and σ are incomparable. Let
τi be the infimum of the elements of Ti, i = 1, 2. For i = 1, 2, choose
any clipped crq-groups Xi with Tcr(Xi) = Ti and rgi (Xi) = ni, where
n1, n2 > 1 and relatively prime. Then X = X1 ⊕ X2 is a crq-group
with rgi (X) = n1n2. Note that X�(τ1) = X1 is a summand of X but
rgi (X�(τ1)) = n1 �= n1n2 = rgi (X) = rgi (X[τ1]).
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If X is an almost completely decomposable group and λ is a type
that is less than every critical type of X, then λ is trivially sharp. The
corresponding decomposition is trivial since X�(λ) = X. The following
proposition shows that, for local clipped crq-groups, only critical sharp
types matter, in contrast to global crq-groups, Example 3.17.

Proposition 3.16. Let X be a local clipped crq-group. If σ is a
sharp type of X with X�(σ) �= X, then X�(σ) = X�(τ ) for some sharp
critical type τ of X.

Proof. Let X = A+Zp−n
∑

ρ∈Tcr(X) sρvρ be a cyclic representation of
the clipped p-local crq-group X (see [5, Section 6.4]). The properties of
cyclic representations that we need here are that sτ = gcdA(pn, sτvτ )
and that sτ < sσ for τ > σ. By assumption X�(σ) �= X, and this
means that {ρ ∈ Tcr(X) : ρ �> σ} �= ∅. Hence rgiX�(σ) = βX

σ =
min{sρ : ρ �> σ} < pn. As σ is sharp, rgiX[σ] = βX

σ < pn, so that
X[σ] �= X and {ρ ∈ Tcr(X) : ρ ≤ σ} �= ∅. Let τ ∈ Tcr(X) be such that
τ ≤ σ and sτ = min{sρ : ρ ≤ σ}. Then X�(σ) ⊆ X�(τ ). Also, σ being
sharp, sτ = rgiX�(σ) = min{sρ : ρ �> σ}. Suppose that λ ∈ Tcr(X)
and λ > τ . If λ �> σ, then sλ < sτ = min{sρ : ρ �> σ} ≤ sλ which
is a contradiction. Hence λ > σ. We conclude that X�(τ ) ⊆ X�(σ)
which establishes equality. Finally rgiX[τ ] = min{sρ : ρ ≤ τ} = sτ =
rgiX[σ] = rgiX�(σ) = rgiX�(τ ) which shows that τ is sharp.

The following example shows that, in contrast to Proposition 3.16, in
global crq-groups, noncritical sharp types need to be taken into account.

Example 3.17. There exists a clipped global crq-group X that has
a nonmaximal noncritical sharp type τ ; hence X�(τ ) is a nontrivial
summand of X, but X has no nonmaximal critical sharp types, i.e.,
X�(σ) = 0 for every critical sharp type of X.

Proof. Let {τi : 1 ≤ i ≤ 6} be a set of rational groups containing
1, with the following Hasse diagram as types. Suppose that there
exist distinct primes p, q such that p−1, q−1 /∈ τi, 1 ≤ i ≤ 6. Let
A = ⊕6

i=1τiai, X = A + Z(pq)−3a, where a = pqa1 + a2 + a3 + pqa4 +
p2qa5 + pq2a6.
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1 2 3 4

5 6

2 3

The following table contains the essential information about X.

σ rgiX[σ] rgiX�[σ] rgiX(σ) rgiX�(σ)
τ1 pq p2q 1 1
τ2 1 pq 1 1
τ3 1 pq 1 1
τ4 pq pq2 1 1
τ5 p2q p3q3 pq pq

τ6 pq2 p3q3 pq pq

It follows that A is regulating in X and that only the maximal
critical types τ2 and τ3 are sharp. Since rgi (X[σ]) �= rgi (X�[σ]) for
all σ ∈ Tcr(X), X is clipped by [6, Proposition 4.4.2].

Further rgi (X[τ ]) = pq = rgi (X�(τ )) which implies that τ is a sharp
type.
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