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COMPLETELY DECOMPOSABLE ABELIAN GROUPS
WITH A DISTINGUISHED CD SUBGROUP

MANFRED DUGAS AND K.M. RANGASWAMY

ABSTRACT. We define a category CD1(T, p), p a prime
and T a set of types, consisting of all pairs V = (C, D)
where C is a completely decomposable group with critical
type set T and D a completely decomposable subgroup with
peC ⊆ D ⊆ C for some e ≥ 1. We show that while
indecomposables in this category have rank at most one if
T is an antichain, we observe “wild” behavior if T contains
comparable elements.

I. Introduction. One of the true chestnuts of the theory of
abelian groups is the stacked basis theorem that goes back to work of
C.F. Gauss [4] which can be stated as follows: Let F be a free module
of finite rank over a principal ideal domain S and X a submodule of
F . Then F has a basis B = {b1, . . . , bn} such that X = ⊕n

i=1bisiS
for some si ∈ S with si ∈ si−1S, 1 ≤ i ≤ n. This implies that
F/X is a direct sum of cyclic S-modules. We refer to [3] for a
discussion of the history and references for this result. More recently,
Benabdallah and Ould-Beddi [2] proved a version of the stacked basis
theorem for homogeneous completely decomposable (hcd) groups of
finite rank, which was extended by Ould-Beddi and Strüngmann [5]
to the infinite rank case: Let C be an hcd group and X a (hcd)
subgroup of C of bounded index. Then C has a stacked basis B for
X, i.e., C = ⊕b∈B〈b〉C∗ and X = ⊕b∈B〈sbb〉X∗ for some sb ∈ Z, where
〈b〉X∗ denotes the purification of the subgroup generated by b inside X.
This makes it natural to ask about the case where C is not hcd but
completely decomposable (cd) of finite rank with critical type set T .

It is easy to see that the same result holds in this case if T is an
antichain but, as we shall see, things are dramatically different if the
critical type set T contains comparable elements. This note attempts
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to look at the stacked basis theorem for cd groups from the point of
view of representations of partially ordered sets. In order to employ
the language of representations (see Arnold’s book [1] for notations),
we define a category CD1(T,p) to consist of all pairs V = (C,D) such
that C is a cd group of finite rank with critical type set T , p a prime
and D is a cd subgroup of C such that peC ⊆ D for some e ≥ 1. The
stacked basis theorem due to Benabdallah and Ould-Beddi stated above
(in the p-local case) can now be rephrased as: If T is a singleton, then
indecomposable objects in CD1(T, p) have rank at most 1. The same
holds if T is an antichain. On the other hand, if T is not an antichain,
i.e., if it contains comparable elements, we will show that CD1(T, p)
is “wild” in the sense that each finite dimensional Z/pZ-algebra can
be obtained as an epimorphic image of End (V ) for some object V in
CD1(T, p). As a biproduct, we are led to the construction of a number
of large indecomposable groups with a single distinguished subgroup.

II. The categories RepS(n 1
2 , p, e).

Definition. Let S be a PID and p a prime element of S. Moreover,
let n, e ∈ N. Then V = (F, F1, . . . , Fn, Fn+1) is in RepS(n 1

2 , p, e) if
and only if F is a free S-module of finite rank, F1 ⊆ F2 ⊆ · · · ⊆ Fn is a
chain of pure submodules of F (and thus direct summands of F ) and
Fn+1 is a free submodule of F such that peF ⊆ Fn+1. A morphism in
this category is any S-linear map ϕ : F → F ′ such that (Fj)ϕ ⊆ F ′

j for
all 1 ≤ j ≤ n+ 1.

Similar categories have been studied in [3], and we refer to [1] as
a guide to the literature. For example, if n = 2 and F3 = F ,
then indecomposables have rank ≤ 2, cf. [3]. We will show that
Re pS(1 1

2 , p, e) has infinite representation type already for small values
of e. First we will construct some examples.

Proposition 1. There are arbitrarily large indecomposables in
Re pS(1 1

2 , p, 6).

Proof. We will prove this proposition in some detail since the proofs
of subsequent propositions will be modeled after this. Details of similar
approaches are found in [1, Section 4]. Let F = ⊕4

i=1eiX, where



COMPLETELY DECOMPOSABLE ABELIAN GROUPS 1385

X ∼= S(k), a free S-module of rank k. Note that F has rank 4k. Let
F1 = e3X⊕e4X and F2 = (e1p2+e3+e4p)X⊕(e2p4+e3p)X⊕(e3p2A+
e4p

3)X ⊕ e3p
3X where A is some k × k-matrix over S. It is easy to

verify that this sum is direct and that p6F ⊆ F2, but p5F �⊆ F2. The
module F2 can be represented by the matrix

M =



p2 0 : 1 p
0 p4 : p 0
0 0 : p2A p3


 ,

where we suppress the summand e3p
3X, but keep in mind that we read

entries in the third column modulo p3. Now consider V = (F, F1, F2) ∈
Re pS(1 1

2 , p, 6). Let ϕ ∈ End (V ). Then ϕ has the form

ϕ =



α11 α12 γ11 γ12

α21 α22 γ21 γ22

0 0 β11 β12

0 0 β21 β22


 ,

an element in the matrix ring Mat4k×4k(S) of 4k × 4k-matrices over
S, since (F1)ϕ ⊆ F1. Note that maps operate on the right. Since
(F2)ϕ ⊆ F2, there is a matrix U = (uij) ∈ Mat4k×4k(S) such that
Mϕ = UM where we read the third column modulo p3. We compute

Mϕ =



p2α11 p2α12 p2γ11 + β11 + pβ21 p2γ12 + β12 + pβ22

p4α21 p4α22 p4γ21 + pβ11 p4γ22 + pβ12

0 0 p2Aβ11 + p3β21 p2Aβ12 + p3β22




and

UM =



p2u11 p4u12 u11 + pu12 + p2u13A pu11 + p3u13

p2u21 p4u22 u21 + pu22 + p2u23A pu21 + p3u23

p2u31 p4u32 u31 + pu32 + p2u33A pu31 + p3u33


 .

From Mϕ = UM , we derive congruences mod pi where we will read
the first column mod p5, the second mod p6, the third mod p3 and the
fourth mod p4. We obtain:

α11 ≡ u11 mod (p3), α12 ≡ 0 mod (p2), u21 ≡ 0 mod (p2), α22 ≡
u22 mod (p2), u31 ≡ 0 mod (p3) and u32 ≡ 0 mod (p2). Moreover,
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β11 ≡ u11 mod (p), β12 + pβ22 ≡ pu11 mod (p2), pβ11 ≡ pu22 mod (p2),
pβ12 ≡ pu21 mod (p3) and p2Aβ11 ≡ p2u33A mod (p3), p2Aβ12 +
p3β22 ≡ p3u33 mod (p4). We infer β12 ≡ 0 mod (p2) and β22 ≡
u33 mod (p). Thus

ϕ ≡




α 0 γ11 γ12

α21 α γ21 γ22

0 0 α 0
0 0 β21 α


 mod p

with α mod p ∈ C(A mod p), the centralizer of A mod p.

Define Cp(A) = {ψ ∈ End S(X) | ψA ≡ Aψ mod p}, i.e., for
ψ ∈ Cp(X) we have ψA−Aψ : X → pX.

Then End (V ) = Cp(A)I4×4+J where I4×4 is the 4×4 identity matrix
and J is an ideal of End (V ) with J4 ⊆ End (V )∩pMat4k×4k(S). Thus
if 0, 1 are the only idempotents in Cp(A), the same holds in End (V ).
Now let A be a k × k Jordan block with eigenvalue λ = 0 so that

A =




0 1 0 · · · · · ·
0 0 1 · · · · · ·
· · · · · · · · · · · · · · ·
0 0 · · · 0 1
0 0 · · · · · · 0




and notice that C(A) = S[A], C(A mod p) = (S/pS)[A mod p] =
C(A) mod p = Cp(A) mod p and S[A], being a local ring, has only
0 and 1 as idempotents.

Remark. It might be of interest to note that if one changes the p’s
into I’s inside the matrix M , one obtains a matrix

M# =



I 0 : I I
0 I : I 0
0 0 : A I


 ,

which is the “matrix problem” version [1] of a representation of the
critical, tame poset (2, 2, 2) as follows: Let F be a field, X a
vector space of dimension k over F and U = ⊕4

i=1eiX. Define
U1 = e2X ⊂ U1 ⊕ e1X = U2, U3 = e4X ⊂ U3 ⊕ e3X = U4, U5 =
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(e2+e3)X ⊂ U5⊕(e3A+e4)X = U6. Finally, let U# = (e1+e3+e4)X.
Then W# = (U,U1 ⊂ U2, U3 ⊂ U4, U5 ⊂ U6, U

#) with U = U2 ⊕ U4 a
representation of the poset (2, 2, 2, 1) andW = (U/U#, (Ui+U#)/U#,
1 ≤ i ≤ 6) a representation of (2, 2, 2) with End (W ) ≈ C(A).
(Actually, the matrix M# was our motivation for the matrix M).

Definition. Let C be a category of S-modules (with distinguished
submodules).

(a) The category C has finite representation type if there is a finite
upper bound for the rank of indecomposable objects in C. Otherwise
the representation type is called infinite.

(b) The category C has wild modulo p representation type, or “wild
mod p” for short, cf. [1, p. 135] if, for each A-algebra Γ that is finitely
generated and free as an S-module there is V ∈ C such that there is a
ring epimorphism φ : End (V ) → Γ/pΓ.

(c) We call the category C p-endo-wild if, for each finite dimensional
S/pS-algebra ∆, there is a V ∈ C and a ring epimorphism φ :
End (V ) → ∆ → 0.

Notice that if each S/pS-algebra ∆ is the epimorphic image of a Γ as
in (a), i.e., ∆ ≈ Γ/pΓ, then the definitions in (b) and (c) are equivalent.
It is an open problem (cf. [1, p. 139, Open Question 2]), whether (b)
and (c) are equivalent in general.

We are now ready for the main proposition of this section:

Proposition 2. The categories Re pS(n 1
2 , p, e) have the following

representation type:

(a) Re pS(1 1
2 , p, 6) has infinite type.

(b) Re pS(1 1
2 , p, 7) is wild modulo p.

(c) Re pS(1 1
2 , p, e) is p-endo-wild for e ≥ 9.

(d) Re pS(2 1
2 , p, 4) has infinite type.

(e) Re pS(n 1
2 , p, e) is p-endo-wild for n ≥ 2 and e ≥ 6; or n = 3 and

e ≥ 5.

(f) Re pS(1 1
2 , p, 2) contains indecomposables of rank 2.
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Proof. (a) was proved in Proposition 1. (b) We refer to [1] for the
notation and the approach that we shall follow below. Let, as before,
X be a free S-module of rank k and let α, β ∈ End S(X) be represented
by k × k-matrices over S. Let F = ⊕5

i=1eiX, F1 = e4X ⊕ e5X and F2

the row space of the matrix

M =




p2 0 0 A pB
0 p4 0 p 0
0 0 p6 p2 p3

0 0 0 p3 p4

0 0 0 p4 0




where A and B are some k × k-matrices to be specified later. Then

M−1 =




1
p2 0 0 − B

p5 −−B+A
p6

0 1
p4 0 0 − 1

p7

0 0 1
p6 − 1

p7 0

0 0 0 0 1
p4

0 0 0 1
p4 − 1

p5



,

which implies that e1p6X⊕e2p
7X⊕e3p

7X⊕e4p
4X⊕e5p

5X ⊆ F2, i.e.,
V = (F, F1, F2) ∈ Re pS(1 1

2 , p, 7). We also see that p6F �⊆ F2. Each
ϕ ∈ End (V ) has the form

ϕ =




α11 α12 α13 γ11 γ12

α21 α22 α23 γ21 γ22

α31 α32 α33 γ31 γ32

0 0 0 β11 β12

0 0 0 β21 β22


 .

Since F2ϕ ⊆ F2 there is a 5× 5-matrix U over S,

U =




u11 u12 u13 u14 u15

u21 u22 u23 u24 u25

u31 u32 u33 u34 u35

u41 u42 u43 u44 u45

u51 u52 u53 u54 u55




such that Mϕ = UM . Now
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Mϕ =




p2α11 p2α12 p2α13 p2γ11 +Aβ11 + pBβ21

p4α21 p4α22 p4α23 p4γ21 + pβ11

p6α31 p6α32 p6α33 p6γ31 + p2β11 + p3β21

0 0 0 p3β11 + p4β21

0 0 0 p4β11

p2γ12 +Aβ12 + pBβ22

p4γ22 + pβ12

p6γ32 + p2β12 + p3β22

p3β12 + p4β22

p4β12




and

UM =




u11p
2 u12p

4 u13p
6 u11A+ u12p+ u13p

2 + u14p
3 + u15p

4

u21p
2 u22p

4 u23p
6 u21A+ u22p+ u23p

2 + u24p
3 + u25p

4

u31p
2 u32p

4 u33p
6 u31A+ u32p+ u33p

2 + u34p
3 + u35p

4

y41p
2 u42p

4 u43p
6 u41A+ u42p+ u43p

2 + u44p
3 + u45p

4

u51p
2 u52p

4 u53p
6 u51A+ u52p+ u53p

2 + u54p
3 + u55p

4

u11pB + u13p
3 + u14p

4

u21pB + u23p
3 + u24p

4

u31pB + u33p
3 + u34p

4

u41pB + u43p
3 + u44p

4

u51pB + u53p
3 + u54p

4




We now exploit the equation Mϕ = UM to derive that

ϕ mod p =




α 0 0 γ11 γ12

α21 α 0 γ21 γ22

α31 α32 α γ31 γ32

0 0 0 α 0
0 0 0 β21 α




with αA ≡ Aα mod p and αB ≡ Bα mod p. Note that, for α = 0,
(ϕ mod p)7 = 0.

Given an S-algebra Γ, free of rank k as an S-module, we may choose
S-matrices A,B such that Γ ≈ C(A,B), the centralizer of A and
B, such that Γ/pΓ ≈ C(A mod p,B mod p) (cf. [1, p. 136, Lemma
4.2.1; and Example 1.1.7]). Since C(A,B)I5×5 ≈ Γ is contained in
End (V ) and End (V ) = C(A,B)I5×5 + J , J an ideal of End (V )
with J ∩ C(A,B)I5×5 = pC(A,B)I5×5, the S/pS-algebra Γ/pΓ is an
epimorphic image of End (V ).
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To prove (c), we us a similar construction but with F = ⊕6
i=1eiX,

F1 = ⊕6
i=4eiX and F2 the row space of the 6× 6-matrix

M =




p3 0 0 1 0 0
0 p5 0 p p2 0
0 0 p7 p2 0 p4

0 0 0 p3 p4A p5B
0 0 0 0 p5 0
0 0 0 0 0 p6



.

Since

M−1 =




1
p3 0 0 − 1

p6
A
p7

B
p7

0 1
p5 0 − 1

p7
−1+A

p8
B
p8

0 0 1
p7 − 1

p8
A
p9

−1+B
p9

0 0 0 1
p3 − A

p4 − B
p4

0 0 0 0 1
p5 0

0 0 0 0 0 1
p6




,

we have that e1p7X ⊕ e2p
8X ⊕ e3p

9X ⊕ e4p
4X ⊕ e5p

5X ⊕ e6p
6X ⊆ F2,

and it is readily seen that Cp(A,B)I6×6 is contained in End (V ), which
will imply that we can obtain any S/pS-algebra as epimorphic image of
End (V ). If ϕ ∈ End (V ), it can be shown that ϕ mod p = αI6×6 +N
where

N =




0 0 0 α14 α15 α16

α21 0 0 α24 α25 α26

α31 α32 0 α34 α35 α36

0 0 0 0 0 0
0 0 0 α54 0 0
0 0 0 α64 α65 0



.

It is easy to verify that N7 = 0.

To show (d), let F = ⊕3
i=1eiX with F1 = e3X, F2 = e2X ⊕ e3X and

F3 the row space of the matrix

M =



p2 p 1
0 p2 pA
0 0 p


 .

For V = (F, F1, F2, F3) and ϕ ∈ End (V ) we compute

ϕ mod p =



α α12 α13

0 α α23

0 0 α



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with αA ≡ Aα mod p. Now use a Jordan block matrix A to make V
indecomposable.

(e) Here we use F = ⊕6
i=1eiX with F1 = e5X ⊕ e6X, F2 = ⊕6

i=3eiX,
F3 the row space of the matrix

M =




p2 0 p 0 1 0
0 p2 0 p 0 1
0 0 0 p2 p 0
0 0 p4 0 p2A p2B
0 0 0 0 p3 0
0 0 0 0 0 p3



.

Let V = (F, F1, F2, F3). Each ϕ ∈ End (V ) has the form

ϕ =




α11 α12 α13 α14 α15 α16

α21 α22 α23 α24 α25 α26

0 0 α33 α34 α35 α36

0 0 α43 α44 α45 α46

0 0 0 0 α55 α56

0 0 0 0 α65 α66



.

Notice that Cp(A,B)I6×6 ⊆ End (V ) and e1p
6X ⊕ e2p

5X ⊕ e3p
5X ⊕

e4p
4 ⊕ e5p

3X ⊕ e6p
3X ⊆ F3. We use again the equation Mϕ = UM to

compute that

ϕ mod p =




α 0 α13 α14 α15 α16

0 α α23 α24 α25 α26

0 0 α 0 α35 α36

0 0 0 α α45 α46

0 0 0 0 α 0
0 0 0 0 0 α



.

(The computation is a little involved, but straightforward). Moreover,
if β ∈ End (X) such that βA ≡ Aβ (mod p) and βB ≡ Bβ mod p, then
I6×6β ∈ End (V ). This shows that End (V ) contains a copy of Cp(A,B)
and thus has C(A mod p,B mod p) as a ring epimorphic image with,
modulo p, a nilpotent kernel. Thus Re pS(2 1

2 , p, 6) is p-endowild.

For the second part, let F = ⊕4
i=1eiX and Fj = ⊕5−j

i=4 eiX for
1 ≤ j ≤ 3 and F4 the row space of the matrix

M =



p3 p2 p 1
0 p3 p2A pB
0 0 p3 0
0 0 0 p2


 .
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Then p5e1X ⊕ p4e2X ⊕ p3e3X ⊕ p2e4X ⊆ F4 and Cp(A,B)I4×4 is
contained in End (V ), V = (F, Fj , 1 ≤ j ≤ 4). Note that this matrix M
is derived by the “matrix problem” associated with the standard wild
five subspace representation.

(f) ConsiderM =
[

p 1

0 p

]
and proceed as before considering (F, F1, F2)

with F a rank-2 S-module and F2 the row space of M .

We will use invertible row/column operations to prove

Proposition 3. The categories Re pS(n 1
2 , p, 3) have finite represen-

tation type for all n ≥ 1.

Proof. Let V = (F, F1, . . . , Fn, Fn+1) ∈ CD1(n 1
2 , p, 3) be indecom-

posable such that Fn+1 is the row space of the matrix

M =




M11 M12 M13 · · · · · ·
0 M22 M23 · · · · · ·
0 0 M33 · · · · · ·
0 0 0 M44 · · ·
· · · · · · · · · · · ·


 .

Since p3F ⊆ Fn+1, we may treat multiples of p3 inside M as zeros.
The columns of M correspond to the complements of Fj−1 inside Fj .
Each Mjj can be reduced to a diagonal matrix with entries of the main
diagonal either 1, p or p2. Inductively, we show that no p2 actually
occurs there: Assume a p2 occurs as a diagonal (i.e., pivotal) entry in
M11. Then look up the first �= 0 entry in that row of M . One of these
entries will cancel the other, a contradiction, because we get a rank 1
summand of V . Thus we may assume that M11 = pI, I some k × k-
identity matrix. If there is a pivot p2 in M22, then on top of it are only
zeros or ones. Any 1 can be used to cancel the p2 pivot, and we are able
to produce another rank 1 summand . . . . Thus, we may assume that
each Mjj has the form pI and therefore all matrices Mij , i < j, can be
assumed to contain only entries that are 0 or units modulo p. Above
or to the left of such a unit all entries can be cancelled and turned into
0’s. Thus the only indecomposable module of rank ≥ 2 is represented
by

M =



p 1 0
0 p 1
0 0 p


 ,
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a representation of rank 3.

III. Categories of completely decomposable (cd) groups with
a distinguished subgroup.

For this section we fix a prime integer p. All subgroups Ai ⊂ Q are
assumed to be p-locally free, i.e., 1/p /∈ Ai but 1 ∈ Ai. Then τ (Ai) = τi

denotes the type of Ai and we call τi p-locally free as well. A cd group
C with critical type set T = {τ1, . . . , τk} is of the form C = ⊕k

i=1A
(mi)
i

where the Ai are p-locally free subgroups of Q of type τi.

Definition. The categoryCD1(T,p) consists of all pairs V = (C,D)
such that:

(a) C is a finite rank cd group with critical type set T , a set of
p-locally free types.

(b)D is a subgroup of C such thatD is again a cd group and pjC ⊆ D
for some j ≥ 1.

Morphisms φ : (C,D) → (C ′, D′) in this category are the homo-
morphisms ϕ : D → D′ such that ϕ(D) ⊆ D′. For V = (C,D) ∈
CD1(T, p), let End (V ) denote the set of morphisms from V into V .

Using our terminology, we may state (a special case of) a result by
Benabdallah and Ould-Beddi.

Theorem [2]. If |T | = 1, then indecomposable objects in CD1(T, p)
have rank 1, i.e., the stacked basis theorem holds in this case.

Note that this result was generalized by Ould-Beddi and Strüngmann
to the case of homogeneous cd groups of infinite rank [5]. We are now
ready for our main result:

Theorem 4. If the set T of critical types is an antichain, i.e., any
two elements in T are incomparable, then indecomposable objects in
CD1(T, p) have rank 1. If T is not an antichain, then CD1(T, p) is
p-endowild, i.e., for each finite dimensional Z/pZ-algebra A there is
an object V ∈ CD1(T, p) such that there exists a ring epimorphism
ϕ : End (V ) → A. Moreover, ϕ is the “modulo p” map followed by an
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epimorphisms with nilpotent kernel.

Proof. If T is an antichain, then C = ⊕k
i=1C(τi) = ⊕k

i=1A
(mi)
i

and D = ⊕k
i=1(D ∩ C(τi)) because the summands C(τi) of C are

fully invariant in C. (The crucial fact here is that the C(τi)’s are
homogeneous of type τi as T is an antichain and D has finite index in
C). Thus, (C,D) = ⊕k

i=1(C(τi), D∩C(τi)) and each of these summands
is a direct sum of rank 1 summands by the stacked basis result in [2].

If T is not an antichain, we may assume without loss of generality
that T is a chain, T = {τ1 < τ2 < · · · < τk+1} for some k ≥ 1.

Let A be a finite dimensional Z/pZ-algebra. Then there exist a
natural number m and m × m-matrices A∗, B∗ over Z/pZ such that
A is isomorphic to C(A∗, B∗), the centralizer of A∗, B∗ in the ring of
allm×m-matrices over Z/pZ, cf. Example 1.1.7 in [1]. Now let A#, B#

be matrices over Z such that A∗ = A# mod p and B∗ = B# mod p.

For any k ≥ 2 there is some e, depending on k, such that according to
Proposition 2 in Section II there is some V = (F0, F1, . . . , Fk, Fk+1) ∈
Re pZ(k 1

2 , e) with A an epimorphic image of End (V ). Since F0 �
F1 � · · · � Fk is a descending chain of summands of F0, we may write
Fi−1 = Si ⊕ Fi for 1 ≤ i ≤ k. For Ai ⊂ Q with τ (Ai) = τi, we define
C = S1A1 ⊕S2A2 ⊕ · · ·⊕SkAk ⊕FkAk+1. The submodule Fk+1 in the
list V is defined as the row space of an upper triangular k × k-matrix

M =



R1

· · ·
· · ·
Rm


 .

A typical such matrix used for Re pS(2 1
2 , p, 6) is

M =




p2 0 p 0 1 0
0 p2 0 p 0 1
0 0 0 p2 p 0
0 0 p4 0 p2A# p2B#

0 0 0 0 p3 0
0 0 0 0 0 p3



.

(In this particular case we need to switch the third and fourth row
to make M upper triangular). Now define D = (R1A1 ⊕ R2A1) ⊕
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(R3A2 ⊕ R4A2) ⊕ (R5A3 ⊕ R6A3) ⊂ C. (This sum is direct because
M is upper triangular). Define V # = (C,D). Let ϕ ∈ End (V #).
Then ϕ ∈ End (C) with ϕ(D) ⊆ D. Let S = Zp be the ring of
integers localized at p. Then ϕ induces ϕ̃ ∈ End (V S) where V S =
(F0S, F1S, . . . , FkS, ) ∈ Re pS(k 1

2 , p, e). As the proof of Proposition 2
shows, both End (V ) and End (V S) have A as epimorphic image. On
the other hand, each ψ ∈ End (V ) induces a ψ̂ ∈ End (V #). Thus A
is an epimorphic image of End (V #) by the map modulo p followed by
an epimorphism with nilpotent kernel.

Corollary. The stacked basis theorem holds in CD1(T, p) if and only
if T is an antichain.
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