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COMPLETELY DECOMPOSABLE ABELIAN GROUPS
WITH A DISTINGUISHED CD SUBGROUP

MANFRED DUGAS AND K.M. RANGASWAMY

ABSTRACT. We define a category CD'(T,p), p a prime
and T a set of types, consisting of all pairs V = (C,D)
where C is a completely decomposable group with critical
type set T and D a completely decomposable subgroup with
pcC C D C C for some e > 1. We show that while
indecomposables in this category have rank at most one if
T is an antichain, we observe “wild” behavior if T' contains
comparable elements.

I. Introduction. One of the true chestnuts of the theory of
abelian groups is the stacked basis theorem that goes back to work of
C.F. Gauss [4] which can be stated as follows: Let F' be a free module
of finite rank over a principal ideal domain S and X a submodule of
F. Then F has a basis B = {b1,...,b,} such that X = @& ,b;8;S
for some s; € S with s; € 5,15, 1 < i < n. This implies that
F/X is a direct sum of cyclic S-modules. We refer to [3] for a
discussion of the history and references for this result. More recently,
Benabdallah and Ould-Beddi [2] proved a version of the stacked basis
theorem for homogeneous completely decomposable (hed) groups of
finite rank, which was extended by Ould-Beddi and Striingmann [5]
to the infinite rank case: Let C' be an hed group and X a (hed)
subgroup of C' of bounded index. Then C has a stacked basis B for
X, ie., C = Opep(b)¢ and X = @pep(spb)X for some s, € Z, where
(b)X denotes the purification of the subgroup generated by b inside X.
This makes it natural to ask about the case where C' is not hed but
completely decomposable (cd) of finite rank with critical type set T.

It is easy to see that the same result holds in this case if T is an
antichain but, as we shall see, things are dramatically different if the
critical type set T contains comparable elements. This note attempts
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to look at the stacked basis theorem for cd groups from the point of
view of representations of partially ordered sets. In order to employ
the language of representations (see Arnold’s book [1] for notations),
we define a category CD!(T, p) to consist of all pairs V = (C, D) such
that C is a cd group of finite rank with critical type set T, p a prime
and D is a cd subgroup of C such that p¢C' C D for some e > 1. The
stacked basis theorem due to Benabdallah and Ould-Beddi stated above
(in the p-local case) can now be rephrased as: If T is a singleton, then
indecomposable objects in CD!(T, p) have rank at most 1. The same
holds if T" is an antichain. On the other hand, if 7" is not an antichain,
i.e., if it contains comparable elements, we will show that C'D!(T,p)
is “wild” in the sense that each finite dimensional Z/pZ-algebra can
be obtained as an epimorphic image of End (V') for some object V in
CD!(T,p). As a biproduct, we are led to the construction of a number
of large indecomposable groups with a single distinguished subgroup.

II. The categories Reps(n%,p, e).

Definition. Let S be a PID and p a prime element of S. Moreover,
let n,e € N. Then V = (F,Fy,... ,F,,Fo1) is in Reps(ni,p,e) if
and only if F' is a free S-module of finite rank, Fy C Fob C--- C F,, is a
chain of pure submodules of F' (and thus direct summands of F') and
Fl,+1 is a free submodule of F' such that p°F C Fj, 1. A morphism in
this category is any S-linear map ¢ : F' — I such that (F;)¢ C F} for
al1<j<n+1.

Similar categories have been studied in [3], and we refer to [1] as
a guide to the literature. For example, if n = 2 and F3 = F,
then indecomposables have rank < 2, cf. [3]. We will show that
Re pS(lé, p, e) has infinite representation type already for small values
of e. First we will construct some examples.

Proposition 1. There are arbitrarily large indecomposables in
Reps(1%,p,6).

Proof. We will prove this proposition in some detail since the proofs
of subsequent propositions will be modeled after this. Details of similar
approaches are found in [1, Section 4]. Let F = @} ;e;X, where
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X = S 4 free S-module of rank k. Note that F has rank 4k. Let
F) = e3X®ey X and Fy = (e1p? +ez+eqp) X O (eap +e3p) X @ (e3p? A+
esp®) X @ e3p®X where A is some k x k-matrix over S. It is easy to
verify that this sum is direct and that pSF C F,, but p°F € F,. The
module F5 can be represented by the matrix

p? 0 1 P
M=1|0 p* : »p 01,
0 0 : p?A p?

where we suppress the summand esp®X, but keep in mind that we read
entries in the third column modulo p3. Now consider V = (F, F1, F,) €
Reps(1%,p,6). Let ¢ € End (V). Then ¢ has the form

Q11 12 Y11 Y12

o= Qo1 Q22 Y21 Y22
0 0 pBu Pi2|’
0 0 Bar fa

an element in the matrix ring Matygxar(S) of 4k x 4k-matrices over
S, since (F1)p C Fj. Note that maps operate on the right. Since
(Fy)p C Fs, there is a matrix U = (u;;) € Matagxar(S) such that
M@ = UM where we read the third column modulo p?. We compute

p2ain pPas pPyin+ B +pBa pPyiz + Bz + pPa
My = |plasr pram piye1 + pBin phy22 + pBi2
0 0 p?AB11 + p?PBar p?AB12 + p* a2

and

p2uir pluia  uin + puiz + pPuisA  puir + pPuis
UM = | p*ua1  pluss  ust + puss + p*uss A puor + piuog
pPuzi pluss  uzt + puse + p ussA  pusi + pPuss

From My = UM, we derive congruences mod p* where we will read
the first column mod p®, the second mod p®, the third mod p? and the
fourth mod p*. We obtain:

11 = upp mod (p?), arp = 0mod (p?), ugr = 0mod (p?), az =
ug2 mod (p?), uz; = 0 mod (p?) and uzz = 0mod (p?). Moreover,
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P11 = w1y mod (p), Biz2 + pBaz = purr mod (p?), pBi1 = puae mod (p?),
pPr2 = pugi mod (p?) and p*Af1 = pPussA mod (p?), p*Afia
p3Baa = p3uzz mod (p?). We infer 312 = 0mod (p?) and Bao
uzz mod (p). Thus

I =+

a 0 m1 72

_ |21 @ 721 722
$=10 0 o o |medr

0 0 fa «a

with @ mod p € C(A mod p), the centralizer of A mod p.

Define Cp(A) = {¥ € Endg(X) | A = Ay mod p}, ie., for
¥ € Cp(X) we have YA — Ay : X — pX.

Then End (V) = Cp(A)I4xa+J where I 4 is the 4 x4 identity matrix
and J is an ideal of End (V) with J* C End (V) NpMatygxar(S). Thus
if 0,1 are the only idempotents in Cp(A), the same holds in End (V).
Now let A be a k x k Jordan block with eigenvalue A = 0 so that

0 1 0
0 0 1
0 o - 0 1
0 0 -+ - 0

and notice that C(A4) = S[A], C(Amodp) = (S/pS)[Amod p] =
C(A)mod p = Cp(A) mod p and S[A], being a local ring, has only
0 and 1 as idempotents.

Remark. It might be of interest to note that if one changes the p’s
into I’s inside the matrix M, one obtains a matrix

I 0
M#=10 T
00

DN~

1
0,
1

which is the “matrix problem” version [1] of a representation of the
critical, tame poset (2, 2, 2) as follows: Let F be a field, X a
vector space of dimension k over F and U = @} ;e;X. Define
Ui =X cUi e X =Us, Us = e X C U3 P ez X = Uy, Us =
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(e2+e3)X CUsD(e3A+es)X = Us. Finally, let U# = (e1 +ez+e4)X.
Then W# = (U,Ul Cc Uy, Uz C Uy, Us C UG,U#) with U =Us ® Uy a
representation of the poset (2, 2,2, 1) and W = (U/U¥, (U;+U#)/U#,
1 < i < 6) a representation of (2, 2, 2) with End (W) ~ C(A).
(Actually, the matrix M# was our motivation for the matrix M).

Definition. Let C be a category of S-modules (with distinguished
submodules).

(a) The category C has finite representation type if there is a finite
upper bound for the rank of indecomposable objects in C. Otherwise
the representation type is called infinite.

(b) The category C has wild modulo p representation type, or “wild
mod p” for short, cf. [1, p. 135] if, for each A-algebra T that is finitely
generated and free as an S-module there is V' € C such that there is a
ring epimorphism ¢ : End (V) — I'/pT".

(c) We call the category C p-endo-wild if, for each finite dimensional
S/pS-algebra A, there is a V' € C and a ring epimorphism ¢ :
End (V) - A — 0.

Notice that if each S/pS-algebra A is the epimorphic image of a T" as
in (a), i.e., A &= I'/pT’, then the definitions in (b) and (c) are equivalent.
It is an open problem (cf. [1, p. 139, Open Question 2]), whether (b)
and (c) are equivalent in general.

We are now ready for the main proposition of this section:

Proposition 2. The categories Reps(n%,p, e) have the following
representation type:

(a) Reps(1%,p,6) has infinite type.

(b) Reps(13,p,7) is wild modulo p.

(c) Reps(1 2710, e) is p-endo-wild for e > 9.

(d) Reps(23,p,4) has infinite type.

(e) Reps(ns,p,e) is p-endo-wild for n > 2 and e > 6; or n = 3 and
e>5.

() Reps(lé,p, 2) contains indecomposables of rank 2.
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Proof. (a) was proved in Proposition 1. (b) We refer to [1] for the
notation and the approach that we shall follow below. Let, as before,
X be a free S-module of rank k£ and let o, 8 € End g(X) be represented
by k x k-matrices over S. Let F = ®2_,e; X, F} = e4X ®esX and Fy
the row space of the matrix

p> 0 0 A pB
0 p* 0 p O
M=|0 0 pb p> p?
0 0 0 p3 pt
0 0 0 p* o0

where A and B are some k X k-matrices to be specified later. Then

op%oo-]%
M—lzoopiﬁ—% 0o |,
0 0 0 0 L

P

ooop—ﬂ—#

which implies that e;p8X @ eap” X Gesp’ X Pesp X Pesp®X C Fo, ie.,
V = (F,F1,F») € Reps(13,p,7). We also see that p°F ¢ F,. Each
¢ € End (V) has the form

Q11 Q12 Q13 Y11 Y12

Qi1 Qo2 Qg3 Y21 Y22

p= |31 Q32 Q33 Y31 732
0 0 0 B B2

0 0 0 a1 Pa

Since Fyp C F; there is a 5 x 5-matrix U over S,

Uil Uiz U113 U4 U5
U21 U2 U223 U224 U5
U= |us1 wus2 wu33z uss uss
Uq1  Uq2 U443  Ugq  Ugs
Us1  Us2 U3 Us4  Uss

such that M = UM. Now
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P20411
4

D 21

My = P6Oé31
0
0

and

uiip
U21p
UM = | us1p
Yq1p
Us1p

NN N NN

p2a12
p40422
p60432
0
0

Uizp
Ug2p
Uuz2p
Ug2p
Us2p

R R R s

2

prais
4

b Qa3
6

b as3

0
0

Uuisp
U23p
ug3p
Uyg3p
Us3p

[=2 3> B> R e N )

P71 + ABi1 + pBBa
p*y21 + PPt
P°y31 + p? 11 + B
p*P11 + p*Ban
P4511

p*712 + AP12 + pBPao
P22 + PPz
p®v32 + p? Bz + 3Pz
p3Bia + p*Pao
P4512

u11 A+ ui2p + uizp® + uap® + ugsp?
U1 A + ugap + ugsp® + uap® + uasp?
uz1 A + uzop + uzsp? + uzap® + uzsp?
ug1 A + waop + wazp® + ugap® + U45pfL

us1A 4 usop + ussp?® + usap® + ussp

u11pB + u13p® + uiap?
u21pB + u23p® + uoap?
uz1pB + u3sp® + uzap
ug1pB + wasp® + wasp
us1pB + us3p® + usap

[

We now exploit the equation My = UM to derive that

@ mod p =

Q2
a3y

(0%

0 0 71 M2
a 0 721 72
32 @ Y31 V32
0 0 « 0
0 0 fBo21 «

with A = Aamod p and aB = Ba mod p. Note that, for a = 0,

(¢ mod p)7 = 0.

Given an S-algebra I, free of rank k as an S-module, we may choose
S-matrices A, B such that I' ~ C(A, B), the centralizer of A and
B, such that I'/pI' ~ C(A mod p, B mod p) (cf. [1, p. 136, Lemma
4.2.1; and Example 1.1.7]). Since C(A, B)I5x5 =~ I' is contained in
End (V) and End (V) = C(A,B)I5x5 + J, J an ideal of End (V)
with J N C(A, B)Isx5 = pC(A, B)I5xs5, the S/pS-algebra I'/pl' is an
epimorphic image of End (V).
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To prove (c), we us a similar construction but with F' = @;_,e; X,
Fy = 69?:4eiX and F; the row space of the 6 x 6-matrix

p> 0 0 1 0 0
0

0 p° p p 0
M= 0 0 p7 p2 0 p4
0 0 0 p* p*A p°B
0 0 0 0 p° 0
0 0o 0 0 0 pf
Since ~ _
S
0 F 0 —F =4 2z
1 1 A —14+B
Y T U B
o 0o o0 %X -4 -5
P P p
0 0 0 0 # 0
0O 0 0 0 0 piﬁ |

we have that e1p" X @ eap® X @ esp? X @ esp X ®esp® X @ egp®X C Fs,
and it is readily seen that C),(A, B)Isx¢ is contained in End (V'), which
will imply that we can obtain any S/pS-algebra as epimorphic image of
End (V). If ¢ € End (V), it can be shown that ¢ mod p = algxe + N
where

0 0 0 ag a15 aig

agt 0 0 o a5 aog

N = |81 032 0 a3y azs ase
0 0 0 O 0 0
0 0 0 Q54 0 0
0 0 0 Qgq4  Qgs 0

It is easy to verify that N7 = 0.

To show (d), let F = @?_,e; X with I} = e3X, Fh = ea X @ e3X and
F3 the row space of the matrix

¥ op 1
M=|0 p*> pA
0o 0 »p
For V = (F, F1, F,, F3) and ¢ € End (V) we compute

a o2 Q13
pymodp= |0 a a3



COMPLETELY DECOMPOSABLE ABELIAN GROUPS 1391

with «A = Aa mod p. Now use a Jordan block matrix A to make V'
indecomposable.

(e) Here we use F' = @9 ;¢; X with Fy = es X @ e X, Fo = ®%_5e, X,
F3 the row space of the matrix

p > 0 p O 1 0
0 p> 0 p 0 1
M—|0 0 0 P2 p 0
“ 1o o0 p* 0 p*4A p’B
0 0 0 0 p? 0
0 0 0 0 0 p?
Let V = (F, Fy, Fs, F3). Each ¢ € End (V) has the form
Q11 G2 (3 14 Q15 Qe
Qo1 Qo2 Qi3 Qg4 Q5 Qi
o= 0 0 as3 azs azs ase
0 0 auz aus og5 Qe
0 0 0 0 Q55  O5g
0 0 0 0 Qg5 Ogg

Notice that Cp(A, B)Isxe C End (V) and e1p5X @& eap®X @ e3p° X @
esp? @ esp3 X @ egp® X C F3. We use again the equation Mo = UM to
compute that

a3

Q23
e}
0
0
0

wmod p =

SO OO OoOR
SO OO R O

Q14
Qo4
0
a
0
0

0

a16
Q26
Q36
Q46
0
e’

(The computation is a little involved, but straightforward). Moreover,
if 5 € End (X) such that A = AB (mod p) and 8B = B mod p, then
Isxsf € End (V). This shows that End (V') contains a copy of Cp(A4, B)
and thus has C(A mod p, B mod p) as a ring epimorphic image with,
modulo p, a nilpotent kernel. Thus Re pS(Z%, p, 6) is p-endowild.

For the second part, let F @} e, X and Fj
1 < j <3 and F} the row space of the matrix

= = @?;{eiX for

M:0pp§4pB
0 0 p> 0
0 0 0 p?
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Then p°e1 X @ pleaX @ piesX @ p?esX C Fy and Cp(A, B)Iixa is
contained in End (V'), V' = (F, F;,1 < j < 4). Note that this matrix M
is derived by the “matrix problem” associated with the standard wild
five subspace representation.

(f) Consider M = [g 11)] and proceed as before considering (F, Fy, F»)

with F' a rank-2 S-module and F5 the row space of M.

We will use invertible row/column operations to prove

Proposition 3. The categories Reps(n%,p, 3) have finite represen-
tation type for allm > 1.

Proof. Let V = (F,Fy,... ,Fp,Fry1) € C’Dl(n%,p, 3) be indecom-
posable such that F,;; is the row space of the matrix
Myy My Mg

0 My My
M = 0 0 Ms3
0

0 0 My

Since p?F C F,41, we may treat multiples of p? inside M as zeros.
The columns of M correspond to the complements of Fj_; inside Fj.
Each M;; can be reduced to a diagonal matrix with entries of the main
diagonal either 1, p or p?. Inductively, we show that no p? actually
occurs there: Assume a p? occurs as a diagonal (i.e., pivotal) entry in
Mi1. Then look up the first # 0 entry in that row of M. One of these
entries will cancel the other, a contradiction, because we get a rank 1
summand of V. Thus we may assume that My, = pI, I some k X k-
identity matrix. If there is a pivot p? in Mo, then on top of it are only
zeros or ones. Any 1 can be used to cancel the p? pivot, and we are able
to produce another rank 1 summand ... . Thus, we may assume that
each Mj; has the form pI and therefore all matrices M;;, i < j, can be
assumed to contain only entries that are 0 or units modulo p. Above
or to the left of such a unit all entries can be cancelled and turned into
0’s. Thus the only indecomposable module of rank > 2 is represented
by

0
M= 1],
D

oo
oy =
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a representation of rank 3.

IT1. Categories of completely decomposable (cd) groups with
a distinguished subgroup.

For this section we fix a prime integer p. All subgroups A; C Q are
assumed to be p-locally free, i.e., 1/p ¢ A; but 1 € A;. Then7(A;) =7
denotes the type of A; and we call ; p-locally free as well. A cd group
C with critical type set T = {71, ..., 7%} is of the form C' = @leAz(-mi)
where the A; are p-locally free subgroups of Q of type ;.

Definition. The category CD'(T, p) consists of all pairs V = (C, D)
such that:

(a) C is a finite rank cd group with critical type set T, a set of
p-locally free types.

(b) D is a subgroup of C such that D is again a cd group and p’C C D
for some j > 1.

Morphisms ¢ : (C,D) — (C’,D’) in this category are the homo-
morphisms ¢ : D — D’ such that ¢(D) C D'. For V = (C,D) €
CD!(T,p), let End (V) denote the set of morphisms from V into V.

Using our terminology, we may state (a special case of) a result by
Benabdallah and Ould-Beddi.

Theorem [2]. If |T| = 1, then indecomposable objects in CD(T,p)
have rank 1, i.e., the stacked basis theorem holds in this case.

Note that this result was generalized by Ould-Beddi and Striingmann
to the case of homogeneous cd groups of infinite rank [5]. We are now
ready for our main result:

Theorem 4. If the set T of critical types is an antichain, i.e., any
two elements in T are incomparable, then indecomposable objects in
CD(T,p) have rank 1. If T is not an antichain, then CD(T,p) is
p-endowild, i.e., for each finite dimensional Z/pZ-algebra A there is
an object V. € CDY(T,p) such that there exists a ring epimorphism
¢ : End (V) — A. Moreover, ¢ is the “modulo p” map followed by an
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epimorphisms with nilpotent kernel.

Proof If T is an antichain, then C = @f ,C(r;) = @k, A"
and D = @®F (D N C(r;)) because the summands C(7;) of C are
fully invariant in C. (The crucial fact here is that the C(7;)’s are
homogeneous of type 7; as T is an antichain and D has finite index in
C). Thus, (C, D) = @%_,(C(r;), DNC(7;)) and each of these summands
is a direct sum of rank 1 summands by the stacked basis result in [2].

If T is not an antichain, we may assume without loss of generality
that T is a chain, T = {7 < 79 < -+ < Tg41} for some k > 1.

Let A be a finite dimensional Z/pZ-algebra. Then there exist a
natural number m and m x m-matrices A*, B* over Z/pZ such that
A is isomorphic to C'(A*, B*), the centralizer of A*, B* in the ring of
all m x m-matrices over Z/pZ, cf. Example 1.1.7 in [1]. Now let A%, B#
be matrices over Z such that A* = A# mod p and B* = B# mod p.

For any k > 2 there is some e, depending on k, such that according to
Proposition 2 in Section II there is some V = (Fy, Fy,... , F, Fr11) €
Repz(k%,e) with A an epimorphic image of End (V). Since Fy J
Fy J--- 0 Fy is a descending chain of summands of F, we may write
Fi1=S@®F,for1<i<k For A; C Q with 7(4;) = 7, we define
C=5A41805A:D - ®SpAr ® FrAgy1. The submodule Fj41 in the
list V' is defined as the row space of an upper triangular k£ x k-matrix

R
R,

A typical such matrix used for RepS(Q%,p, 6) is

p2 0 p O 1 0

0 p2 0 p 0 1

M= 0 0 0 p? p 0
0 0 p* 0 p?A#* p?B#

0 0 0 O p? 0

0 0 0 O 0 p?

(In this particular case we need to switch the third and fourth row
to make M upper triangular). Now define D = (R1A4; @ R3A4;) @
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(R3Ay ® R4As) @ (R5As © RsAs) C C. (This sum is direct because
M is upper triangular). Define V# = (C,D). Let ¢ € End (V#).
Then ¢ € End(C) with ¢(D) C D. Let S = Z, be the ring of
integers localized at p. Then ¢ induces ¢ € End (V.S) where VS =
(FoS, F1S,... . FS,) € Reps(k3,p,e). As the proof of Proposition 2
shows, both End (V) and End (VS) have A as epimorphic image. On
the other hand, each ¢ € End (V) induces a ¢ € End (V#). Thus A
is an epimorphic image of End (V#) by the map modulo p followed by
an epimorphism with nilpotent kernel.

Corollary. The stacked basis theorem holds in C D (T, p) if and only
if T s an antichain.
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