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TIGHT SUBGROUPS OF ALMOST
COMPLETELY DECOMPOSABLE GROUPS

ULRICH DITTMANN

ABSTRACT. In this paper we show an extended version of
the theorem of Bezout, give a new criterion for the tightness
of a completely decomposable subgroup, derive some condi-
tions under which a tight subgroup is regulating and gener-
alize a theorem of Campagna. We give examples of almost
completely decomposable groups, all of whose regulating sub-
groups do not have a quotient with minimal exponent.

1. Integers and rational groups. The following lemma was
originally proven by K. Rogers (University of Hawaii).

Lemma 1.1. Let a, b, c be nonzero integers with gcd (a, b) = 1. Then
there exists an integer i such that gcd (a+ ib, c) = 1.

Proof. Factor c = c1c2 such that gcd (b, c2) = 1 and every prime
factor of c1 is also a factor of b. By the Chinese Remainder theorem
the system

x ≡ a (mod b), x ≡ 1 (mod c2)

has a solution x. Then x = a + ib for some integer i and gcd (x, b) =
gcd (a, b) = 1. Hence gcd (x, c1) = 1, too.

Lemma 1.2 (Extended Bezout theorem). Let a, b, c be three arbitrary
integers. Then there exist two integers r, s such that ar+bs = gcd (a, b)
and gcd (r, c) = 1.

Proof. Define g = gcd (a, b), ā = a/g, b̄ = b/g. Then gcd (ā, b̄) = 1
and, by the Bezout theorem, there exist two integers r0, s0 such that
r0ā+ s0b̄ = 1. Note that gcd (r0, b̄) = 1.

Define ri = r0 + ib̄ and si = s0 − iā for all integers i. Then
riā+ sib̄ = r0ā+ s0b̄ = 1 and ria+ sib = gcd (a, b).
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By the previous lemma there exists an i such that gcd (r0+ ib̄, c) = 1,
because gcd (r0, b̄) = 1. With ri = r0 + ib̄, the claim follows.

The extended Bezout theorem is applied in a different form in this
paper: If a and m are two integers, then does there exist an integer
b relatively prime to m such that ab ≡ gcd (a, m) modulo m? The
extended Bezout theorem answers this question affirmatively.

The following lemma will be used mostly without reference.

Lemma 1.3. Let Z ⊆ S ⊆ Q be a rational group, and let a, b be two
integers. Then

a) (a/b) ∈ S implies (1/b) ∈ S for relatively prime a and b, and

b) (1/a) ∈ S and (1/b) ∈ S implies 1/(lcm (a, b)) ∈ S, and

c) if (1/p) /∈ S for all primes p | a, then S = 〈aS, 1〉 and a−1S =
〈S, a−1〉.

Proof. a) By the Bezout theorem, there exist integers r, s such that
ra+ sb = 1. Then r(a/b) + s = (1/b). With 1 ∈ S the claim follows.

b) By Bezout’s theorem, there exist integers r, s such that ra+ sb =
gcd (a, b). Then r(1/b) + s(1/a) = (gcd (a, b))/ab = 1/(lcm (a, b)),
because gcd (a, b)lcm (a, b) = ab.

c) Let x ∈ S. Then x = (y/z) with y ∈ Z and z ∈ N and
gcd (y, z) = 1. Note that (1/z) ∈ S if and only if x = (y/z) ∈ S
because of part a). So it suffices to show that (1/z) ∈ 〈aS, 1〉.
Note that gcd (a, z) = 1 because otherwise there would exist a prime
p with (1/p) ∈ S and p|a, contradicting the assumption. By the
Bezout theorem, there exist integers r, s such that ra + sz = 1. Then
r(a/z) + b = (1/z). As (a/z) ∈ aS and b ∈ Z we have (1/z) ∈ 〈aS, 1〉
and S = 〈aS, 1〉. The second claim follows simply by division.

2. Tight criterion. In [2, Proposition 2.7 (2)] Benabdallah,
Mader and Ould-Beddi gave a criterion for tightness which required
the verification that all rank-1 summands of the subgroup in question
were pure. Here we give a different criterion which requires us to check
the order of elements in a set derived from the type subgroups.
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Lemma 2.1. Let G be an almost completely decomposable group
with completely decomposable subgroup W of finite index. Then W is
not tight if and only if there exist a critical type τ and an element
g ∈ G(τ ) \ Wτ ⊕ G#(τ ) of prime order modulo W .

Proof. “If.” It suffices to show that H := 〈W, g〉 is completely
decomposable. Split g=(1/p)(a+b) where a∈Wτ and b∈W#(τ ). Note
that htWp (a)=0, because otherwise g∈Wτ ⊕ G#(τ ). As tp (a)≤ tp (b)
and htWp (a) ≤ htWp (b), there exists a natural number k such that
χW (a)≤χW (kb) and gcd (k, p)=1. Then by the Bezout theorem there
exist two integers r and s such that rp+sk=1. Note that H=〈W, g−rb〉
because rb∈W . Write g−rb=(1/p)(a+(1−rp)b)=(1/p)(a+skb). As
χW (a)≤χW (skb), there exists a homomorphism ϕ∈Hom(Wτ , W#(τ ))
such that ϕ(a)=skb. Hence p(g−rb)=a+skb=a(1+ϕ)∈Wτ (1+ϕ)⊆W .
But then Wτ (1+ϕ) is not pure in H. As |H/W |=p∈P, it is clear that
H=(Wτ (1+ϕ))H∗ ⊕ ⊕

σ �=τWσ. Since 1+ϕ induces an isomorphism of
W it is clear that (Wτ (1+ϕ))H∗ is completely decomposable and hence
H, too.

“Only if.” If W is not tight, then by [2, Proposition 2.7 (2)], there
exists a rank-1 summand of W which is not pure. Assume then that
W =

⊕
jWj where W1 is not pure in G. Then there exists an element

g ∈ W G
1∗ \W1 of prime order over W1 and W . Set τ := tp (g) = tp (W1)

and note that g ∈ G(τ ). Let m0 = expG/W . Then m0g ∈ W1 and
g /∈ W1 imply g /∈ W1 ⊕ G#(τ ). Hence g ∈ G(τ ) \ W1 ⊕ G#(τ ), as
desired.

From the first half of the above proof we get the following corollary.

Corollary 2.2. Let W be a completely decomposable group. Suppose
that g ∈ G(τ )\(Wτ ⊕G#(τ )) and |g+W | = p is prime for some critical
type τ . Then 〈W, g〉 is completely decomposable.

As another corollary we obtain [2, Lemma 4.5].

Corollary 2.3. Let G be an almost completely decomposable group
containing a tight subgroup W such that p(G/W ) = 0 for some
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prime p. Then W is regulating in G.

Proof. Assume by way of contradiction that W is not regulating.
Then there exists a critical type τ such that G(τ ) �= Wτ ⊕ G#(τ ). Let
g ∈ G(τ ) \ Wτ ⊕ G#(τ ). Then g /∈ W and by p(G/W ) = 0 we have
that g has prime order over W . By the previous lemma W is not tight,
a contradiction.

We extend the previous corollary to a more general case. The proof
is shortened significantly by an idea of Otto Mutzbauer.

Corollary 2.4. Let G be an almost completely decomposable group
containing a tight subgroup W such that k(G/W ) = 0 for some square
free integer k. Then W is regulating in G.

Proof. Assume by way of contradiction that W is not regulating.
Then there exists a critical type τ such that G(τ ) �= Wτ ⊕ G#(τ ).
Let g ∈ G(τ ) \ Wτ ⊕ G#(τ ) and m be the order of g modulo W .
Then m must be square free. Let p1, . . . , pk be the prime divisors of
m. Then gcd [(m/p1), . . . , (m/pk)] = 1 as m is square free. Hence
m =

∑k
i=1 µi(m/pi) for suitable integers µi. Define gi := g(m/pi) and

note that gi has order pi modulo W . As W is tight, we know that
gi ∈ Wτ ⊕ g#(τ ) for all i, since all gi have prime order. But g =
(
∑

i µi(m/pi))g =
∑

i µigi and hence g ∈ Wτ ⊕ G#(τ ), contradicting
our assumption.

The following corollary generalizes [2, Corollary 4.6].

Corollary 2.5. Let G be an almost completely decomposable group
containing a completely decomposable subgroup W such that k(G/W ) =
0 for some square-free integer k. Then W is contained in a regulating
subgroup V of G such that k(G/V ) = 0.

Proof. The completely, decomposable group W is contained in some
tight subgroup V of G. Note that k(G/W )=0 implies kG⊆W ⊆V and
hence k(G/V )=0. So V is regulating by the previous corollary.
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3. Transitions to regulating subgroups. In [4, Theorem 2.5],
Campagna has shown that the existence of a cyclic quotient implies
the existence of a cyclic regulating quotient. We generalize this to the
case of more than one generator and thus answer a question posed by
Benabdallah, Mader and Ould-Beddi in [2, Question 4.1 (2)].

Theorem 3.1. Let G = 〈W, g1, . . . , gk〉 be an almost completely
decomposable group containing the completely decomposable group W
of finite index. Then there exists a regulating subgroup V with G =
〈V, g1, . . . , gk〉.

Proof. Let W not be regulating. We will show that there exists a
completely decomposable subgroup W ′ with G = 〈W ′, g1, . . . , gk〉 and
|G/W | > |G/W ′|. The claim then follows by induction, as |G/W | is
finite.

We will first construct a completely decomposable subgroup W ′, then
we show that G = 〈W ′, g1, . . . , gk〉. In the last section we show that
W ′ has smaller index in G than W .

Let W =
⊕

σ∈Tcr
Wσ be a homogeneous decomposition of W . As

W is not regulating, there exists a critical type τ such that G(τ ) �=
Wτ ⊕ G#(τ ). Hence there exists a g ∈ G(τ ) \ (Wτ ⊕ G#(τ )). Note
also that g +Wτ ⊆ G(τ ) �= Wτ ⊕ G#(τ ). So every element in g +Wτ

witnesses that W is not regulating.

For later purposes we are now selecting a special element from g+Wτ .
Define W =

⊕
σ �=τWσ. Then W = Wτ ⊕ W . As {gi+W}k

i=1 are
generators of G/W , we know that there exist integers λ1, . . . , λk such
that g+W =

∑k
i=1 λigi+W . Then g−∑k

i=1 λigi =
∑

σ∈Tcr
vσ ∈ W

with vσ ∈ Wσ. Our special element h ∈ g+Wτ is defined as follows:
h :=g−vτ ∈G(τ ) \ (Wτ ⊕G#(τ )). As g−(∑k

i=1 λigi)−vτ ∈W we obtain

h ∈ 〈W, g1, . . . , gk〉.
The particular property of h is that the τ -component of h is solely a
linear combination of the τ -components of the generators {gi}i. No
element of Wτ is needed for that. This is helpful because Wτ will be
replaced later and we do not want the replacement to affect h.

Now we split h in two components, a and b, which we will use as
building bricks for the construction of a new τ -homogeneous component
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of W . Define ϕ = |h + W |, and let h = (1/ϕ)(
∑

σ∈Tcr
wσ) with

wσ ∈ Wσ. As h ∈ G(τ ) we know that wσ = 0 for all σ �≥ τ . So
we can set a = wτ , b =

∑
σ>τ wσ and obtain h = (1/ϕ)(a + b). As

tp (a) ≤ tp (b) and as ϕ is finite, there exists an integer l such that

l−1a ∈ W, χW (l−1a) ≤ χW (b), htWp (l−1a) = 0 for all p | ϕ.

Note that l is not a multiple of ϕ because then we would have (1/ϕ)a ∈
Wτ and h = (1/ϕ)a+ (1/ϕ)b ∈ Wτ ⊕ G#(τ ), which cannot be.

Define a′ := l−1a and R := {r ∈ Q | ra′ ∈ Wτ}. Then obviously
Ra′ ⊆ Wτ and (1/p) /∈ R for all p | ϕ, because htWp (a′) = 0 for all p | ϕ.
Note that Ra′ is a pure subgroup of the homogeneous group Wτ , so by
[3, 86.8] we know that Wτ = Ra′ ⊕ U for some complement U ⊂ Wτ .
By [3, 86.7] we know that U is completely decomposable.

Define ϕ∗ := gcd (ϕ, l). As l is not a multiple of ϕ, we know that ϕ∗

is a proper divisor of ϕ. Note that (1/ϕ∗)a ∈ Wτ , as ϕ∗ | l. Together
with (1/ϕ∗)(a + b) = (ϕ/ϕ∗)h ∈ G we get that (1/ϕ∗)b ∈ G. By the
extended Bezout theorem (Lemma 1.2) there exist two integers r and
s such that

ϕ∗ = rl + sϕ and gcd (s, ϕ) = 1.

Define w := r(1/ϕ)(a + b) + sa′. Then ϕw = ra + rb + sϕa′ =
(rl + sϕ)a′ + rb = ϕ∗a′ + rb and

w =
1
ϕ

rb+
ϕ∗

ϕ
a′ =

ϕ∗

ϕ

(
a′ + r

1
ϕ∗ b

)
.

The last term shows our intent. The summand Ra′ ofW is to be rotated
(a′ �→ a′+r(1/ϕ∗)b) and shifted (ϕ∗/ϕ). We want to show that Ra′ can
be replaced by Rw to obtain a new completely decomposable subgroup
of G.

We get lw = lr(1/ϕ)(a + b) + lsa′ = (ϕ∗ − ϕs)(1/ϕ)(a + b) + as =
(ϕ∗/ϕ)(a + b) − s(a + b) + as = (ϕ∗/ϕ)(a + b) − sb and (1/ϕ∗)w =
(1/ϕ)(a+ b)− s(1/ϕ∗)b. So we can write

1
ϕ
(a+ b) =

l

ϕ∗ w + s
1

ϕ∗ b.

Note that for all primes p | ϕ we have (1/p) /∈ R and hence htWp (a′) =
0 ≤ htGp [(1/ϕ∗)b]. This implies χW (a′) ≤ χG[(1/ϕ∗)b] and hence
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R(1/ϕ∗)b ⊆ G. We have (ϕ/ϕ∗)wR = [a′ + r(1/ϕ∗)b]R ⊆ Ra′ +
Rr(1/ϕ∗)b ⊆ G(τ ). Also we know that w ∈ G(τ ). By Lemma 1.3 c)
we find Rw ⊆ G(τ ). Now we define

W ′ := Rw ⊕ U ⊕ W,

G′ := 〈W ′,
1

ϕ∗ b, g1, . . . , gk〉,
H := 〈W ′, g1, . . . , gk〉.

Then W ′ ⊆ G and hence G′, H ⊆ G.

We want to show that H = G. This is done in two steps; first we
show G′ = G and then H = G′.

Note that Rb ⊆ W#(τ ) ⊆ W ′ ⊆ G′. By definition we have
(1/ϕ∗)b ∈ G′. Again by Lemma 1.3 c) we obtain R(1/ϕ∗)b ⊆ G′. We
know that Rw ⊆ W ′ ⊆ G′ and that (ϕ/ϕ∗) ∈ Z. Together we obtain
(ϕ/ϕ∗)Rw ⊆ G′ and hence R[a′+ r(1/ϕ∗)b] ⊆ G′. With r(1/ϕ∗)b ⊆ G′

we get Ra′ ⊆ G′. But then W = Ra′ ⊕ U ⊕ W ⊆ G′ and thus G′ = G.

Remember that we chose h such that h ∈ 〈W, g1, . . . , gk〉 ⊆ H. Hence
h = (1/ϕ)(a + b) = (l/ϕ∗)w + s(1/ϕ∗)b ∈ H. Then (l/ϕ∗)w ∈ Zw ⊆
W ′ ⊆ H implies s(1/ϕ∗)b ∈ H. As gcd (s, ϕ) = 1 we know that
gcd (s, ϕ∗) = 1 and, by Lemma 1.3 b), we get that (1/ϕ∗)b ∈ H. Hence
H = G′ = G = 〈W ′, g1, . . . , gk〉.
It now remains to show that the index of W ′ in G is smaller than

the index of W . We will show this by defining a subgroup X that is
contained in both W and W ′ and then calculating the index of X in
W and W ′.

Define X = ϕ∗a′R⊕U ⊕W . Obviously we have X ⊆ W = Ra′⊕U ⊕
W . Note that ϕ∗a′R = (ϕw − rb)R. Then X = (ϕw − rb)R ⊕ U ⊕ W .
As Rb ⊆ W#(τ ) ⊆ W we have that X = ϕwR ⊕ U ⊕ W . Then
obviously X ⊆ W ′ = Rw ⊕ U ⊕ W . So X ⊆ W ∩ W ′. Now we
calculate |W : X| and |W ′ : X|. As (1/p) /∈ R for all p | ϕ∗ we have
ϕ∗ = |R : ϕ∗R| = |W : X|. Since (1/p) /∈ R for all p | ϕ we have
ϕ = |R : ϕR| = |W ′ : X|. With |G : W ||W : X| = |G : W ′||W ′ : X| we
get |G : W ′| = (ϕ∗/ϕ)|G : W | and hence |G : W ′| < |G : W |.

4. Examples. In [2] there was also the question of whether the
existence of a tight subgroup with a quotient of a given exponent implies
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the existence of a regulating quotient with an equal or smaller exponent
(Question 4.1 (1)). We answer the question with the next two examples.

Example 4.1. Let p, q, r, s, t, u be different primes. Let

W = Q(q)x1 ⊕ Q(q,r)x2 ⊕ Q(q,s)x3 ⊕ Q(t)x4 ⊕ Q(u)x5,

g1 =
1
p3
(px1 + x2 + x3 + p2x4), g2 =

1
p3
(x1 + x5), G = 〈W, g1, g2〉.

We claim that W is tight in G with G/W ∼= Zp3 ⊕ Zp3 and that
G/V ∼= Zp4 ⊕ Zp for every regulating subgroup V of G. In particular,
we have that g1 and g2 generate G modulo W , modulo any regulating
subgroup and modulo the regulator.

Hence the regulating quotients do not have minimal exponent, al-
though they have minimal order.

What makes this example remarkable is the fact that it shows that
regulating subgroups may have the minimal property with respect to in-
dex, but not necessarily with respect to exponent. Intersecting all tight
subgroups with minimal index (that is, regulating subgroups) yields the
(index)-regulator. Similarly one could ask about the intersection of all
tight subgroups with minimal exponent, which we call the exponent-
regulator. Except for the obvious fact that the exponent-regulator is a
characteristic subgroup, many properties are still open to research.

Proof. Let V = Q(q)(1/p2)(px1+x2+x3) ⊕ Q(q,r)x2 ⊕ Q(q,s)x3 ⊕
Q(t)x4 ⊕ Q(u)x5. We first verify that V is contained in G. Note that
Q(q)(px1 + x2 + x3) ⊆ W ⊆ G and htGp [(1/p2)(px1 + x2 + x3)] = 0
implies Q(q)(1/p2)(px1 + x2 + x3) ⊆ G by Lemma 1.3 c) and hence
V ⊆ G.

By the same lemma we conclude that Q(q)px1 ⊆ V ⊆ 〈V, x1〉
and x1 ⊆ 〈V, x1〉 imply Q(q)x1 ∈ 〈V, x1〉. Hence W ⊆ 〈V, x1〉 and
G = 〈V, g1, g2, x1〉. It is straightforward to verify that g1 and g2 are
linearly independent modulo V and that p3g2 ≡ x1 modulo V . So

G = 〈V, g1, g2〉 and G/V = 〈g1 + V 〉 ⊕ 〈g2 + V 〉.

To rewrite the first component of V , set x′
1 = (1/p2)(px1 + x2 + x3).

Then x1 = (1/p)(p2x′
1 − x2 − x3) and g1 = (1/p)(x′

1 + x4) and
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g2 = (1/p4)(p2x′
1−x2−x3+px5) and V = Q(q)x′

1⊕Q(q,r)x2⊕Q(q,s)x3⊕
Q(t)x4 ⊕ Q(u)x5. Obviously exp(G/V ) = p4 and |G/V | = p5.

It is routine to verify that V is regulating. So the regulating index of
G is p5.

By [1, Proposition 4.1.10], we know that all other regulating sub-
groups are of the form

⊕
τVτ (1+φτ ) where φτ ∈ Hom(Vτ , G#(τ )). As

G#(τ ) = 0 for all τ �= τ1 and as G#(τ1) = 〈V #(τ1), (1/p)(x2 + x3)〉,
we find that Vk = Q(q)(x′

1 + k(1/p)(x2 + x3))⊕ Q(q,r)x2 ⊕ Q(q,s)x3 ⊕
Q(t)x4 ⊕ Q(u)x5 with k = 0, . . . , p − 1 are all regulating subgroups.
Intersecting any two of them yields the regulator

R(G) = Q(q)px′
1 ⊕ Q(q,r)x2 ⊕ Q(q,s)x3 ⊕ Q(t)x4 ⊕ Q(u)x5

where V = 〈R(G), x′
1〉 by Lemma 1.3 c). Hence G = 〈R(G), g1, g2, x′

1〉.
As x′

1 ≡ pg1 modulo R(G) and Vk ⊇ R(G) we get for all k that
G = 〈Vk, g1, g2〉. Note that |g2 + Vk| = p4 and that G/Vk is not cyclic.
So expG/Vk = p4 and G/Vk

∼= Zp4 ⊕ Zp.

It remains to show that W is tight. One can verify that g1 and
g2 are linearly independent modulo W . Hence G/W has order p6

and exponent p3. Assume, by way of contradiction, that there was
a completely decomposable group U ⊃ W . Then expG/U is a divisor
of expG/W = p3 and |G/U | is a proper divisor of |G/W | = p6.
Hence |G/U | = p5 and U is regulating. But then expG/U = p4, a
contradiction.

The ad hoc argument in the last paragraph is due to Adolf Mader
and has saved us a hard proof via Lemma 2.1.

Next we give a more general example. As the argument resembles
the previous examples’ proof, we have omitted many of the details.

Example 4.2. Let G = 〈W, g〉 with W = Q(q)a⊕Q(q,r)b⊕Q(q,s)c⊕
Q(t)d and g = (1/pk)(p2a + b + c + pd). Then W contains a tight
subgroup of exponent pk−1 while all regulating quotients are cyclic of
order pk.

Proof. Set Y = Q(q,r)b ⊕ Q(q,s)c ⊕ Q(t)d. Then W = Q(p)a ⊕ Y .
Note that W is regulating as G#(τa) = 〈W#(τa), (1/p)(b + c)〉 and
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G(τa) = 〈W (τa), (1/p)(b+c)〉. There are exactly p regulating subgroups

Vi = Q(p)

(
a+ i

1
p
(b+ c)

)
⊕ Y

for i = 0, . . . , p − 1. Note that

g =
1
pk

(
p2

[
a+

i

p
(b+ c)

]
+ (1− pi)(b+ c) + pd

)

and that p � (1 − pi). Hence |g + Vi| = pk and G/Vi
∼= Zpk

for all i. Set U = Q(q)p2a ⊕ Y = Q(q)(p2a + b + c) ⊕ Y and
X = Q(q)(pa + (1/p)(b + c)) ⊕ Y . As pa + (1/p)(b + c) ∈ G and
U ⊆ G, we also get X ⊂ G. Note that W ⊆ 〈U, a〉 ⊆ 〈X, a〉 and hence
G = 〈X, g, a〉. We have

g =
1
pk

(
p
[
pa+

1
p
(b+ c)

]
+ pd

)
=

1
pk−1

([
pa+

1
p
(b+ c)

]
+ d

)

and thus |g + X| = pk−1. Also we get a = (1/p)[pa + (1/p)(b + c)] −
(1/p2)(b+ c) and hence |a+X| = p2. Hence G/X ∼= Zpk−1 ⊕Zp2 . The
fact that X is tight comes with the same ad hoc argument as in the
previous example.
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