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MEASURING THE CLASSIFICATION DIFFICULTY
OF COUNTABLE TORSION-FREE ABELIAN GROUPS

GREG HJORTH

1. The problem.

Question. Can we hope to classify countable torsion-free abelian
groups?

Already a few remarks should be made about this question.

First of all the word “classify” is somewhat plastic in its meaning.
Someone might for instance take the question to mean whether there
is any sense at all in which we can understand countable torsion-free
abelian groups, and I am sure “classification” takes on different hues
across different guilds and mathematical specialties.

I will take the word “classify” to mean “completely classify by some
class of invariants.” Here I have in mind something like the Ulm
invariants for countable abelian p-groups or Baer’s classification for
the rank one case.

Secondly one might wonder about the restriction to this particular
class of groups. Here I would respond by saying that we cannot hope
to classify everything, and some restrictions probably are inevitable.
Abelian groups represent the topic of this conference and should be
easier and more hopeful than general groups; and the choice of torsion-
free further removes potentially distracting details. As for confining
ourselves to the countable case, cardinality ℵ0, I would mention the
kinds of set theoretical complexities which can arise when one considers
uncountable discrete structures. Frequently one is led into independent
results and, considering subtle combinatorial properties such as the
behavior of the nonstationary ideal, and even classification schemes
which would be virtually perfect in the countable case, such as Ulm
invariants, may begin to fail when we pass to ℵ1.

Even granting these restrictions, we may want to take a skeptical
stance. After all, if a classification scheme was going to be found, then
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surely it would have made itself known already.

So perhaps it would be better to ask:

Question. What would establish that there is no way to completely
classify countable torsion-free abelian groups?

Some possible answers:

Answer 1 (An appeal to empirical evidence). No classification scheme
has been forthcoming. We have waited long enough. It is safe to assume
that nothing here is possible.

For some people this will already be enough. And, if this is your
position, then the remainder of the talk is unlikely to hold much
interest.

Personally I am inclined to at least look for a deeper explanation of
this empirical fact, so let me push on:

Answer 2. We may be able to reduce some other truly horrendous
classification problem to that of countable torsion-free abelian groups.
For instance, perhaps there is a way we can show them to be as hard
to classify as general countable groups.

Still this is a little bit question-begging since we might then want
some confirmation of the intuition that general countable groups are
unclassifiable.

Answer 3. Perhaps we can develop an abstract theory of invariants
and show that there is no reasonable way to assign certain classes of
objects such as the Ulm invariants or Baer’s invariants for rank one, as
complete invariants.

In fact it turns out, following work of Friedman, Kechris, Louveau,
Stanley and others, that such a theory has been developed. In this talk
I want to discuss how that theory bears on the classification problem
for countable torsion-free abelian groups.
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The meaning of reasonable is subject to some negotiation. I will begin
by considering the explication which takes a reasonable reduction to be
one that is Borel in some appropriate Borel structure.

Other explications are possible. For instance, absolutely Σ∼
HC
1 , as

discussed several sections below. Or using reductions in L(R). And
there are various other exotic classes that logicians find natural to
consider. The Borel category has the advantage of being one which is
widely used mathematically and does indeed include most commonly
accepted classification schemes.

However the reader would not go too far wrong to simply think of a
reasonable classification as being one which does not make an egregious
appeal to the existence of a well ordering of R in assigning its invariants.

2. Spaces of abelian groups.

Definition. Let AbGrp = {H = (+H ,−(·)H) ∈ NN×N × NN|H
defines an abelian group structure on N}.

In the discrete topology, N is a separable completely metrizable space.
Thus NN×N and NN are separable completely metrizable spaces in the
product spaces, as is NN×N ×NN. We call this kind of space a Polish
space.

AbGrp is a closed subset of a Polish space, and hence again Polish in
the subspace topology.

Definition. TFA = {H ∈ AbGrp : H is torsion free} and TFAn =
{H ∈ TFA : H has rank ≤ n}.

Again TFA is a closed subset of AbGrp, and hence again Polish.
TFAn is not closed, but insteadGδ, that is to say, defined by a countable
intersection of open sets, and hence Polish. (For a proof of the general
fact that a Gδ subset of a Polish space is again Polish one can see [9].
This is also a good reference for other general facts about Polish spaces
and Borel sets.)



1270 G. HJORTH

There are other ways in which we can model these objects. For
instance, in Simon Thomas’s papers, such as [14], [15], he takes the
space of subgroups of Qn to provide a Borel structure on the torsion-
free abelian groups of rank ≤ n. It turns out that, from the point of
view of the kinds of questions we will be considering, such choices are
immaterial. All the known ways of providing a Borel structure give the
same results.

Definition. For X,Y Polish, a function f : X → Y is Borel if for any
open set O we have f−1[O] is Borel, that is to say, in the σ-algebra
generated by the open sets.

3. A first approximation: smoothness.

Definition. An equivalence relation E on a Polish space X is smooth
[11] or tame or concretely classifiable (Kechris) if there is a Borel
function

f : X −→ Y,

for some Polish space Y , such that for all x1, x2 ∈ X,

x1Ex2 if and only if f(x1) = f(x2).

For example. If we take Y = R, then this would correspond to
assigning real numbers as complete invariants.

Alas. Almost no real life equivalence relations are smooth.1

For example. ∼= |TFA1 (isomorphism of rank 1 torsion-free abelian
groups) is not smooth.2

4. A better approximation: Borel reducibility.

Definition. For E,F equivalence relations on Polish X,Y , we write

E ≤B F
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if there is a Borel function f : X → Y such that for all x1, x2 ∈ X,

x1Ex2 ⇐⇒ f(x1)Ff(x2).

In other words, for any x ∈ X, [f(x)]F (the F -equivalence class of f(x))
is a complete invariant for [x]E .

We can then write E <B F if E ≤B F holds by F ≤B E fails.

For example. Consider {0, 1}N = df 2N, the space of infinite binary se-
quences in the product topology. For �x = (x0, x1, . . . ), �y = (y0, y1, . . . ),
set

�xE0�y

if there exists
N for all n > N(xn = yn).

So this is the equivalence relation of eventual agreement and, under
the natural identification of 2N with P(N) (the power set of N), one
has

2N/E0 ∼ P(N)/Finite.

Sets considered up to finite difference are not totally unreasonable
objects to try to assign as complete invariants and, indeed, there is the
following classical theorem:

Theorem. (in effect, Baer from [1]). ∼= |TFA1 ≤B E0.

Indeed, this is precise. One can show E0 ≤B
∼= |TFA1 . And indeed it

was shown by Harrington, Kechris and Louveau [4] that E0 corresponds
to the next level of classification difficulty after smoothness.

For a few years it was open whether Baer’s result can be extended to
rank 2. This was ultimately shown to be false.

Theorem (Hjorth [7]). ∼= |TFA2 �≤ E0.

Here I should mention as an aside that Simon Thomas has recently
obtained a much stronger result:
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Theorem (Thomas, [15]). At every n,

∼= |TFAn <B
∼= |TFAn+1 .

I would have been inclined to consider this the final word on the
abstract question of the classification difficulty of the finite rank TFA
groups, but after the talk someone pointed out a further issue which is
unresolved. We do not know whether ∼= |TFA2 lies directly after E0 in
this hierarchy of classification difficulties, that is to say, if E <G

∼= |TFA2 ,
must it be the case that E ≤B E0?

Returning to the subject of general torsion-free abelian groups, we
already obtain that the rank two torsion-free abelian are strictly more
complicated than the rank ones. Thus we would have to look well
beyond E0 in order to find complete invariants for ∼= |TFA, the isomor-
phism relation in the infinite dimensional case.

Definition. For x, y ∈ 2n×n, set xF2y, if

{x(n, ·) | n ∈ N} = {y(n, ·) | n ∈ N};

that is to say, for all n1 there exists n2, n3 for all m,

x(n1,m) = y(n2,m),
x(n3,m) = y(n1,m).

Thus F2-equivalence classes correspond to something like countable
sets of reals.3

Fact. At each n, ∼= |TFAn
≤B F2.

This is proved as so: For each H a rank n torsion-free abelian group,
and �g = g1, . . . , gn ∈ H, we let θ0(H,�g) = {(k1, . . . , kn, l) ∈ Zn+1: l
divides k1 · g1 + k2 · g2 + · · · + kn · gn}. Then

θ(H) = {θ0(H,�g) : �g ∈ Hn}
gives us an element of Pℵ0(Nn+1) as a complete invariant. It is not
a big step to turn these invariants into elements of Pℵ0(N), and from
there to pass to a Borel reduction to the equivalence relation F2.
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The general rule of thumb is that any class of countable structures
which are in some sense finitely generated or in some sense have finite
rank are reducible to F2 by a Borel function. (For a discussion of results
in this direction, as well as general schemes for classifying countable
structures, see [8].)

So we might at least hope that something like countable sets of reals
can stand as complete invariants for ∼= |TFA.

Definition. For x, y ∈ 2Nn+1
, set

xFn+1y

if
{[x(m, ·, . . . )]Fn

| m ∈ N} = {[y(m, ·, . . . )]Fn
| m ∈ N}.

In other words, F2-equivalent classes correspond to something like
elements of Pℵ0(N), F3-equivalence classes correspond to elements of
Pℵ0(Pℵ0(N)) and so on.

In fact, as given by Friedman and Stanley [3], one can iterate this
definition out through the countable ordinals and define Fα for each
α < ω1. They also observe:

Theorem (Friedman-Stanley). For each n,

Fn <B Fn+1.

At this point we can finally give the chief negative result regarding
the isomorphism relation on countable torsion-free abelian groups.

Theorem (Hjorth, [5]).

Fn ≤B
∼= |TFA.

Combining this with Friedman-Stanley:



1274 G. HJORTH

Corollary. At every n,

∼= |TFA �≤B Fn.

(And, as might be expected, this goes out through the ordinals. At
every countable α, Fα <B

∼= |TFA.)

5. What we would ultimately want to prove.

Definition. For L a countable language, with relations R1, R2, . . . ,
having arities a(1), a(2), . . . , and function symbols F1, F2, . . . having
arities b(1), b(2), . . . , we let Mod (L) be the space

∏

i

2Nα(i) ×
∏

j

NNb(j)
.

We can define the isomorphism relation, ∼= |Mod(L), on this space in
the obvious way.

We then say an isomorphism invariant K ⊂ Mod (L) is said to be
universal if, given any other countable L′, we have

∼= |Mod(L′) ≤B
∼= |K .

Example 1. Graphs on N can be viewed as a subset of 2N2
. It is a

folklore result that the isomorphism relation on this class of countable
structures is universal.

Example 2 (Friedman-Stanley, [3]). Countable linear orderings are
universal in this sense.

Example 3 (Folklore?). Isomorphism on countable groups is universal.

Example 4 (Camerlo-Gao [2]). Countable Boolean algebras are
universal.

So,
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Question. Are countable torsion-free abelian groups universal?

Here I have to admit, with some great shame and hanging of the head,
that I had previously announced in print, at [7], a positive solution to
this problem. The proof was flawed, though it turns out that the result
above regarding the Fαs is coming close, since they play a special role
in the general investigation of isomorphism of countable structures.

Theorem (Dana Scott, see [13], [16], [10]). For each countable
language L there are Borel sets (Aα)α∈ℵ1 such that

(a) the space of L-structures with underlying set N equals

⋃

α∈ℵ1

Aα;

(b) at each α,

∼= |∪β≤αAα
≤B Fα.

There are various consequences of his result which can probably be
considered folklore. For instance, a Borel set of countable structures
has a Borel isomorphism relation if and only if it is Borel-reducible
to some Fα, if and only if it is included in some ∪β<αAβ, some
countable α.

Question (Friedman-Stanley). Let L be a countable language and let
K ⊂ Mod (L) be an isomorphism invariant Borel subset. Suppose at
each α < ℵ1 we have

Fα ≤B
∼= |K .

Must ∼= |K be universal?

Therefore, at the very least, we can say that either countable torsion-
free abelian groups are universal, or their failure to be represents an
entirely new phenomenon.
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6. Details.

Definition. A function F is absolutely Σ∼
HC
1 if

(a) there is x ∈ 2N and ψ in the language of set theory such that

F (a) = b

if and only if there is a countable transitive structure M containing
a, b, x and satisfying

M| = ψ(a, b, x);

(b) (this part is more technical) the formulation of (a) continues to
define a total function through all generic extension.

Following Gödel’s work we know that (a) alone is not sufficient
to guarantee a function is nicely behaved. For instance, a function
satisfying (a) alone from R to R may fail to be Lebesgue-measurable.

It is a kind of folklore result that if we add (b) in addition, then we do
indeed obtain all the nice properties we could hope for, such as being
universally measurable.4 For various purposes these kinds of functions
actually give a kind of better fit to the notion of reasonable reduction
or reasonable schema of classification.

Example 1. For p a prime, TAp = {H ∈ AbGrp | H is a p-group},
there is an absolutely Σ∼

HC
1

U : TAp −→ 2<ω1

such that
H1

∼= H2 ⇐⇒ U(H1) ∼= U(H2).

This comes out of the Ulm classification of p-groups.

Example 2. For any countable language L, there is an absolutely
Σ∼

HC
1

S : Mod (L) −→ HC (the hereditarily countable sets)
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such that
M1

∼= M2 ⇐⇒ S(M1) = S(M2).

(D. Scott) Moreover we can write

HC =
⋃

α<ℵ1

Vα ∩HC

and think of Vα ∩HC as being a subset of the Fα-equivalence classes.

Here I would be more optimistic about a limited conjecture:

Conjecture. ∼= |TFA is universal with respect to absolutely Σ∼
HC
1

functions. That is to say, for any countable language L, we may reduce
∼= |Mod (L) to ∼= |TFA by the use of an absolutely Σ∼

HC
1 .

7. Something about the proofs. The argument that F2 ≤ B ∼=
|TFA at least is very simple. Indeed somewhat misleadingly so. F2-
equivalence classes can be coded up in countable structures just using
unary predicates, and the model theory without relations or functions
is extremely simple. For F3 and beyond relations are necessary, and
the proof of F3 ≤B

∼= |TFA is more involved than the sketch below.

I will also further simplify this sketch by skipping over any argument
that the reduction is Borel.

Let (qn)n∈N, (pn)n∈N be sequences of distinct primes. For x ∈ 2n×N

for which we can assume (x(n, ·))n ∈ N is one-to-one, we define an
abelian group Gx as follows: At each l ∈ N, we set

gx,l ∈ Gx

so that gx,l is divisible by all powers of pn if x(l, n) = 1 and divisible
by all powers of qn if x(l, n) = 0. We then let Gx be the abelian group
generated by these {gx,l : l ∈ N} and all the divisors we have just
insisted on.

The isomorphism type of Gx encodes [x]F2 ∼ {x(l, ·) : l ∈ N}. We
can reconstruct the latter from the former.

Here goes.
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Say that g ∈ Gx is good if for all n either g is divisible by all powers
of pn, or it is divisible by all powers of qn. Then, for g ∈ Gx good, we
let

d(g) ∈ 2N

be defined by
(d(g))(n) = 1

if and only if g is divisible by all powers of pn.

And then one indeed obtains

{x(l, ·) | l ∈ N} = {d(g) | g ∈ Gx good}.

The other details are routine, and thus it is shown that

F2 ≤B
∼= |TFA.

Here we can get some insight by recalling a general fact (see [3] for a
proof of this and other basic facts in this region):

Fact. There is no absolutely Σ∼
HC
1 function

θ : 2n×N −→ 2<ω1

such that
xF2y =⇒ θ(x) = θ(y).

In particular, this gives a result first obtained by Garvin Melles using
very different means:

Corollary (Melles, [12]). We cannot classify countable torsion-free
abelian groups by elements of 2<ω1 using absolutely Σ∼

HC
1 functions.

ENDNOTES

1. One of the few exceptions to this lament, and something very much in the mind
of George Mackey, is given by the irreducible unitary representations of countable
finite by abelian groups considered up to isomorphism. They are smooth.

2. An elementary proof of this fact can be found in the exercises at the end of
Section 3.1 of [6].



COUNTABLE TORSION-FREE ABELIAN GROUPS 1279

A skeptical reader might be concerned that the inability to assign reals or points in
some other concrete space as complete invariants for rank 1 TFA groups is purely
an artifact of our decision to work in the Borel category. This would be a very
reasonable concern.

It turns out not to be the case. The same obstruction reappears even considering
a much more generous class of functions, but a full discussion of this would require
an excursion into foundational issues.

3. Here and beyond I am somewhat lazily assuming that the sequence (x(n, ·))n∈N

has no repetitions, and thus xF2y if and only if {x(n, ·) | n∈N}={y(n, ·) | n∈N};
in fact, it can be argued that we lose no generality if we restrict our attention to x
for which the sequence n �→ x(n, ·) is one-to-one.

4. See, for instance, [6, Section 9.1 ].
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