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PARA-ORTHOGONAL POLYNOMIALS
IN FREQUENCY ANALYSIS

LEYLA DARUIS, OLAV NJÅSTAD AND WALTER VAN ASSCHE

1. Introduction. By a trigonometric signal we mean an expression
of the form

(1.1) x(m) =
I∑

j=1

(
αje

imωj + α−je
imω−j

)
,

and we assume α−j = αj , and ω−j = −ωj ∈ (0, π) for j = 1, 2, . . . , I.
The constants αj represent amplitudes, the quantities ωj are frequen-
cies, and m is discrete time. The frequency analysis problem is to
determine the numbers {αj , ωj : j = 1, 2, . . . , I}, and n0 = 2I when
values {x(m) : m = 0, 1, . . . , N − 1} (observations) are known.

The Wiener-Levinson method, formulated in terms of Szegő poly-
nomials, can briefly be described as follows (the original ideas of the
method can be found in [12, 20]). An absolutely continuous measure
ψN is defined on [−π, π] (or on the unit circle T through the transfor-
mation θ �→ z = eiθ) by the formula

(1.2)
dψN

dθ
=

1
2π

∣∣∣∣
N−1∑
m=0

x(m)e−imθ

∣∣∣∣
2

.

HereN is an arbitrary natural number. The measure gives rise to a pos-
itive definite inner product which determines a sequence {Φn(ψN , z) :
n = 0, 1, 2 . . . } of monic orthogonal polynomials (Szegő polynomials).
All the zeros of Φn(ψN , z) lie in the open unit disk.

Let ϕn(ψN , z) be the orthonormal polynomials (with positive leading
coefficient κN

n ) with respect to ψN . Then we have

(1.3) ϕn(ψN , z) = κN
n Φn(ψN , z),
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where

(1.4) κN
n =

( n∏
j=1

(1− |Φj(ψN , 0)|2)
)−1/2

.

For the basic theory of Szegő polynomials, see e.g., [1, 2, 7, 18, 19].

Let {ζk : k = 1, 2, . . . , n0} be a numbering of the so-called frequency
points {eiωj : j = ±1,±2, . . . ,±I}, and set λk = |αj |2 for ζk = eiωj .
Let ψ be the discrete measure defined by

(1.5) ψ(θ) =
n0∑

k=1

λkδ(eiθ − ζk).

Then the measures ψN/N converge in the weak∗ sense to ψ (see [6,
15]).

For a fixed degree n, n ≥ n0, every subsequence of {Φn(ψN , z) : N =
1, 2, . . . } contains a subsequence converging to a polynomial of the form

(1.6) Pn(z) = Qn−n0(z)
I∏

j=1

(z − eiωj )(z − eiω−j ),

where Qn−n0(z) is a polynomial of degree n − n0. It follows that n0

of the zeros of Φn(ψN , z), closest to the frequency points, converge
to these frequency points (see, e.g., [6, 8, 9, 15]). Furthermore, for
every n there is a constant Kn < 1 such that n − n0 of the zeros of
Φn(ψN , z) are contained in the disk {|z| ≤ Kn} for all N , (see [13,
15] and also [14] where more general orthogonal rational functions are
used in frequency analysis problems). These properties make it possible
to determine the number n0 of frequency points and to localize these
frequency points from the behavior of the zeros of Φn(ψN , z) as N
increases. For a survey on the use of Szegő polynomials in frequency
analysis, see [11]). See also [17] where a matrix approach is discussed.

In this paper we shall sketch a different approach to the frequency
analysis problem, which uses zeros of para-orthogonal polynomials in-
stead of zeros of orthogonal polynomials. A para-orthogonal polyno-
mial is a polynomial of the form

(1.7) Bn(ψN , τ, z) = Φn(ψN , z) + τΦ∗
n(ψn, z), τ ∈ T,
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where Φ∗
n(z) = znΦn(1/z̄) is the reversed polynomial. For conve-

nience we shall suppress the τ in all notation when we are consider-
ing a fixed value of τ . The polynomial Bn(ψN , z) has n simple zeros
zN
1 , zN

2 , . . . , zN
n , all lying on T. The following convergence result will

be fundamental in the sequel. A proof can be found in [10].

Theorem 1.1. Let {Nk : k = 1, 2, . . . } be an arbitrary subsequence
of the sequence of natural numbers, let τ be an arbitrary point on T, and
let n ≥ n0. Then there exists a subsequence {Nk(ν)} and a polynomial
Wn−n0(z) of degree n− n0 such that

(1.8) lim
ν→∞Bn(ψNk(ν) , z) = Wn−n0(z)

n0∏
k=1

(z − ζk),

where ζk are the frequency points.

It follows that some of the zeros zN
1 , zN

2 , . . . , zN
n of Bn(ψNk(ν) , z)

converge to the frequency points, and the rest converge to zeros of
Wn−n0(z). A frequency point may also be a zero ofWn−n0(z). We shall
occasionally write Bn(z) for the polynomial Wn−n0(z)

∏n0
k=1(z − ζk).

We will use the weights in the Szegő quadrature formula for Szegő
polynomials to distinguish the frequency points from the zeros of
Wn−n0(z). These quadrature weights will also determine the numbers
λk = |αj |2 for ζk = eiωj and therefore provide useful estimates of the
modulus of the amplitudes in the signal.

2. General results The zeros zN
1 , . . . , zN

n of Bn(ψN , z) are nodes
in a Szegő quadrature formula for Szegő polynomials with respect to
the measure ψN (θ)/N . The weights λN

k are given by

(2.1) λN
k =

1
N

∫ π

−π

LN
k (eiθ) dψN (θ), k = 1, 2, . . . , n,

where

(2.2) LN
k (z) =

(z − zN
1 ) · · · (z − zN

k−1)(z − zN
k+1) · · · (z − zN

n )
(zN

k − zN
1 ) · · · (zN

k − zN
k−1)(z

N
k − zN

k+1) · · · (zN
k − zN

n )
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are the fundamental polynomials of Lagrange interpolation (see [1, 2,
7]). The weights may also be expressed as (see [3, 5])

(2.3) λN
k =

( n−1∑
j=0

|ϕj(ψN , zN
k )|2

)−1

.

For more information on Szegő quadrature formulas, see [1, 2, 3, 5,
7].

In the following we shall always assume that n ≥ n0. The following
general result holds.

Theorem 2.1. Let λN
k , k = 1, 2, . . . , n, and λm, m = 1, 2, . . . , n0,

be defined as in the foregoing. Then

(2.4) lim
N→∞

n∑
k=1

λN
k =

n0∑
m=1

λm.

Proof. On the one hand, since ψN (θ)/N ∗→ ψ(θ), we have

lim
N→∞

1
N

∫ π

−π

dψN (θ) =
∫ π

−π

dψ(θ) =
n0∑

m=1

λm.

On the other hand, since the Szegő quadrature is exact for the function
f(θ) ≡ 1, we have

1
N

∫ π

−π

dψN (θ) =
n∑

k=1

λN
k

for all N . From this the result follows.

We note that the above result is valid irrespective of whether the
sequence {Bn(ψN , z) : N = 1, 2, . . . } converges or not, or of whether
the zeros of the limiting polynomials Bn(z) of convergent sequences are
simple or not.

For the sake of completeness, we give a proof of a convergence result,
which will be used when convergence of weights belonging to individual
zeros is discussed.



PARA-ORTHOGONAL POLYNOMIALS 633

Theorem 2.2. Assume that the sequence {fp : p = 1, 2, . . . } of
continuous functions on T converges uniformly to f on T. Then

(2.5) lim
p→∞

1
p

∫ π

−π

fp(eiθ) dψp(θ) =
∫ π

−π

f(eiθ) dψ(θ).

Proof. Let ε > 0. Since ψp/p converges to ψ in the weak∗ topology,
we have ∣∣∣∣1p

∫ π

−π

f(eiθ) dψp(θ)−
∫ π

−π

f(eiθ) dψ(θ)
∣∣∣∣ < ε

2

for p sufficiently large. Since fp converges uniformly to f we have
∣∣∣∣1p

∫ π

−π

[fp(eiθ)− f(eiθ)] dψp(θ)
∣∣∣∣ < ε

2

for p sufficiently large, since all the measures ψp/p have finite total
mass

1
p

∫ π

−π

dψp(θ) =
n0∑

k=1

λk.

It follows that∣∣∣∣1p
∫ π

−π

fp(eiθ) dψp(θ)−
∫ π

−π

f(eiθ) dψ(θ)
∣∣∣∣ < ε

for p sufficiently large, which completes the proof.

Simple zeros in the limit. If the zeros ζ1, . . . , ζn0 , ζn0+1, . . . , ζn

of Bn(z) = Wn−n0(z)
∏n0

k=1(z − ζk) in Theorem 1.1 are distinct, then
we set

(3.1) Λm(z) =
(z − ζ1) · · · (z − ζm−1)(z − ζm+1) · · · (z − ζn)

(zm − ζ1) · · · (zm − ζm−1)(zm − ζm+1) · · · (zm − ζn)
.

We note that Λm(ζj) = δm,j , and hence

∫ π

−π

Λm(eiθ) dψ(θ) = λm, for m = 1, 2, . . . , n0,(3.2)
∫ π

−π

Λm(eiθ) dψ(θ) = 0, for m = n0 + 1, . . . , n.(3.3)
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We can now prove the following result.

Theorem 3.1. Let the situation be as in Theorem 1.1, and assume
that the zeros of the limiting polynomial Bn(z) = Bn(ψNk(ν) , z) are

distinct and that limν→∞ z
Nk(ν)
m = ζm. Then

lim
ν→∞λ

Nk(ν)
m = λm, for m = 1, 2, . . . , n0,(3.4)

lim
ν→∞λ

Nk(ν)
m = 0, for m = n0 + 1, . . . , n.(3.5)

Proof. Since z
Nk(ν)
m converges to ζm as ν → ∞, we conclude that

L
Nk(ν)
m (eiθ) converges to Λm(eiθ) uniformly for θ ∈ [−π, π]. Thus by

letting L
Nk(ν)
m play the role of fp, Λm the role of f , and ψNk(ν) the role

of ψp in Theorem 2.2, we find that

lim
ν→∞

1
Nk(ν)

∫ π

−π

L
Nk(ν)
m (eiθ) dψNk(ν)(θ) =

∫ π

−π

Λ(eiθ) dψ(θ).

Taking into account (2.1) (2.2) and (3.2) (3.3), we conclude that
(3.4) (3.5) hold.

Corollary 3.2. Assume that every subsequence {Nk : k = 1, 2, . . . }
has a subsequence {Nk(ν) : ν = 1, 2, . . . } such that the limiting polyno-
mial Bn({Nk(ν)}, z) has n distinct zeros. Then

lim
N→∞

λN
m = λm for m = 1, 2, . . . , n0,(3.6)

lim
N→∞

λN
m = 0 for m = n0 + 1, . . . , n.(3.7)

Thus the n0 zeros of Bn(ψN , z) corresponding with the eventually
largest weights in the quadrature formula approach the frequency points
ζ1, . . . , ζn0 .

Proof. It follows from Theorem 3.1 and the assumption in Corol-
lary 3.2 that every subsequence {λNk

m : k = 1, 2, . . . } has a subsequence
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{λNk(ν)
m : ν = 1, 2, . . . } which converges to λm for m = 1, 2, . . . , n0,

and to 0 for m = n0 + 1, . . . , n. A general convergence property for
sequences then ensures that the whole sequence {λN

m : N = 1, 2, . . . }
converges to λm or 0, respectively.

It follows from Corollary 3.2 that if, in particular, the sequence
{Bn(ψN , z) : N = 1, 2, . . . } itself converges to a polynomial Bn(z)
with distinct zeros, then (3.6) (3.7) holds.

Example 3.1. We consider the signal

(3.8) x(m) = α
(
eπmi/2 + e−πmi/2

)
, α > 0.

The frequency points are ζ1 = i and ζ2 = −i. By using the Szegő
recursion formulas (see, e.g., [7, 18]) it can be shown that, for n =
3, 4, 5, the para-orthogonal polynomials Bn(ψN , z) converge to the
polynomial

(3.9) Bn(τ, z) = (zn−2 + τ )(z − i)(z + i).

Let n = 3 and τ = −1. Then in addition to the frequency points ζ1
and ζ2, the polynomial Bn(−1, z) has the zero ζ3 = 1. By a suitable
ordering of the zeros zN

k , k = 1, 2, 3, of B3(ψN , z) we have zN
k → ζk

as N → ∞. Then λN
1 → α2, λN

2 → α2, and λ3 → 0 as N → ∞.
Observations of the limiting behavior of zeros and weights will here
indicate that n0 = 2, with two frequency points ±i. For the amplitude
we can conclude that the modulus is α.

Example 3.2. With the signal as in Example 3.1, with α = 1,
n = 4 and τ = i we get the following numerical results. First, we have
computed the modulus of the zeros of the Szegő polynomials ϕ4(ψN , z)
for some values of N (Table 1). Observe that two of the zeros have
modulus close to 1 and the remaining two zeros have small modulus.
The zeros with modulus close to 1 approach the frequency points ±i.
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TABLE 1. Modulus of the zeros of Szegő polynomials.

N = 21 N = 41 N = 81 N = 201 N = 301
0.948387 0.974646 0.987417 0.994987 0.996661
0.948387 0.974646 0.987417 0.994987 0.996661
0.230094 0.160236 0.112527 7.08899E−02 5.78321E−02
0.230094 0.160236 0.112527 7.08899E−02 5.78321E−02

Next, we have computed the quadrature weights λN
m in the Szegő

quadrature formula for some values of N (Table 2). Observe that two of
the weights are close to 1 (which is |α|2) and the remaining weights are
small. The weights near 1 correspond to the zeros near the frequency
points ±i.

TABLE 2. Quadrature coefficients of the Szegő quadrature.

N = 21 N = 41 N = 81 N = 201 N = 301
0.9567102 0.9767705 0.987955 0.9950733 0.9967007
0.9567102 0.9767705 0.987955 0.9950733 0.9967007

9.090903E-02 4.761901E-02 2.439022E-02 9.900983E-03 6.622512E-03
9.090903E-02 4.761901E-02 2.439022E-02 9.900983E-03 6.622512E-03

Example 3.3. As a numerical example we take N = 65536
observations from the signal

(3.10) x(m) =
4∑

k=1

(Ak cos(mωk) +Bk sin(mωk)) + Zm

which contains some noise Zm, which we have taken to be white noise
with variance 0.000036 (i.e., all Zm are uncorrelated random variables).
We have taken the following values for the parameters:
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k ωk Ak Bk

1 0.44821001146034 0.13694483364390 0.2190355252614
2 1.34558877237344 −0.17193901065310 −0.00965099052822
3 0.22410500573017 0.15 −0.175
4 0.67279438618672 0.125 0.09

This was obtained by taking the two main frequencies ω1, ω2 of the
sound of some flute, to which harmonics were added (ω3 = ω1/2 and
ω4 = ω2/2). The resulting sound can be heard as bill.wav1. The zeros
of the para-orthogonal polynomial of degree 100 (with τ = −1) were
computed as the eigenvalues of a unitary Hessenberg matrix following
[4, 5] and the weights of the Szegő quadrature were obtained from the
first components of the corresponding eigenvectors [5, 16]. Figure 1
gives the weights λk as a function of θk, where eiθk = zN

k . The values
of the largest weights and the corresponding θk are given in Table 3.

         0.018
                                                                                 *              *

         0.016

         0.014
                                                                                     *       *

         0.012

           0.01

         0.008
                                                                    *                                      *

         0.006                                                           *                   *

         0.004

         0.002

              0                   **************************************************                                                           
                  -4                -3            -2             -1              0              1              2                3               4

FIGURE 1. Weights for the Szegő quadrature for 100 nodes.
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TABLE 3. The largest weights in the Szegő quadrature.

θ λ (A2
k +B2

k)/4
±0.4482264345 0.0166596342 0.0166826152
±1.3455856216 0.0074091825 0.0074140413
±0.2241051893 0.0132797435 0.01328125
±0.6727401886 0.0058919407 0.00593125

Observe that the signal (3.10) can be written as

(3.11) x(m) =
4∑

k=1

(
Ak − iBk

2
eimωk +

Ak + iBk

2
e−imωk

)
+ Zm,

so that αk = α−k = (Ak − iBk)/2. According to Corollary 3.2, the
weights corresponding to the zeros near the frequency points converge
to |αk|2 = (A2

k +B2
k)/4.

4. Zeros that are not frequency points. In this section we
shall show that for zeros of Wn−n0({Nk(ν)}, z) which are not frequency
points, the weights associated with the corresponding zeros of the para-
orthogonal polynomials tend to zero. We recall the connection between
the monic orthogonal polynomials Φn(ψN , z) and the orthonormal
polynomials ϕn(ψN , z) given in (1.3) (1.4), as well as the expression
(2.3) for the weights λN

k . We shall also make use of the fact that for
n < n0 we have

(4.1) lim
N→∞

Φn(ψN , z) = Φn(ψ, z),

with ψ given by (1.5), (see [8, 15]) and that

(4.2) lim
N→∞

|Φn0(ψN , 0)| = 1

(see, e.g., [7]).

In the following theorem, we assume the same situation as in
Theorem 1.1.
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Theorem 4.1. Let n > n0, and suppose that the sequence
{zNk(ν)

m : ν = 1, 2, . . . } of zeros of Bn(ψNk(ν) , z) converge to a zero
ζm of Wn−n0({Nk(ν)}, z) which is not a frequency point. Then

(4.3) lim
ν→∞λ

Nk(ν)
m = 0.

Proof. We observe that |ϕn0(ψNk(ν) , z
Nk(ν)
m |2 is a term in the denom-

inator of (2.3). From (1.3) (1.4) we get

(4.4) |ϕn0(ψNk(ν) , z
Nk(ν)
m )|2 =

|Φn0(ψNk(ν) , z
Nk(ν)
m )|2∏n0

j=1(1− |Φj(ψNk(ν) , 0)|2)
.

The numerator |Φn0(ψNk(ν) , z
Nk(ν)
m | tends to |Φn0(ψ, ζm)|, which is dif-

ferent from zero (since ζm is not a frequency point), while |Φn0(ψNk(ν) , 0)|
tends to 1 by (4.2). It follows from (4.4) that

lim
ν→∞ |ϕn0(ψNk(ν) , z

Nk(ν)
m )| = ∞,

and hence by (2.3) that (4.3) is satisfied.

The result of Theorem 4.1 is valid for the weights correspond-
ing to zeros z

Nk(ν)
m tending to ζm for any convergent subsequence

{Bn(ψNk(ν) , z) : ν = 1, 2, . . . }. It is thus not required that ζm is a
simple zero of Wn−n0({Nk(ν)}, z) for any convergent subsequence, only
that ζm is not a frequency point.

5. Multiple zeros in the limit. We shall now consider a simple
case of the situation where the frequency points (and in principle also
other zeros ζm) occur as multiple zeros of Bn({Nk(ν)}, z). Without
loss of generality we formulate the results in terms of convergence of
the whole sequence {Bn(ψN , z) : N = 1, 2, . . . } and hence of the whole
sequences {zN

m : N = 1, 2, . . . }, m = 1, 2, . . . , n, to avoid troublesome
formulations and notation in terms of subsequences.

As before, let zN
m , m = 1, 2, . . . , n, be the zeros of Bn(ψN , z), and

recall that they are all distinct. To simplify the notation we shall



640 L. DARUIS, O. NJÅSTAD, W. VAN ASSCHE

suppress the index N in the following calculations. We introduce the
polynomial Tn as

(5.1) Tn(z) = (z − z3) · · · (z − zn).

Then the polynomials L1 and L2 in (2.2) may be written as

(5.2) L1(z) =
(z − z2)Tn(z)
(z1 − z2)Tn(z1)

, L2(z) =
(z − z1)Tn(z)
(z2 − z1)Tn(z2)

.

We easily find that

(5.3) L1(z) + L2(z) =
Tn(z) [(z − z2)Tn(z2)− (z − z1)Tn(z1)]

(z1 − z2)Tn(z1)Tn(z2)
.

In the following proposition we do not need to require that the values
of the zk are distinct.

Proposition 5.1. We may write

(5.4) L1(z) + L2(z) =
Tn(z)P (z)

Tn(z1)Tn(z2)
,

where P is a polynomial with the property

(5.5) P (z1) = Tn(z1), when z2 = z1.

Proof. From (5.3) we find

P (z) =
(z − z2)Tn(z2)− (z − z1)Tn(z1)

z1 − z2

=
z(Tn(z2)− Tn(z1))

z1 − z2
− z2Tn(z2)− z1Tn(z1)

z1 − z2
.

Here Tn(z2) is a polynomial in z2. The numerators are both divisible by
z2−z1, hence (Tn(z2)−Tn(z1))/(z1−z2) and (z2Tn(z2)−z1Tn(z1))/(z1−
z2) both extend to polynomials in z2, which are also defined for z2 = z1.
From this expression it follows immediately that P (z1) = Tn(z2), and
hence by continuity we have P (z1) = Tn(z1) when z2 = z1.
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We again consider a fixed degree n. We now assume that zN
m → ζm

as N → ∞ for m = 1, 2, . . . , n0 and m = n0 + p + 1, . . . , n, and that
zN
n0+j → ζj for j = 1, . . . , p, where 1 ≤ p ≤ n0. Here it is assumed that
ζk �= ζm for k = n0 + p + 1, . . . , n and m = 1, . . . , n0, and that the
points ζn0+p+1, . . . , ζn are distinct. Thus frequency points may have
multiplicity at most 2 as zeros of Bn(z), while zeros of Bn(z) which
are not frequency points are simple. In other words, it is assumed that
Wn−n0 has only simple zeros. We introduce the notation

(5.6) T j
n(z) = (z − zN

1 ) · · · (z − zN
j−1)(z − zN

j+1) · · ·
(z − zN

n0+j−1)(z − zN
n0+j+1) · · · (z − zN

n ),

for j = 1, . . . , p. It follows from Proposition 5.1 that for j = 1, . . . , p
we may write

(5.7) lim
N→∞

[
LN

j (z) + LN
n0+j(z)

]
=

T j
n(z)Pj(z)
T j

n(ζj)2
,

with zN
m replaced by ζm for m = 1, . . . , n0 and m = n0 + p+ 1, . . . , n,

and zN
n0+j replaced by ζj for j = 1, . . . , p. Here Pj(z) is a polynomial

with the property Pj(ζj) = T j
n(ζj). Furthermore

(5.8) lim
N→∞

LN
m(z) = Λm(z),

for m = p+ 1, . . . , n0 and m = n0 + p+ 1, . . . , n, where

(5.9) Λm(z)

= (z−ζ1)
2···(z−ζp)2(z−ζp+1)···(z−ζm−1)(z−ζm+1)···(z−ζn)

(ζm−ζ1)2···(ζm−ζp)2(ζm−ζp+1)···(ζm−ζm−1)(ζm−ζm+1)···(ζm−ζn) .

The ζn0+1, . . . , ζn0+p do not exist and do not occur in (5.9). We note
that

T j
n(ζj)Pj(ζj)
Tn(ζj)2

= 1, for j = 1, . . . , p,

while
Tn(ζk)Pj(ζk)

Tn(ζj)2
= 0, for k �= j.

Similarly Λm(ζm) = 1 for m = p+1, . . . , n0 and m = n0+p+1, . . . , n,
while Λm(ζk) = 0 for k �= m.
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Theorem 5.2. Let zN
m → ζm as N → ∞ for m = 1, . . . , n0 and

m = n0 + p+ 1, . . . , n, and zN
n0+j → ζj for j = 1, . . . , p. Assume that

ζ1, . . . , ζn0 , ζn0+p+1, . . . , ζn are distinct points. Then

(5.10) lim
N→∞

(λN
j + λN

n0+j) =
∫ π

−π

T j
n(eiθ)Pj(eiθ)
T j

n(ζj)2
dψ(θ),

for j = 1, . . . , p, and

(5.11) lim
N→∞

λN
m =

∫ π

−π

Λ(eiθ) dψ(θ),

for m = p+ 1, . . . , n0 and m = n0 + p+ 1, . . . , n.

Proof. From the assumptions it follows that LN
j (z) + LN

n0+j(z)
converges uniformly to T j

n(z)Pj(z)/Tn(ζj)2 on T for j = 1, . . . , p and
that LN

m(z) converges uniformly to Λm(z) on T for m = p+ 1, . . . , n0

and m = n0 + p+ 1, . . . , n. The result then follows from Theorem 2.2
in the same way as Theorem 3.1 does.

Corollary 5.3. Let the assumptions be as in Theorem 5.2. Then

lim
N→∞

(
λN

j + λN
n0+j

)
= λj , for j = 1, . . . , p,(5.12)

lim
N→∞

λN
k = λk, for k = p+ 1, . . . , n0,(5.13)

lim
N→∞

λN
m = 0, for m = n0 + p+ 1, . . . , n.(5.14)

Proof. The result follows from Theorem 5.2 and the remarks preced-
ing it, together with the definition of the measure ψ.

Remark. The argument can be extended to allow double zeros
among the zeros ζn0+p+1, . . . , ζn. Furthermore in order to obtain the
results (5.12) (5.13) it is not necessary to make any assumptions on
ζn0+p+1, . . . , ζn, except that they are all different from ζ1, . . . , ζn0 .

Example 5.1. Let the signal be as in Example 3.1, with n = 3 and
τ = −i. Then B3(−i, z) = (z − i)2(z + i). Here ζ1 = i, ζ2 = −i,
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ζ3 = ζ1 = i, with λ1 = λ2 = α2. By numbering the zeros of
B3(ψN ,−i, z) such that zN

1 → ζ1, zN
2 → ζ2, ζN

3 → ζ1, we conclude
from Corollary 5.3 that

λN
1 + λN

3 → α2, λN
2 → α2.

Observations of the limiting behavior of zeros and weights will here
indicate that n0 = 2, that the frequency points are ±i, and that the
amplitudes have modulus α.

Example 5.2. Let the signal be as in Example 3.1, with n = 5 and
τ = i. According to (3.9) we have

B5(i, z) = (z3 + i)(z − i)(z + i)

= (z − i)2(z + i)
(
z − 1

2
[
√
3− i]

)(
z +

1
2
[
√
3 + i]

)
.

Here we set ζ1 = i, ζ2 = −i, ζ3 = [
√
3 − i]/2, ζ4 = −[√3 + i]/2,

ζ5 = i. We number the zeros of B5(ψN , i, z) such that zN
k → ζk for

k = 1, 2, 3, 4, and zN
5 → ζ1. It follows from Corollary 5.3 that

lim
N→∞

(
λN

1 + λN
5

)
= α2, lim

N→∞
λN

2 = α2, lim
N→∞

λN
3 = lim

N→∞
λN

4 = 0.

Observations of the limiting behavior of zN
k and λN

k will indicate that
n0 = 2, that the frequencies are ±π/2, and that the amplitudes have
modulus α.

ENDNOTES

1. Available at http://www.wis.kuleuven.ac.be/bill.wav
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