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NEVANLINNA MATRICES FOR THE
STRONG HAMBURGER MOMENT PROBLEM

O. NJÅSTAD

ABSTRACT. Let {cn}∞n=−∞ be a doubly infinite sequence
of real numbers. The strong Hamburger moment prob-
lem consists of finding positive measures σ on R such that

cn =
∫ ∞
−∞ tn dσ(t) for n = 0, ±1, ±2, . . . . The problem

is indeterminate if there is more than one solution. For
an indeterminate problem there is a one-to-one correspon-
dence between all Pick functions ϕ and all solutions σ of

the moment problem, expressed by
∫ ∞
−∞(z − t)−1 dσ(t) =

[α(z)ϕ(z) − γ(z)][β(z)ϕ(z)− δ(z)]−1. The functions α, β, γ, δ
are holomorphic in the complex plane outside the origin. The
purpose of this paper is to study growth properties of these
functions α, β, γ, δ, analogous to properties of corresponding
entire functions connected with the classical Hamburger mo-
ment problem.

1. Introduction. A solution of the classical Hamburger moment
problem for a given sequence {cn}∞n=0 of real numbers is a positive
measure σ on the real line R such that cn =

∫ ∞
−∞ tn dσ(t) for n =

0, 1, 2, . . . . A solvable moment problem is called determinate when
there is a unique solution, indeterminate otherwise.

The Stieltjes transform of a finite measure σ is defined as the function

(1.1) F (z, σ) =
∫ ∞

−∞

dσ(t)
z − t

.

The correspondence between measures and their Stieltjes transforms is
one-to-one.

A function ϕ is called a Pick function (or Nevanlinna function) if it
is holomorphic in the open upper half-plane U and maps U into U∪ R̂
(where R̂ denotes the extended real line R ∪ {∞}).
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A Pick function is either a constant in R̂ (the function with the
constant value ∞ is included) or a function mapping U into U.

There is a one-to-one correspondence between the Pick functions ϕ
and the solutions σ of the moment problem, given by

(1.2) F (z, σ) =
A(z)ϕ(z)− C(z)
B(z)ϕ(z)−D(z)

(Nevanlinna parametrization of the solutions of the Hamburger moment
problem). Here A,B,C,D are entire transcendent functions of at most
minimal type of order 1. That a function f has this property means
that for every positive number ε there exists a constant Mε such that

(1.3) |f(z)| ≤ Mε exp(ε|z|) for all z ∈ C

(where exp denotes the exponential function).

The matrix
[

A(z) B(z)

C(z) D(z)

]
is called a Nevanlinna matrix.

For detailed treatments of important aspects of the Hamburger mo-
ment problem, see, e.g., [1 8, 10, 15 19, 25 28].

The strong Hamburger moment problem is defined in the same way as
the classical problem, except that a doubly infinite sequence {cn}∞n=−∞
is given for which the equality cn =

∫ ∞
−∞ tn dσ(t) is required to hold.

A theory in the main analogous to the classical theory has been
developed for this moment problem up to the existence of a Nevanlinna
parametrization for the solutions of an indeterminate problem, with
functions α, β, γ, δ holomorphic in C \ {0} replacing the functions
A,B,C,D.

The aim of this paper is to study growth properties of the functions
α, β, γ, δ at the origin and at infinity, partly analogous to those at
infinity of the functions A,B,C,D, expressed by (1.3).

In Section 2 we sketch the theory of orthogonal Laurent polynomials
and their use in the study of strong moment problems, including the
Nevanlinna parametrization of the solutions of an indeterminate strong
Hamburger problem. Section 3 is devoted to the study of growth
properties of α, β, γ, δ, inspired by (1.3). A crucial role is here played
by a Riesz criterion for indeterminacy, proved in [23].

The organization and presentation of our material is strongly influ-
enced by Akhiezer’s [1] work on the classical moment problem. Other
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very instructive treatments of the classical moment problem can be
found in the treatises by Riesz [24] and by Shohat and Tamarkin [27].
At some crucial points this classical approach has to be modified for
the strong moment problem, and our final results are not quite as con-
clusive as in the classical case.

2. Orthogonal Laurent polynomials and the strong moment
problem. For detailed treatments of the topics discussed in this
section, see [9, 11 14, 19 21, 23, 24].

The linear space spanned by all monomials zn, n = 0,±1,±2, . . . is
denoted by Λ, and the elements of Λ are called Laurent polynomials.

Let {cn}∞n=−∞ be a doubly infinite sequence of real numbers, and let
S be the linear functional on Λ defined by

(2.1) S[zn] = cn for n = 0,±1,±2, . . . .

A solution of the strong Hamburger moment problem is a positive
measure σ on R such that

(2.2) cn =
∫ ∞

−∞
tn dσ(t) for n = 0,±1,±2, . . . ,

or equivalently such that S[L] =
∫ ∞
−∞ L(t) dσ(t) for all L ∈ Λ. A

necessary and sufficient condition for the existence of at least one
solution is that S is positive. We shall in this paper assume that this
condition is satisfied and thus that the moment problem is solvable.

An inner product 〈·, ·〉 is defined on Λ by

(2.3) 〈f, g〉 = S[f(z) · g(z)].

By applying the Gram-Schmidt process to the basis {1, z−1, z, z−2,
z2, . . . } an orthonormal sequence {ϕn}∞n=0 is obtained. These orthog-
onal Laurent polynomials have the form

ϕ2m(z) =
u2m

zm
+ · · ·+ v2mz

m, v2m > 0(2.4)

ϕ2m+1(z) =
v2m+1

zm+1
+ · · ·+ u2m+1z

m, v2m+1 > 0(2.5)

for m = 0, 1, 2, . . . . All the coefficients in ϕn are real.
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The orthonormal Laurent polynomial ϕn is called regular if un �= 0.
Either ϕn or ϕn+1 is always regular, hence there is always an infinite
subsequence of {ϕn} consisting of regular elements. For simplicity we
shall in the following assume that all the ϕn are regular.

The associated orthogonal Laurent polynomials {ψn} are defined by

(2.6) ψn(z) = S

[
ϕn(t)− ϕn(z)

t− z

]
for n = 0, 1, 2, . . . .

(The functional is applied to its argument as a function of t.) The
coefficients in the Laurent polynomial ψn are all real.

Let x0 be an arbitrary fixed point in R \ {0}. We define functions
αn, βn, γn, δn (depending on x0) by

αn(z) = (z − x0)
n−1∑
k=0

ψk(x0)ψk(z)(2.7)

βn(z) = −1 + (z − x0)
n−1∑
k=0

ψk(x0)ϕk(z)(2.8)

γn(z) = 1 + (z − x0)
n−1∑
k=0

ϕk(x0)ψk(z)(2.9)

δn(z) = (z − x0)
n−1∑
k=0

ϕk(x0)ϕk(z).(2.10)

These functions are Laurent polynomials with real coefficients. By
utilizing Christoffel-Darboux type formulas for orthogonal Laurent
polynomials (see e.g. [13, 16, 25, 31]) we find that

(2.11) αn(z)δn(z)− βn(z)γn(z) = 1

for all z ∈ C \ {0}.

Remark. In the definition of analogous functions An, Bn, Cn, Dn

connected with the classical moment problem, the value of x0 is usually
taken to be 0, but any other value in R may also be used. In the
definition of αn, βn, γn, δn, the value x0 = 0 cannot be used since the
functions ϕn and ψn are singular at the origin.
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For z /∈ R we define the linear fractional transformation t → Tn(z, t)
by

(2.12) Tn(z, t) =
αn(z)t− γn(z)
βn(z)t− δn(z)

.

This transformation maps the closed upper half-plane U ∪ R̂ onto a
closed disk ∆n(z) and the extended real line onto the boundary ∂∆n(z).
The sequence {∆n(z)} is nested, i.e., ∆n+1(z) ⊂ ∆n(z) for all n. The
radius rn(z) of ∆n(z) is given by

(2.13) rn(z) =
1

|z − z̄|ωn(z)
, where ωn(z) =

n−1∑
k=0

|ϕk(z)|2.

For t ∈ R̂ all the zeros of the numerator and the denominator of Tn(z, t)
are real and simple, and Tn(z, t) has a partial fraction decomposition
of the form

(2.14) Tn(z, t) =
n∑

k=1

λn,k(t)
z − ξn,k(t)

with ξn,k(t) real, λn,k(t) > 0 for k = 1, . . . , n and λn,1(t) + · · · +
λn,n(t) = c0.

We define ∆∞(z) = ∩∞
n=1∆n(z). Then ∆∞(z) is either a single point

for every z /∈ R (the limit point case) or a proper closed disk for every
z /∈ R (the limit circle case). Furthermore, ∆∞(z) consists of exactly
all values F (z, σ), where σ is a solution of the moment problem. The
moment problem is determinate, i.e., has exactly one solution, in the
limit point case, indeterminate, i.e., has more than one solution, in the
limit circle case. The radius r(z) of ∆∞(z) is given by

(2.15) r(z) =
1

|z − z̄|ω(z) , where ω(z) =
∞∑

n=0

|ϕn(z)|2.

We formulate as a theorem some basic results for indeterminate prob-
lems.

Theorem 2.1. For an indeterminate moment problem the following
hold:
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A. The series
∑∞

n=0 |ϕn(z)|2 and
∑∞

n=0 |ψn(z)|2 converge locally uni-
formly in C \ {0}.
B. The sequence {αn(z)}, {βn(z)}, {γn(z)}, {δn(z)} converge locally

uniformly in C \ {0} to functions α(z), β(z), γ(z), δ(z) which are holo-
morphic in C \ {0} and satisfy

(2.16) α(z)δ(z)− β(z)γ(z) = 1.

Clearly the disk ∆∞(z) can be represented as

(2.17) ∆∞(z) =
{
w =

α(z)t− γ(z)
β(z)t− δ(z)

: t ∈ U ∪ R̂
}
.

Of crucial importance in the following discussion is a Riesz criterion for
indeterminate problems (see [23]).

Theorem 2.2. For an indeterminate moment problem, the following
inequality holds:

(2.18)
∫ ∞

−∞

lnω(t)
1 + t2

dt < ∞.

The Nevanlinna parametrization of the strong Hamburger moment
problem can be stated as follows:

Theorem 2.3. For an indeterminate moment problem, there exists,
for a given x0, a one-to-one correspondence between all Pick functions
ϕ and all solutions σ of the moment problem. The correspondence is
given by

(2.19) F (z, σ) =
α(z)ϕ(z)− γ(z)
β(z)ϕ(z)− δ(z)

.

In analogy with the classical case, we may call
[

α(z) β(z)

γ(z) δ(z)

]
a Nevan-

linna matrix for the strong moment problem.
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3. Growth estimates. We assume in the whole of this section
that the moment problem under discussion is indeterminate. Our
main purpose is to study growth properties of the functions α, β, γ, δ
and ω. We shall first discuss relationships between the functions
ωn, ω (see (2.12) and (2.14)) on the one hand and the functions
αn, βn, γn, δn, α, β, γ, δ (see (2.6) (2.9)) on the other hand. Note that
the functions α, β, γ, δ can be written as

α(z) = (z − x0)
∞∑

n=0

ψn(x0)ψn(z)(3.1)

β(z) = −1 + (z − x0)
∞∑

n=0

ψn(x0)ϕn(z)(3.2)

γ(z) = 1 + (z − x0)
∞∑

n=0

ϕn(x0)ψn(z)(3.3)

δ(z) = (z − x0)
∞∑

n=0

ϕn(x0)ϕn(z).(3.4)

As usual, let x = Re z, y = Im z.

Lemma 3.1. For every z ∈ C \ R, we have

(3.5) ωn(z) ≤ |βn(z)δn(z)|
|y| .

Proof. According to (2.12), both of the points αn(z)/βn(z) and
γn(z)/δn(z) belong to the disk ∆n(z). The diameter of the disk is
1/(|y|ωn(z)) by (2.13) and so |αn(z)/βn(z)−γn(z)/δn(z)| ≤ 1/|y|ωn(z).
Taking into account (2.11) we then get (3.5).

Lemma 3.2. For every z ∈ C \ R, we have

(3.6)
∣∣∣∣αn(z)
βn(z)

∣∣∣∣ ≤ c0
|y| ,

∣∣∣∣γn(z)
δn(z)

∣∣∣∣ ≤ c0
|y| .
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Proof. The quotient γn(z)/δn(z) is obtained from (2.12) for t = 0. It
follows from (2.14) that

∣∣∣∣γn(z)
δn(z)

∣∣∣∣ ≤
n∑

k=1

λn,k(0)√
(x− ξn,k(0))2 + y2

,

hence ∣∣∣∣γn(z)
δn(z)

∣∣∣∣ ≤
n∑

k=1

λn,k(0)
|y| =

c0
|y| ,

from which the second inequality of (3.6) follow. By a similar argument,
we obtain the first inequality for t = ∞.

Proposition 3.3. There exists a constant M independent of n such
that

|hn(z)| ≤ 1 +M |z − x0|
√
ω(z) for z ∈ C \ {0}

(3.7)

|gn(z)| ≤ c0
|y| [1 +M |z − x0|

√
ω(z) ] for z ∈ C \ {0}

(3.8)

where gn is any of the functions αn, γn and hn is any of the functions
βn, δn.

Proof. It follows from the definition (2.8), (2.10), together with
Schwartz’s inequality that

|βn(z)| ≤ 1 + |z − x0|
[ ∞∑

k=0

|ψk(x0)|2
]1/2[ ∞∑

k=0

|ϕk(z)|2
]1/2

,

(3.9)

|δn(z)| ≤ 1 + |z − x0|
[ ∞∑

k=0

|ϕk(x0)|2
]1/2[ ∞∑

k=0

|ϕk(z)|2
]1/2

.

(3.10)

We then conclude from Theorem 2.1 and the definition in (2.15) that
(3.7) is satisfied. The inequality (3.8) follows from (3.7) and Lemma 3.2.
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We define the function ϕ by

(3.11) ϕ(ξ) = ln[1 +M |ξ − x0|
√
ω(ξ) ] for ξ ∈ R \ {0}

where M is a constant as given in Proposition 3.3. We note that
ϕ(ξ) ≥ 0 for all ξ.

Lemma 3.4. The following inequality holds:

(3.12)
∫ ∞

−∞

ϕ(ξ) dξ
(ξ − x)2 + y2

< ∞ for x ∈ R, y ∈ R \ {0}.

Proof. We have ϕ(ξ) ≤ ln+
[
2 ·max{1,M |ξ − x0|

√
ω(ξ) }]. Since

∫ ∞

−∞

ln[M ]|ξ − x0|
√
ω(ξ) ]

1 + ξ2
dξ < ∞

by Riesz’s criterion (Theorem 2.2), it follows that
∫ ∞
−∞ ϕ(ξ)/(1 +

ξ2) dξ < ∞. Furthermore, (ξ − x)2 + y2 = y2
[
1 + ((ξ − x)/y)2

]
, from

which we see that, for fixed x and y, y �= 0, also the inequality in (3.12)
holds.

Proposition 3.5. The following inequality holds for x ∈ R, y ∈
R \ {0}:

(3.13) ln |hn(x+ iy)| ≤ |y|
π

∫ ∞

−∞

ϕ(ξ) dξ
(ξ − x)2 + y2

where hn is any of the functions βn, δn.

Proof. The function hn is a Laurent polynomial with only real zeros
(cf. the remark following the formula (2.13)). We may therefore write
hn(z) = Hn(z)/zp, where Hn is a polynomial with real zeros and p is
a natural number. Poisson’s formula gives

ln |Hn(x+ iy)| = y

π

∫ ∞

−∞

ln |Hn(ξ)| dξ
(ξ − x)2 + y2

(3.14)



484 O. NJÅSTAD

and

ln(|x+ iy|p) = y

π

∫ ∞

−∞

ln(|ξ|p) dξ
(ξ − x)2 + y2

(3.15)

from which it follows

(3.16) ln |hn(x+ iy)| = |y|
π

∫ ∞

−∞

ln |hn(ξ)| dξ
(ξ − x)2 + y2

.

The inequality (3.13) now follows from Proposition 3.3, the definition
(3.11) and formula (3.16).

We introduce the following notation

(3.17) Ωη(r) = {z ∈ C : η ≤ | arg z| ≤ π − η, |z| ≥ r}

where η and r are arbitrary positive numbers, η < π/2, and

(3.18) Ωη = {z ∈ C : η ≤ | arg z| ≤ π − η, |z| > 0}

where η is an arbitrary positive number η < π/2. We observe that

(3.19) (ξ − x)2 + y2 = |z − ξ|2 ≥ ξ2 sin2 η ≥ 1 + ξ2

2
sin2 η

for |ξ| ≥ 1, ξ real and z ∈ Ωη.

The result of the following Proposition 3.6 is crucial. We give a
detailed argument along the same lines as the argument given by
Akhiezer for the classical case. It could also be obtained by essentially
arguing from Proposition 3.5 and general results on estimations of a
positive harmonic function (the Poisson integral of ϕ) in sectors in the
upper half plane.

Proposition 3.6. For fixed numbers ε and η, with ε > 0 and
0 < η < π/2, there exists a constant B(η, ε), independent of n such
that

(3.20) |hn(z)| ≤ B(η, ε) exp
[
ε(|z|+ |z|−1)

]
for z ∈ Ωη,
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where hn is any of the functions βn, δn.

Proof. Let η and ε be fixed numbers as specified. It follows from
(3.19) that for T > 1 we have

1
π

∫
|ξ|≥T

ϕ(ξ) dξ
(ξ − x)2 + y2

≤ 2
π sin2 η

∫
|ξ|≥T

ϕ(ξ) dξ
1 + ξ2

.

Since the integral
∫ ∞
−∞ ϕ(ξ) dξ/(1 + ξ2) converges by Lemma 3.4, we

can make the righthand side of this inequality arbitrarily small by
choosing the value of T sufficiently large. For a fixed T , we can
again by Lemma 3.4 make the value of

∫ T

−T
ϕ(ξ) dξ/((ξ − x)2 + y2)

arbitrarily small by choosing |y| sufficiently large. We conclude from
Proposition 3.5 that ln |hn(x+ iy)| ≤ ε|y| for z ∈ Ωη and |y| sufficiently
large. It follows that, for every positive r there exists a constant
k(η, ε, r) such that

(3.21) ln |hn(x+ iy)| ≤ ε|y|+ k(η, ε, r) for z ∈ Ωη(r).

Clearly (by Lemma 3.4)
∫ T

−T
ϕ(ξ) dξ < ∞ for every finite T . Since

y2/((ξ−x)2+y2) ≤ 1 we can then make the integral
∫ T

−T
(y2ϕ(ξ) dξ)/((ξ−

x)2+y2) arbitrarily small by choosing the value of T sufficiently small.
Furthermore, by (3.19), we have

1
π

∫
|ξ|≥1

y2ϕ(ξ) dξ
(ξ − x)2 + y2

≤ 2
π

∫
|ξ|≥1

y2ϕ(ξ) dξ
(1 + ξ2) sin2 η

for z ∈ Ωη. By Lemma 3.4 we can make
∫
|ξ|≥1

(y2ϕ(ξ) dξ)/((1 +
ξ2) sin2 η) arbitrarily small by choosing |y| sufficiently small. By
Lebesgue’s dominated convergence theorem, we can for arbitrary T ∈
(0, 1) make the value of

∫
T≤|ξ|≤1

(y2ϕ(ξ) dξ)/((ξ− x)2 + y2) arbitrarily
small by choosing |y| sufficiently small. We conclude from Proposi-
tion 3.5 that ln |hn(x+ iy)| ≤ ε/|y| sin η for z ∈ Ωη and |y| sufficiently
small. It follows that, for every positive r, there exists a constant
K(η, ε, r) such that

(3.22) ln |hn(x+ iy)| ≤ ε sin η
|y| +K(η, ε, r) for z ∈ Ωη \ Ωη(r).
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We conclude from (3.21) (3.22) that there exists a constant C(η, ε)
such that ln |hn(x+ iy)| ≤ ε

[|y|+ (sin η)/|y|]+ C(η, ε) for z ∈ Ωη and
hence a constant B(η, η) such that

(3.23) |hn(x+ iy)| ≤ B(η, ε) exp
[(

|y|+ sin η
|y|

)]
for z ∈ Ωη.

Since |y| ≤ |z| and |y| ≥ |z| sin η for z ∈ Ωη, the inequality (3.20)
follows.

Our main results may now be formulated as follows.

Theorem 3.7. For fixed numbers ε and η, with ε > 0 and 0 < η <
π/2, there exists a constant M(η, ε) such that

(3.24) |F (z)| ≤ M(η, ε) exp
[
ε(|z|+ |z|−1)

]
for z ∈ Ωη,

where F is any of the functions α, β, γ, δ and ω.

Proof. We conclude from Lemma 3.2 and Proposition 3.6 that

(3.25) |gn(z)| ≤ c0B

(
η,
ε

2

)
1

|z| sin η exp
[
ε

2
(|z|+ |z|−1)

]
for z ∈ Ωη,

where gn is any of the functions αn, γn. For each positive number w
there exists a constant E(w) such that t ≤ E(w)ewt for all t ≥ 0. With
this notation we get from (3.25) that

(3.26)

|gn(z)| ≤ c0
sin η

E

(
ε

2

)
B

(
η,
ε

2

)
exp

[
ε(|z|+ |z|−1)

]
for z ∈ Ωη.

From Lemma 3.1 and Proposition 3.6 we conclude that
(3.27)

ωn(z) ≤ 1
sin η

E

(
ε

2

)
B

(
η,
ε

2

)2

exp
[
ε(|z|+ |z|−1)

]
for z ∈ Ωη.

Since the constants B(η, ε) and E(ε) are independent of n, the desired
result now follows from (3.20), (3.26) and (3.27).
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Remark. We easily see that an inequality |F (z)| ≤ M exp
[
ε(|z| +

|z|−1)
]
is equivalent to two inequalities |F (z)| ≤ M1 exp[ε|z|] and

|F (z)| ≤ M2 exp[ε|z|−1]. It may therefore be natural to express the
statements of Theorem 3.7 concerning α, β, γ, δ by saying that these
functions (which are holomorphic in C\{0}) are at most minimal type
of order 1 at infinity and at the origin, though only in all angular regions
Ωη.

If we knew that |Fn(x + iy)| were increasing functions of |y| for Fn

equal to αn, βn, γn, δn, ωn, as in the classical situation, we could infer
the validity of (3.24) in the whole of C \ {0} for F equal to α, β, γ, δ
and ω. Building on results presented in this paper, it is shown in
[22] that if the strong Stieltjes moment problem is solvable, i.e., if the
strong Hamburger moment problem has a solution with support on the
nonnegative real axis, then (3.24) is valid for every region given by
| arg z| ≤ π − η, η > 0.
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