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A CHANGE OF SCALE FORMULA FOR WIENER
INTEGRALS OF UNBOUNDED FUNCTIONS

I. YOO, T.S. SONG, B.S. KIM AND K.S. CHANG

ABSTRACT. Cameron and Storvick discovered change of
scale formulas for Wiener integrals of bounded functions in
a Banach algebra S on classical Wiener space. Yoo and
Skoug extended these results to abstract Wiener space for a
more generalized Fresnel class FA1,A2 than the Fresnel class
F(B) which corresponds to the Banach algebra S on classical
Wiener space. In this paper we present a change of scale
formula for Wiener integrals of functions on abstract Wiener
space which need not be bounded or continuous.

1. Introduction. It has long been known that Wiener measure
and Wiener measurability behave badly under the change of scale
transformation [3] and under translations [2]. Cameron and Storvick
[5] expressed the analytic Feynman integral for a rather large class of
functionals as a limit of Wiener integrals. In doing so, they discovered
nice change of scale formulas for Wiener integrals on classical Wiener
space (C0[0, 1],mw) [6]. In [20, 21, 22], Yoo, Yoon and Skoug extended
these results to classical Yeh-Wiener space and to an abstract Wiener
space (H,B, ν). In particular, Yoo and Skoug [20] established a change
of scale formula for Wiener integrals of functions in the Fresnel class
F(B) on abstract Wiener space, and then they [21] developed this
formula for a more generalized Fresnel class FA1,A2 than the Fresnel
class F(B). But functions in F(B) and FA1,A2 are bounded.

In this paper we establish a change of scale formula for Wiener
integrals of functions of the form

F (x) = G(x)Ψ((e1, x)∼, . . . , (en, x)∼)
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for G ∈ F(B) and Ψ = ψ + φ where ψ ∈ Lp(Rn), 1 ≤ p < ∞, and φ is
a Fourier transform of a measure of bounded variation over Rn. Note
that F (x) need not be bounded or continuous.

2. Definitions and preliminaries. Let H be a real separable
infinite dimensional Hilbert space with inner product 〈·, ·〉 and norm
‖·‖. Let ‖|·|‖ be a measurable norm on H with respect to the Gaussian
cylinder set measure σ on H. Let B denote the completion of H with
respect to ‖| · |‖. Let ι denote the natural injection from H to B. The
adjoint operator ι∗ of ι is one-to-one and maps B∗ continuously onto
a dense subset of H∗ where B∗ and H∗ are the topological dual of B
and H respectively. By identifying H with H∗ and B∗ with ι∗B∗, we
have a triple B∗ ⊂ H∗ ≡ H ⊂ B and 〈h, x〉 = (h, x) for all h in H
and x in B∗ where (·, ·) denotes the natural dual pairing between B
and B∗. By a well-known result of Gross [14] σ ◦ ι−1 has a unique
countably additive extension ν to the Borel σ-algebra B(B) of B. The
triple (H,B, ν) is called an abstract Wiener space. For more details,
see [13, 16, 17, 18].

Let C,C+ and C∼
+ denote the complex numbers, the complex num-

bers with positive real part and the nonzero complex numbers with
nonnegative real part, respectively.

Definition 2.1. Let F be a functional on B such that the integral

(2.1) JF (λ) =
∫

B

F (λ−1/2x) dν(x)

exists for all λ > 0. If there exists an analytic function J∗
F (z) on C+

such that J∗
F (λ) = JF (λ) for all λ > 0, then we call J∗

F (z) the analytic
Wiener integral of F over B with parameter z, and for z ∈ C+ we write

(2.2) Iz
a [F (·)] = J∗

F (z).

Let q be a nonzero real number. If the following limit (2.3) exists,
we define it to be the analytic Feynman integral of F over B with
parameter q and we write

(2.3) Iq
a [F (·)] = lim

z→−iq
Iz
a [F (·)]
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where z approaches −iq through values in C+.

Let {en} denote a complete orthonormal (CON) system in H such
that the en’s are in B∗. For each h ∈ H and x ∈ B, we introduce a
stochastic inner product (·, ·)∼ on H ×B defined by

(2.4) (h, x)∼ =
{

limn→∞
∑n

j=1〈h, ej〉(x, ej) if the limit exists
0 otherwise.

Then, for every h ∈ H, (h, x)∼ exists for ν-almost everywhere x ∈
B and it is a Borel measurable function on B having a Gaussian
distribution with mean 0 and variance ‖h‖2. Also if both h and x
are in H, then (h, x)∼ = 〈h, x〉.

Let M(H) denote the space of finite complex Borel measures µ on
H. Then M(H) is a Banach algebra over the complex numbers under
convolution as multiplication with the norm ‖µ‖ where ‖µ‖ is the total
variation of µ.

Given two C-valued functions F and G on B, we say that F = G,
s-almost everywhere if F (αx) = G(αx) for ν-almost everywhere x ∈ B
for all α > 0. For a function F on B we denote by [F ] the s equivalence
class of functions which equal F s-almost everywhere.

Definition 2.2. The Fresnel class F(B) is defined as the space of
all functions G on B which have the form

(2.5) G(x) =
∫

H

exp{i(h, x)∼} dµ(h)

for µ ∈ M(H).

In fact, F(B) is the space of all s-equivalence classes of functions
of the form (2.5) since we identify functions which coincide s-almost
everywhere on B. It is well known [10, 16] that F(B) is a Banach
algebra and the mapping µ → G is a Banach algebra isomorphism
where µ and G are related by (2.5).

Theorem 2.3 [16]. Let G ∈ F(B) be given by (2.5). Then the
analytic Feynman integral of F over B exists for all real q �= 0 and

(2.6) Iq
a [G(·)] =

∫
H

exp
{
− i

2q
‖h‖2

}
dµ(h).
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In particular, for each z ∈ C+,

(2.7) Iz
a [G(·)] =

∫
H

exp
{
− 1

2z
‖h‖2

}
dµ(h).

3. Change of scale formulas. We begin this section by giving some
existence theorems of the analytic Wiener integral and the analytic
Feynman integral of functions on abstract Wiener space which need
not be bounded or continuous.

Theorem 3.1. Let F (x) = G(x)ψ((e1, x)∼, . . . , (en, x)∼) where
G ∈ F(B), ψ ∈ Lp(Rn), 1 ≤ p < ∞ and {e1, . . . , en} is an
orthonormal set in H. Then for each z ∈ C+, F is analytic Wiener
integrable; and if G is given by (2.5), then

Iz
a [F (·)] =

(
z

2π

)n/2 ∫
H

∫
Rn

exp
{

1
2z

[ n∑
k=1

(izvk + 〈ek, h〉)2 − ‖h‖2

]}(3.1)

× ψ(v1, . . . , vn) dv1 . . . dvn dµ(h).

Proof. Let λ be a positive real number. We begin by evaluating the
Wiener integral∫

B

F (λ−1/2x) dν(x)

=
∫

B

∫
H

exp{iλ− 1
2 (h, x)∼}ψ(λ−

1
2 (e1, x)∼, . . . , λ−

1
2 (en, x)∼)dµ(h) dν(x).

Using the Fubini theorem, we change the order of integration in the
above equation. In fact, since ψ ∈ Lp(Rn) and µ ∈ M(H), we have∫

H

∫
B

∣∣ψ(λ−1/2(e1, x)
∼, . . . , λ−1/2(en, x)

∼)
∣∣ dν(x) dµ(h)

=

(
λ

2π

)n
2
∫

H

∫
Rn

|ψ(v1, . . . , vn)| exp

{
− λ

2

n∑
k=1

v2k

}
dv1. . .dvn dµ(h) <∞.
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)

For a given h ∈ H, using the Gram-Schmidt process, we obtain
en+1 ∈ H such that {e1, . . . , en, en+1} forms an orthonormal set in
H and h =

∑n+1
k=1 ckek, where

(3.2) ck =

{ 〈ek, h〉 k = 1, . . . , n,(‖h‖2 − ∑n
j=1〈ej , h〉2

)1/2
k = n + 1.

Hence by the Wiener integration formula, we have

(3.3)
∫

B

F (λ−1/2x) dν(x)

=
∫

H

∫
B

exp
{
iλ−1/2

n+1∑
k=1

ck(ek, x)∼
}

× ψ(λ−1/2(e1, x)∼, . . . , λ−1/2(en, x)∼) dν(x) dµ(h)

=
(
λ

2π

)(n+1)/2 ∫
H

∫
Rn+1

exp
{
i

n+1∑
k=1

ckvk − λ

2

n+1∑
k=1

v2
k

}

× ψ(v1, . . . , vn) dv1 · · · dvn+1 dµ(h)

=
(
λ

2π

)n/2 ∫
H

∫
Rn

exp
{

1
2λ

[ n∑
k=1

(iλvk + 〈ek, h〉)2 − ‖h‖2

]}

× ψ(v1, . . . , vn) dv1 · · · dvn dµ(h).

The third equality in (3.3) is obtained by applying the following
integration formula

(3.4)
∫
R

exp{−au2 + ibu} du =
(
π

a

)1/2

exp
{
− b2

4a

}
,

for any a ∈ C+ and real number b.

Now we will show that the righthand side of the third equality in
(3.3) is an analytic function of λ ∈ C+. Let λl → λ in C+. Then there
exists α > 0 such that Reλl ≥ α for sufficiently large l and, by using
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the Bessel inequality, we have∣∣∣ exp
{

1
2λl

[ n∑
k=1

(iλlvk + 〈ek, h〉)2 − ‖h‖2

]}
ψ(v1, . . . , vn)

∣∣∣
= exp

{
− Reλl

2|λl|2
[
‖h‖2 −

n∑
k=1

〈ek, h〉2
]
− Reλl

2

n∑
k=1

v2
k

}
|ψ(v1, . . . , vn)|

≤ exp
{
− α

2

n∑
k=1

v2
k

}
|ψ(v1, . . . , vn)|.

Since ψ ∈ Lp(Rn) and µ ∈ M(H), the righthand side of the above
inequality is integrable on H × Rn. Hence, by the dominated conver-
gence theorem, the last expression in (3.3) is a continuous function of
λ ∈ C+. Moreover, by using the Morera theorem, we can easily show
that it is an analytic function of λ throughout C+, and this completes
the proof.

If we restrict our attention to the case p = 1, we obtain the following
existence theorem of the analytic Feynman integral. But, if p > 1, we
are not able to justify the application of the dominated convergence
theorem in the proof of Corollary 3.2 below. Thus, in this case we
could not claim the existence of the analytic Feynman integral.

Corollary 3.2. Let F (x) = G(x)ψ((e1, x)∼, . . . , (en, x)∼) where
G ∈ Γ(B), ψ ∈ L1(Rn) and {e1, . . . , en} is an orthonormal set in
H. Then for each real q �= 0, F is analytic Feynman integrable; and if
G is given by (2.5), then

Iq
a [F (·)] =

(
− iq

2π

)n/2 ∫
H

∫
Rn

exp
{

i

2q

[ n∑
k=1

(qvk + 〈ek, h〉)2 − ‖h‖2

]}(3.5)

× ψ(v1, . . . , vn) dv1 · · · dvn dµ(h).

Let M̂(Rn) be the set of functions φ defined on Rn by

(3.6) φ(r1, . . . , rn) =
∫
Rn

exp
{
i

n∑
k=1

rktk

}
dρ(t1, . . . , tn)
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where ρ is a complex Borel measure of bounded variation on Rn.

Theorem 3.3. Let F (x) = G(x)φ((e1, x)∼, . . . , (en, x)∼) where
G ∈ F(B), φ ∈ M̂(Rn) and {e1, . . . , en} is an orthonormal set in
H. Then for each z ∈ C+, F is analytic Wiener integrable; and if G
and φ are given by (2.5) and (3.6), respectively, then

Iz
a [F (·)] =

∫
H

∫
Rn

exp
{
− 1

2z

[
‖h‖2 +

n∑
k=1

2tk〈ek, h〉 +
n∑

k=1

t2k

]}(3.7)

× dρ(t1, . . . , tn) dµ(h).

Moreover, the righthand side of (3.7) is a continuous function of z on
C∼

+.

Proof. By the same method as in the proof of Theorem 3.1, we have
for a positive real number λ,∫

B

F (λ−1/2x) dν(x)

=

∫
H

∫
Rn

∫
B

exp

{
iλ−1/2

n+1∑
k=1

ck(ek, x)
∼ + iλ−1/2

n∑
k=1

tk(ek, x)
∼

}

× dν(x) dρ(t1, . . . , tn) dµ(h)

= (2π)−
n+1

2

∫
H

∫
Rn

∫
Rn+1

exp

{
iλ−

1
2

n+1∑
k=1

ckuk+iλ−
1
2

n∑
k=1

tkuk

− 1

2

n+1∑
k=1

u2
k

}
du1 · · · dun+1 dρ(t1, . . . , tn) dµ(h)

=

∫
H

∫
Rn

exp

{
− 1

2λ

[
c2n+1 +

n∑
k=1

(ck + tk)2
]}

dρ(t1,. . ., tn)dµ(h)

=

∫
H

∫
Rn

exp

{
− 1

2λ

[
‖h‖2+

n∑
k=1

2tk〈ek, h〉 +

n∑
k=1

t2k

]}
dρ(t1,. . ., tn)dµ(h).

Using the Bessel inequality in the last expression above, we know that
the exponential in the expression is bounded in absolute value by unity
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for λ ∈ C∼
+. Since ρ is a complex Borel measure of bounded variation

on Rn, it follows that the righthand side of the last equality above is
analytic in λ for λ ∈ C+ and is continuous in λ for λ ∈ C∼

+, and hence
this completes the proof.

The following corollary follows immediately from Theorem 3.3.

Corollary 3.4. Let F (x) = G(x)φ((e1, x)∼, . . . , (en, x)∼) where
G ∈ F(B), φ ∈ M̂(Rn) and {e1, . . . , en} is an orthonormal set in
H. Then for each real q �= 0, F is analytic Feynman integrable; and if
G and φ are given by (2.5) and (3.6), respectively, then

(3.8) Iq
a [F (·)]

=
∫

H

∫
Rn

exp
{
− i

2q

[
‖h‖2+

n∑
k=1

2tk〈ek, h〉+
n∑

k=1

t2k

]}
dρ(t1, . . . , tn) dµ(h).

From the above results and the linearity of the analytic Wiener
integral and the analytic Feynman integral on abstract Wiener space,
we have the following corollary.

Corollary 3.5. Let F (x) = G(x)Ψ((e1, x)∼, . . . , (en, x)∼) where
G ∈ F(B), Ψ = ψ + φ ∈ Lp(Rn) + M̂(Rn), 1 ≤ p < ∞, and
{e1, . . . , en} is an orthonormal set in H. Then for each z ∈ C+, F is
analytic Wiener integrable. Moreover, if G and φ were given by (2.5)
and (3.6), respectively, and ψ ∈ Lp(Rn), then

Iz
a [F (·)] =

(
z

2π

)n/2 ∫
H

∫
Rn

exp
{

1
2z

[ n∑
k=1

(izvk + 〈ek, h〉)2 − ‖h‖2

]}(3.9)

× ψ(v1, . . . , vn) dv1 · · · dvn dµ(h)

+
∫

H

∫
Rn

exp
{
− 1

2z

[
‖h‖2 +

n∑
k=1

2tk〈ek, h〉 +
n∑

k=1

t2k

]}

× dρ(t1, . . . , tn) dµ(h).
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In case p = 1 for each real q �= 0, F is analytic Feynman integrable and

Iq
a [F (·)] =

(
− iq

2π

)n/2 ∫
H

∫
Rn

exp
{

i

2q

[ n∑
k=1

(qvk + 〈ek, h〉)2 − ‖h‖2

]}(3.10)

× ψ(v1, . . . , vn) dv1 · · · dvn dµ(h)

+
∫

H

∫
Rn

exp
{
− i

2q

[
‖h‖2 +

n∑
k=1

2tk〈ek, h〉 +
n∑

k=1

t2k

]}

× dρ(t1, . . . , tn) dµ(h).

Next we introduce two lemmas which play a key role in the rest of
this section.

Lemma 3.6. Let ψ ∈ Lp(Rr), 1 ≤ p < ∞, and z ∈ C+ and let
{e1, . . . , en} be an orthonormal set in H with n > r. Let h ∈ H and
let

K ≡
∫

B

exp
{

1−z
2

[(ek, x)∼]2 + i(h, x)∼
}

× ψ((e1, x)∼, . . . , (er, x)∼) dν(x).

Then

K =
(

z

2π

)r/2

z−n/2 exp
{
z − 1

2z

n∑
k=1

〈ek, h〉2 − 1
2
‖h‖2

}

×
∫
Rr

exp
{

1
2z

r∑
k=1

(izuk + 〈ek, h〉)2
}
ψ(u1, . . . , ur) du1 · · · dur.
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Proof. Using (3.2) and the integration formula (3.4), we have

K =
∫

B

exp
{

1−z
2

n∑
k=1

[(ek, x)∼]2 + i

n+1∑
k=1

ck(ek, x)∼
}

× ψ((e1, x)∼, . . . , (er, x)∼) dν(x)

=
(

1
2π

) n+1
2

∫
Rn+1

exp
{

1−z
2

n∑
k=1

u2
k+i

n+1∑
k=1

ckuk− 1
2

n+1∑
k=1

u2
k

}

× ψ(u1, . . . , ur) du1 · · · dun+1

=
(

z

2π

)r/2

z−n/2 exp
{
− 1

2z

n∑
k=r+1

c2k − 1
2
c2n+1

}

×
∫
Rr

exp
{
− z

2

r∑
k=1

u2
k+ i

r∑
k=1

ckuk

}
ψ(u1, . . . , ur) du1 · · · dur.

By (3.2) we have the desired result.

By the same method as in the proof of Lemma 3.6, we have the
following lemma.

Lemma 3.7. Let z, h, {e1, . . . , en} be given as in Lemma 3.6. Let

K ≡
∫

B

exp
{

1−z
2

n∑
k=1

[(ek, x)∼]2 + i(h, x)∼ + i
r∑

k=1

tk(ek, x)∼
}
dν(x).

Then

K = z−n/2 exp
{
z−1
2z

n∑
k=1

〈ek, h〉2− 1
z

r∑
k=1

tk〈ek, h〉− 1
2z

r∑
k=1

t2k−
1
2
‖h‖2

}
.

Now we give a relationship between Wiener integral and analytic
Wiener integral on abstract Wiener space.

Theorem 3.8. Let {en} be a complete orthonormal set in H.
Let F (x) = G(x)ψ((e1, x)∼, . . . , (er, x)∼) where G ∈ F(B) and ψ ∈
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Lp(Rr), 1 ≤ p < ∞. Then for each z ∈ C+, we have

(3.11) Iz
a [F (·)] = lim

n→∞ zn/2

∫
B

exp
{

1−z
2

n∑
k=1

[(ek, x)∼]2
}
F (x) dν(x).

Proof. Let n be a natural number with n > r, and let

Γ(n) =
∫

B

exp
{

1−z
2

n∑
k=1

[(ek, x)∼]2
}
F (x) dν(x).

By the Fubini theorem, (3.2), (3.4) and Lemma 3.6,

Γ(n) =
∫

H

∫
B

exp
{

1 − z

2

n∑
k=1

[(ek, x)∼]2 + i(h, x)∼
}

× ψ((e1, x)∼, . . . , (er, x)∼) dν(x) dµ(h)

=
(

z

2π

)r/2(1
z

)n/2 ∫
H

∫
Rr

exp
{
z − 1

2z

n∑
k=1

〈ek, h〉2 − 1
2
‖h‖2

}

× exp
{

1
2z

r∑
k=1

(izvk + 〈ek, h〉)2
}
ψ(v1, . . . , vr) dv1 · · · dvr dµ(h).

Note that, by the Bessel inequality, we have

∣∣∣ exp
{
z−1
2z

n∑
k=1

〈ek, h〉2− 1
2
‖h‖2+

1
2z

r∑
k=1

(izvk +〈ek, h〉)2
}
ψ(v1, . . . , vr)

∣∣∣
≤ exp

{
− Re z

2

r∑
k=1

v2
k

}
|ψ(v1, . . . , vr)|

and the righthand side of the inequality above is integrable on H ×
Rr since ψ ∈ Lp(Rr) and µ ∈ M(H). Hence, by the dominated
convergence theorem and Parseval’s relation, we obtain

lim
n→∞ z

n
2 Γ(n) =

(
z

2π

)r/2 ∫
H

∫
Rr

exp
{

1
2z

[ r∑
k=1

(izvk +〈ek, h〉)2−‖h‖2

]}

× ψ(v1, . . . , vr) dv1 · · · dvr dµ(h).
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By equation (3.1) in Theorem 3.1, the proof is completed.

Moreover, if p = 1, we obtain the following relationship between the
Wiener integral and the analytic Feynman integral on abstract Wiener
space.

Theorem 3.9. Let {en} be a complete orthonormal set in H.
Let F (x) = G(x)ψ((e1, x)∼, . . . , (er, x)∼) where G ∈ F(B) and ψ ∈
L1(Rr). Let {zn} be a sequence of complex numbers in C+ such that
zn → −iq. Then

(3.12) Iq
a [F (·)] = lim

n→∞ zn/2
n

∫
B

exp
{

1−zn

2

n∑
k=1

[(ek, x)∼]2
}
F (x) dν(x).

Proof. The proof of this theorem is similar to the proof of Theo-
rem 3.8. Let n be a natural number with n > r, and let

Γ(n, zn) =
∫

B

exp
{

1−zn

2

n∑
k=1

[(ek, x)∼]2
}
F (x) dν(x).

By the same method as in the proof of Theorem 3.8, we have

Γ(n, zn)=
(
zn

2π

)r/2( 1
zn

)n/2∫
H

∫
Rr

exp
{
zn−1
2zn

n∑
k=1

〈ek, h〉2− 1
2
‖h‖2

}

×exp
{

1
2zn

r∑
k=1

(iznvk+〈ek, h〉)2
}
ψ(v1,. . ., vr) dv1· · ·dvr dµ(h).

Using the Bessel inequality in the first exponent above, we have that
the absolute value of the exponentials above is bounded by unity.
And also |ψ(v1, . . . , vr)| is integrable on H × Rr since ψ ∈ L1(Rr)
and µ ∈ M(H). Hence by the dominated convergence theorem and
Parseval’s relation, we obtain

lim
n→∞z

n
2
n Γ(n, zn) =

(
− iq

2π

) r
2
∫

H

∫
Rr

exp
{

i

2q

[ r∑
k=1

(qvk+〈ek, h〉)2−‖h‖2

]}

× ψ(v1, . . . , vr) dv1 · · · dvr dµ(h).
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By equation (3.5) in Theorem 3.2, the proof is completed.

Theorem 3.10. Let {en} be a complete orthonormal set in H.
Let F (x) = G(x)φ((e1, x)∼, . . . , (er, x)∼) where G ∈ F(B) and φ ∈
M̂(Rr). Then equation (3.11) holds.

Proof. Let n be a natural number with n > r and let

Γ(n) =
∫

B

exp
{

1−z
2

n∑
k=1

[(ek, x)∼]2
}
F (x) dν(x).

By the Fubini theorem, (3.2), (3.4) and Lemma 3.7, we have

Γ(n) =
∫

H

∫
Rr

∫
B

exp
{

1−z
2

n∑
k=1

[(ek, x)∼]2+i(h, x)∼

+ i

r∑
k=1

tk(ek, x)∼
}
dν(x) dρ(t1, · · · , tr) dµ(h)

=
(

1
z

)n/2 ∫
H

∫
Rr

exp
{
z − 1

2z

n∑
k=1

〈ek, h〉2 − 1
z

r∑
k=1

tk〈ek, h〉

− 1
2z

r∑
k=1

t2k − 1
2
‖h‖2

}
dρ(t1, · · · , tr) dµ(h).

Using the Bessel inequality, we have that the exponential of the last
expression above is bounded in absolute value by unity. Hence by the
dominated convergence theorem and Parseval’s relation, we obtain

lim
n→∞ zn/2Γ(n) =

∫
H

∫
Rr

exp
{
− 1

2z

[
‖h‖2 +

r∑
k=1

2tk〈ek, h〉 +
r∑

k=1

t2k

]}

× dρ(t1 . . . , tr) dµ(h).

By equation (3.7) in Theorem 3.3, the proof is completed.

Modifying the proof of Theorem 3.10, by replacing “z” by “zn”
whenever it occurs, we have the following corollary.



384 I. YOO, T.S. SONG, B.S. KIM AND K.S. CHANG

Corollary 3.11. Let {en} and {zn} be given as in Theorem 3.9 and
let F be given as in Theorem 3.10. Then equation (3.12) holds.

From Theorem 3.8 and Theorem 3.10 and the linearity of the analytic
Wiener integral on abstract Wiener space, we obtain

Corollary 3.12. Let {en} be given as in Theorem 3.9. Let F (x) =
G(x) Ψ((e1, x)∼, . . . , (er, x)∼) where G ∈ F(B) and Ψ = ψ + φ ∈
Lp(Rr) + M̂(Rr), 1 ≤ p < ∞. Then equation (3.11) holds.

Similarly, from Theorem 3.9, Corollary 3.11 and the linearity of the
analytic Feynman integral on abstract Wiener space, we have

Corollary 3.13. Let {en} and {zn} be given as in Theorem 3.9.
Let F (x) = G(x)Ψ((e1, x)∼, . . . , (er, x)∼) where G ∈ F(B) and Ψ =
ψ + φ ∈ L1(Rr) + M̂(Rr). Then equation (3.12) holds.

Our main result, namely a change of scale formula for Wiener inte-
grals on abstract Wiener space, now follows from Corollary 3.12.

Theorem 3.14. Let {en} be given as in Theorem 3.9. Let F (x) =
G(x)Ψ((e1, x)∼, . . . , (er, x)∼) where G ∈ F(B) and Ψ = ψ + φ ∈
Lp(Rr) + M̂(Rr), 1 ≤ p < ∞. Then, for any ρ > 0,
(3.13)∫

B

F (ρx) dν(x) = lim
n→∞ ρ−n

∫
B

exp
{
ρ2−1
2ρ2

n∑
k=1

[(ek, x)∼]2
}
F (x) dν(x).

Proof. By letting z = ρ−2 in (3.11), we have equation (3.13).

Obviously the constant function φ ≡ 1 is a member of M̂(Rr). Hence
we have the following corollary which is a change of scale formula for
Wiener integrals on an abstract Wiener space given in [20].

Corollary 3.15. Let {en} be given as in Theorem 3.9. Let F ∈
F(B). Then, for any ρ > 0, equation (3.13) holds.
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4. Corollaries. In this section we apply our results to the classical
Wiener space.

Let H0 = H0[a, b] be the space of real-valued functions f on [a, b]
which are absolutely continuous and whose derivative Df is in L2[a, b].
The inner product on H0 is given by

〈f, g〉 =
∫ b

a

(Df)(s)(Dg)(s) ds.

Then H0 is a real separable infinite dimensional Hilbert space. Let
B0 = B0[a, b] be the space C0[a, b] of all continuous functions x on
[a, b] with x(0) = 0 and equip B0 with the sup norm. Let ν0 be classical
Wiener measure. Then (H0, B0, ν0) is an example of an abstract Wiener
space. Note that if {en} is a complete orthonormal set in H0, then
{Den} is also a complete orthonormal set in L2[a, b] and (en, x)∼ equals
the Paley-Wiener-Zygmund stochastic integral

∫ b

a
(Den)(s)d̃x(s) for s-

almost everywhere x ∈ B0.

In [5], Cameron and Storvick introduced a Banach algebra S of
functionals on C0[a, b] which are expressible in the form

(4.1) F (x) =
∫

L2[a,b]

exp
{
i

∫ b

a

v(s) d̃x(s)
}
dσ(v)

for s-almost everywhere x ∈ C0[a, b], where σ ∈ M(L2[a, b]). Then we
know that F ∈ F(B0) if and only if F ∈ S.

Corollary 4.1 ([7, Theorem 1]). Let F (x) = G(x)ψ(x(b)) where
G ∈ S, ψ ∈ Lp(R), 1 ≤ p < ∞. Then, for each z ∈ C+, F is analytic
Wiener integrable, and if G is given by (4.1), then

Iz
a [F (·)]=

(
z

2π(b−a)

)1/2∫
L2[a,b]

∫
R

exp
{

1
2z(b−a)

[(
izξ+

∫ b

a

v(s) ds
)2

(4.2)

− (b−a)
∫ b

a

(v(s))2 ds
]}

ψ(ξ) dξ dσ(v).
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In case p = 1, for each real q �= 0, F is analytic Feynman integrable
and

Iq
a [F (·)]=

(
− iq

2π(b−a)

)1/2∫
L2[a,b]

∫
R

exp
{

i

2q(b−a)

[(
qξ+

∫ b

a

v(s) ds
)2

(4.3)

− (b−a)
∫ b

a

(v(s))2 ds
]}

ψ(ξ) dξ dσ(v).

Proof. Let φ(t) = 1/
√
b− a and e(t) =

∫ a+t

a
φ(s) ds. Then {e(t)} is

an orthonormal set in H0 and

x(b) =
√
b− a

∫ b

a

φ(t) d̃x(t) =
√
b− a(e, x)∼.

Thus by (3.1) in Theorem 3.1, we have

Iz
a [F (·)]=

(
z

2π

)1/2∫
L2[a,b]

∫
R

exp
{

1
2z

[(
izξ +

1√
b−a

∫ b

a

v(s) ds
)2

−
∫ b

a

(v(s))2 ds
]}

ψ(
√
b−aξ) dξ dσ(v)

=
(

z

2π(b−a)

)1/2∫
L2[a,b]

∫
R

exp
{

1
2z(b−a)

[(
izξ +

∫ b

a

v(s) ds
)2

− (b−a)
∫ b

a

(v(s))2 ds
]}

ψ(ξ) dξ dσ(v),

as desired. Equation (4.3) can be proved similarly.

The following corollary is obtained easily from Theorem 3.3 and
Corollary 3.4.

Corollary 4.2 ([7, Theorem 2]). Let F (x) = G(x)φ(x(b)) where
G ∈ S, φ ∈ M̂(R). Then for each z ∈ C+, F is analytic Wiener
integrable. Moreover if G is given by (4.1) and φ is given by

(4.4) φ(r) =
∫
R

exp{irt} dρ(t)
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then,

(4.5) Iz
a [F (·)] =

∫
L2[a,b]

∫
R

exp
{
− 1

2z

∫ b

a

(v(s) + t)2 ds
}
dρ(t) dσ(v).

Moreover, for each real q �= 0, F is analytic Feynman integrable and

(4.6) Iq
a [F (·)] =

∫
L2[a,b]

∫
R

exp
{
− i

2q

∫ b

a

(v(s) + t)2 ds
}
dρ(t) dσ(v).

From the above results and the linearity of the analytic Wiener
integral, we can obtain the formula for the analytic Wiener integral
of functions of the form F (x) = G(x)Ψ(x(b)) where G ∈ S, Ψ =
ψ + φ ∈ Lp(R) + M̂(R), 1 ≤ p < ∞. Similarly we can also have
the formula for the analytic Feynman integral of functions of the form
F (x) = G(x)Ψ(x(b)) where G ∈ S, Ψ = ψ + φ ∈ L1(R) + M̂(R).

The following corollary is a relationship between the Wiener integral
and the analytic Wiener (Feynman) integral on classical Wiener space.

Corollary 4.3. Let F (x) = G(x)Ψ(x(b)) where G ∈ S, Ψ = ψ+φ ∈
Lp(R) + M̂(R), 1 ≤ p < ∞. Let {φn} be a complete orthonormal set
in L2[a, b] with φ1(t) = 1/

√
b− a. Then, for each z ∈ C+, we have

Iz
a [F (·)]

(4.7)

= lim
n→∞ zn/2

∫
C0[a,b]

exp
{

1−z
2

n∑
k=1

( ∫ b

a

φk(t) d̃x(t)
)2}

F (x) dν0(x).

In case p = 1, if we let {zn} be a sequence of complex numbers in C+

such that zn → −iq, then

Iq
a [F (·)]

(4.8)

= lim
n→∞ zn/2

n

∫
C0[a,b]

exp
{

1−zn

2

n∑
k=1

( ∫ b

a

φk(t) d̃x(t)
)2}

F (x) dν0(x).
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From the above equation we obtain a change of scale formula for the
Wiener integral on classical Wiener space.

Corollary 4.4. Let F and {φn} be given as in Corollary 4.3. Then
for any ρ > 0,

∫
C0[a,b]

F (ρx) dν0(x)

(4.9)

= lim
n→∞ ρ−n

∫
C0[a,b]

exp
{
ρ2−1
2ρ2

n∑
k=1

(∫ b

a

φk(t) d̃x(t)
)2}

F (x) dν0(x).

Corollary 4.5 ([6, Theorem 2]). Let ρ and {φn} be given as in
Corollary 4.3. Then if F ∈ S, equation (4.9) holds.
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