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LINEAR COMBINATIONS OF ISOMETRIES

XIMENA CATEPILLÁN AND WACLAW SZYMANSKI

ABSTRACT. span (A1, . . . , An) denotes the linear space
spanned by Hilbert space operators A1, . . . , An. It is known
that if span (A, B) consists of normal operators, then A, B
commute. Let MI denote the set of all scalar multiples of
all isometries in a Hilbert space H. In this paper finite-
dimensional linear spaces contained in MI will be investi-
gated. Commutativity of such spaces will be described. An
example will be given of two unilateral shifts A, B of infinite
multiplicity such that span (A, B) ⊂ MI and A, B do not
commute.

1. Introduction. B(H) is the algebra of all bounded linear
operators in an infinite dimensional Hilbert space H. I denotes the
identity operator.

In 1966 Sarason in [6] proved that each Hilbert space operator
algebra which consists of commuting normal operators is reflexive. In
1969, Radjavi and Rosenthal in [4] noticed that the assumption of
commutativity is not needed, i.e., if a linear space of Hilbert space
operators consists of normal operators, then the operators commute,
cf. also [5, Lemma 9.20].

In 1988 Conway and Szymanski [2] proved that the latter statement
fails for hyponormal operators. These results suggest the general
problem:

For which sets C of operators, if a linear space S of operators is
contained in C, then the operators from S commute.

The above-mentioned result of [4] gives one answer; for C = the set
of all normal operators.

The result of [2] shows that C = the set of all hyponormal operators
is “too big.”

In this paper it is shown that the most important set of operators for
the above problem is the set of all scalar multiples of all isometries in a
Hilbert space which will be denote by MI; namely, two unilateral shifts
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A, B of infinite multiplicity will be found so that span (A, B) ⊂ MI and
A, B do not commute (Example 3.2); such an example is impossible if
one of the shifts is of finite multiplicity, Proposition 2.10. This example
shows that if a set C of operators contains MI, then operators A and B
can be found such that span (A, B) ⊂ C and A and B do not commute.

This problem led us to investigate (finite-dimensional) linear spaces
contained in MI. This investigation is carried out with the help of
the mapping 〈 , 〉 : B(H) × B(H) → B(H) defined by 〈A, B〉 = B∗A
for A, B ∈ B(H). It turns out that (Theorem 2.4) for a linear space
S ⊂ MI the restriction of 〈 , 〉 to S × S induces naturally an inner
product on S. An application to Cuntz algebras is given.

Lastly, some notation. If M, N ⊂ B(H) are linear spaces, then

M + N = {x + y : x ∈ M, y ∈ N}.

If A1, . . . , An ∈ B(H), then span (A1, . . . , An) (C∗(A1, . . . , An), re-
spectively) denote the linear space (C∗-algebra, respectively) generated
by A1, . . . , An.

2. Linear spaces contained in MI. The set MI is not a linear
space the sum of the unilateral shift of multiplicity one and its square
is not in MI. In this section we examine linear spaces contained in MI.

Proposition 2.1. B ∈ MI if and only if there exists γ ∈ C such
that B∗B = |γ|2I.

Proof. Suppose B∗B is a scalar multiple of I. If B∗B = 0, then
B = 0, (B = γI with γ = 0). If B∗B = |γ|2I with γ 
= 0, then B/γ is
an isometry. The converse implication is obviously true.

Proposition 2.2. Suppose A, B ∈ B(H) are such that span (A, B) ⊂
MI. Then there is λ ∈ C such that B∗A = λI.

Proof. Take an arbitrary complex number ν and compute

(∗) (νA+ B)∗(νA + B) = |ν|2A∗A + ν̄A∗B + νB∗A + B∗B.
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Suppose span (A, B) ⊂ MI. Then, for each ν ∈ C, (νA+B)∗(νA+B)
is a scalar multiple of I, thus by (∗),

ν̄A∗B + νB∗A = γ(ν)I

with some complex γ(ν), because A, B ∈ MI.

Let ν = 1. Then A∗B + B∗A = γ(1)I.

Let ν = i. Then −iA∗B + iB∗A = γ(i)I. Multiply both sides by −i
to get −A∗B + B∗A = −iγ(i)I.

Add the last equality to the equality for ν = 1. As a result, B∗A is
a scalar multiple of I.

Theorem 2.3. Suppose S ⊂ B(H) is a linear space. S ⊂ MI if and
only if, for each A, B ∈ S, there is a λ ∈ C such that B∗A = λI.

Proof. Suppose S ⊂ MI. If A, B ∈ S, then span (A, B) ⊂ S; thus,
span (A, B) ⊂ MI. Use Proposition 2.2.

Conversely, suppose A ∈ S. Let B = A. Then there is a λ ∈ C such
that A∗A = λI. By Proposition 2.1, A ∈ MI.

Consider now the mapping 〈 , 〉 : B(H) × B(H) → B(H) defined
by 〈A, B〉 = B∗A for A, B ∈ B(H). This mapping is linear in the
first variable, antilinear in the second variable, 〈A, A〉 = A∗A ≥ 0 and
〈A, A〉 = A∗A = 0 if and only if A = 0 for each A ∈ B(H). Let CI
denote all scalar multiples of I. Theorem 2.3 now reads:

Theorem 2.4. Suppose S ⊂ B(H) is a linear space. S ⊂ MI if and
only if 〈 , 〉 : S × S → B(H), the restriction of 〈 , 〉 to S × S, takes
only values in CI.

Using this result, on each linear space S ⊂ MI, we introduce
an inner product denoted also by 〈 , 〉, slightly abusing notation:
〈 , 〉 : S × S → C. If A, B ∈ S, then there is a λ ∈ C such that
B∗A = λI. By definition, we let 〈A, B〉 = λ. By the comments before
the statement of Theorem 2.4, this is, indeed, an inner product.

Theorem 2.4 shows also that the only linear subspaces of B(H), the
restriction to which of the mapping 〈 , 〉 : B(H) × B(H) → B(H),
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〈A, B〉 = B∗A, A, B ∈ B(H) is a scalar-valued inner product, are the
linear spaces contained in MI.

For a moment, let us fix a linear space S ⊂ MI with the inner product
〈 , 〉. The norm induced on S by 〈 , 〉 is 〈A, A〉1/2 = |γ|, where γ ∈ C
is such that A∗A = |γ|2I (cf. Proposition 2.1), A ∈ S. Thus vectors
of norm one in S are precisely isometries. If A, B ∈ S, then A, B are
orthogonal if 〈A, B〉 = 0, which means B∗A = 0.

Since A, B ∈ MI, this condition is equivalent to mutual orthogonality
of the ranges of A and B. Therefore, an orthonormal system in S
consists of isometries with mutually orthogonal ranges.

The following theorem characterizes finite-dimensional linear spaces
contained in MI.

Theorem 2.5. Suppose S ⊂ B(H) is a finite-dimensional linear
space. The following conditions are equivalent

(a) S ⊂ MI.

(b) If T1, . . . , Tn ∈ B(H)spanS, then for each i, j = 1, . . . , n, there
is a λij ∈ C such that T ∗

i Tj = λijI.

(c) There exist isometries A1, . . . , Ak ∈ B(H) with mutually orthog-
onal ranges (A∗

i Aj = δijI, i, j = 1, . . . k, δij is the Kronecker symbol)
such that S = span (A1, . . . , Ak).

Proof. (a) ⇒ (b) is clear by Theorem 2.3.

(b) ⇒ (a). If A, B ∈ S, then A = a1T1 + · · · + anTn, B =
β1T1 + · · ·+ βnTn for some a1, . . . , an, β1, . . . , βn ∈ C and

B∗A =
n∑

i,j=1

β̄iαjT
∗
i Tj =

n∑

i,j=1

β̄iαjλijI.

Use Theorem 2.3.

(a) ⇒ (c). S with the inner product 〈 , 〉 is a finite-dimensional
Hilbert space (see Theorem 2.4). Therefore S has an orthonormal basis
A1, . . . , Ak. By the comments preceding the statement of this theorem,
A1, . . . , Ak are isometries with mutually orthogonal ranges.

(c) ⇒ (a) is proved similarly as (b) ⇒ (a).
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In [1], Cuntz introduced a class of C∗-algebras generated by isome-
tries, cf. also [3]. A Cuntz algebra On is the universal C∗-algebra
generated by isometries S1, S2, . . . , Sn satisfying the condition S1S

∗
1 +

· · · + SnS∗
n = I. These isometries have orthogonal ranges: S∗

i Sj = 0
for i, j = 1, . . . , n, i 
= j. The following corollary follows immediately
from Theorem 2.5.

Corollary 2.6. If S1, . . . , Sn are generators of the Cuntz algebra
On, then span (S1, . . . , Sn) ⊂ MI.

A certain form of “the converse” of this result, Corollary 2.9, is also
true. It relaxes the assumptions of (thus generalizes) Corollary V.4.7
of [3]. To prove it we need some preparation.

It is a simple exercise in linear algebra to prove.

Remark 2.7. If T1, . . . , Tn, S1, . . . , Sk are linear mappings from a
linear space X into itself and span (S1, . . . , Sk) ⊂ span (T1, . . . , Tn),
then S1X + · · ·+ SkX ⊂ T1X + · · ·+ TnX.

It is also easy to check.

Remark 2.8. If T1, . . . , Tn, S1, . . . , Sk ∈ B(H) and span (S1, . . . , Sk) ⊂
span (T1, . . . , Tn), then C∗(S1, . . . , Sk) ⊂ C∗(T1, . . . , Tn).

Corollary 2.9. T1, . . . , Tn ∈ B(H). If, for each i, j = 1, . . . , n,
there is a λij ∈ C such that T ∗

i Tj = λijI and T1H + · · · + TnH = H,
then C∗(T1, . . . , Tn) is isomorphic to a Cuntz algebra.

Proof. By Theorem 2.5, there exist isometries A1, . . . , Ak ∈ B(H)
with mutually orthogonal ranges such that span (T1, . . . , Tn) =
span (A1, . . . , Ak). Since T1H + · · · + TnH = H, it follows from Re-
mark 2.7 that A1H+· · ·+AkH = H, that is to say A1A

∗
1+· · ·+AkA∗

k =
I. By Remark 2.8, C∗(T1, . . . , Tn) = C∗(A1, . . . , Ak). Finally, Corol-
lary V.4.7 of [3] concludes the proof: C∗(A1, . . . , Ak) is isomorphic to
the Cuntz algebra Ok.
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Examples of isometries with mutually orthogonal ranges are well
known. For the sake of completeness, let us give one. If e1, e2, . . . is an
orthonormal basis of H, define A0en = ekn, A1en = ekn+1, . . . , Ak−1en

= ekn+(k−1), n ∈ N .

Using the fundamental theorem of arithmetic one proves that
A0, . . . , Ak−1 are unilateral shifts of infinite multiplicity. It is clear
that their ranges are mutually orthogonal.

Proposition 2.10. If S ⊂ MI is a finite-dimensional linear
space which contains a unilateral shift A of finite multiplicity, then
S = span (A).

Proof. Suppose B ∈ S is in the orthogonal complement of span (A).
Then A∗B = 0. This means that BH ⊂ kerA∗ = HΘAH the wan-
dering subspace of A which, by the assumption, is finite-dimensional.
Since B ∈ MI, this is possible only if B = 0.

3. Commutativity. Proposition 2.10 says in particular that, if
S ⊂ MI is a finite-dimensional linear space which contains a unilateral
shift of finite multiplicity, then S is commutative, but in the most
obvious, “one-dimensional,” way. In this section we will show that, in
general, if S ⊂ MI is a finite-dimensional linear space, this is really the
only way S can be commutative.

Theorem 3.1. Suppose S ⊂ MI is a finite-dimensional linear space,
S is commutative if and only if dimS = 0 or dimS = 1.

Proof. Suppose dimS 
= 0. Select an isometry A ∈ S. Take
B ∈ S in the orthogonal complement of span (A). Since B ∈ MI,
by Proposition 2.1 there is a γ ∈ C such that B∗B = |γ|2I. Then
(AB−BA)∗(AB−BA) = B∗A∗AB−B∗A∗BA−A∗B∗AB+A∗B∗BA =
2|γ|2I.
If S is commutative, then γ = 0, hence B = 0 and S = span (A).

The converse is obvious.

Now it is clear how to get an example of two operators A, B ∈ B(H)
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such that span (A, B) ⊂ MI and A, B do not commute.

Example 3.2. Let A, B be isometries with mutually orthogonal
ranges, i.e., B∗A = 0. By Theorem 2.5, span (A, B) ⊂ MI.

A, B are orthogonal in span (A, B), thus dim span (A, B) = 2. By
Theorem 3.1, A, B do not commute.

Corollary 3.3. If C ⊂ B(H) is a class of operators that contain
MI, then there are A, B ∈ C such that span (A, B) ⊂ C and A, B do
not commute.

A fairly complicated example illustrating this corollary for the class
of hyponormal operators was given in [2, Example 2.4]. Even though
one of the operators in that example is a unilateral shift of infinite
multiplicity, it is not clear that the other one should be an isometry.

Acknowledgments. The authors thank the referee for comments
which helped formulate the present version of this paper much more
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original one.
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