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A SURVEY ON RECENT ADVANCES ON
THE NIKODÝM BOUNDEDNESS THEOREM

AND SPACES OF SIMPLE FUNCTIONS

J.C. FERRANDO AND L.M. SÁNCHEZ RUIZ

ABSTRACT. In this paper we review the research about
the barrelledness properties of the normed space of simple
functions associated to a Boolean ring provided with the
supremum-norm. We also exhibit some results concerning
the barrelledness of certain closely related normed spaces of
vector-valued functions. We have included an explanation of
the strategy of some proofs and given account of the relevant
techniques.

1. Introduction. This paper aims to survey the literature concern-
ing normed spaces of simple functions associated to certain Boolean
rings and study the barrelledness of some spaces of vector-valued
bounded functions. Let us start by recalling some definitions that will
be used throughout this paper. A subset A of a topological space X is
said to be of first category if it is the union of a sequence of nowhere
dense subsets of X, otherwise A is called of second category. A topolog-
ical space is said to be Baire if each nonempty open subset is of second
category. A subset A of a topological vector space, tvs for short, E
over the field K of the real or complex numbers is absolutely convex if
λx+µy ∈ A for each x, y ∈ A and λ, µ ∈ K such that |λ|+ |µ| ≤ 1 and
absorbing if for each x ∈ E there exists λ > 0 such that λx ∈ A. Each
neighborhood of the origin of a tvs is absorbing. A tvs is called locally
convex, lc, if there exists a base of neighborhoods of the origin formed
by (closed) absolutely convex sets. Hereafter every tvs will be assumed
to be Hausdorff. It can be shown that a tvs is metrizable if and only
if it has a countable base of neighborhoods of the origin. A complete
metrizable tvs E is called an (F )-space. If in addition E is lc, then E
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is called a Fréchet space. An lcs E is said to be barrelled [59] if each
barrel, i.e., each absorbing closed absolutely convex subset, of E is a
neighborhood of the origin; equivalently, if each linear mapping with
closed graph from E into any Banach or any Fréchet space is continu-
ous [60], holding Fréchet implies Baire lcs which implies barrelled. Let
us mention that a tvs E is said to be ultrabarrelled [71], L-barrelled
in [2], if each linear mapping with closed graph from E into any (F )-
space is continuous. Note that each Baire tvs is ultrabarrelled and each
ultrabarrelled lcs is barrelled.

Given a nonempty set I, let us denote by l∞(I) the Banach space
over K consisting of all bounded scalar functions defined on I equipped
with the supremum norm ‖f‖ = sup{|f(t)| : t ∈ I}, whereas l∞0 (I) will
stand for the linear subspace of l∞(I) formed by all those functions
taking finitely many different values. The research on the space l∞0 (I)
starts in 1973 when Bennet and Kalton [10] noted that for I = N it
becomes a barrelled space of first category. The barrelledness of this
space was shown by Dieudonné that very year, cf. [93, p. 133], a fact
which independently was also pointed out by Saxon [79] in 1974. The
investigation of the topological properties of the space l∞0 (I) brought in
[9] and [20] to light the fact that it is not ultrabarrelled and contains
no separable infinite-dimensional barrelled subspace; in particular, it
does not contain a copy of c0.

The space of the simple functions associated to a ring A of subsets of
a nonempty set Ω is defined as follows. A function f : Ω→ K is said to
be A-simple if it is a linear combination of characteristic functions χA,
A ∈ A. The vector space l∞0 (A) of all A-simple functions will be named
the space of simple functions associated to the ring A. Unless otherwise
stated, we will assume that l∞0 (A) is endowed with the supremum norm

‖f‖ = sup{|f(ω)| : ω ∈ Ω}.

Setting V = acx {χA : A ∈ A}, another natural norm is defined on
l∞0 (A) by the gauge of V ,

‖f‖V = inf {a > 0 : f ∈ aV }.

Both norms are equivalent since if f ∈ l∞0 (A), ‖f‖ ≤ 1, it is not
difficult to show by induction on the number of nonvanishing different
values taken by f that f ∈ 4V , cf. [41, Proposition 5.1.1]. Hence,
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‖ · ‖ ≤ ‖ · ‖V ≤ 4‖ · ‖. The completion of l∞0 (A) is denoted by l∞(A), so
that l∞(A) is the Banach space of all bounded A-measurable functions
equipped with the supremum norm. If E is a vector space, a function
f : Ω → E is called A-simple if it is of the form f =

∑n
i=1 xiχAi

for xi ∈ E and Ai ∈ A, 1 ≤ i ≤ n. The space of all E-valued A-
simple functions will be denoted by l∞0 (A, E). If E is an lcs whose
topology is generated by a family P of semi-norms, then l∞0 (A, E)
becomes an lcs when equipped with the semi-norms {qp, p ∈ P} where
qp(f) := sup{p(f(ω)) : ω ∈ Ω}. We will denote by ba (A) the vector
space over K of the bounded finitely additive scalar measures defined
onA equipped with the supremum norm. If Σ is an algebra of subsets of
Ω and Π represents the family of all (finite) partitions of Ω by members
of Σ, then a function f : Ω → K is Σ-simple if there exist n scalars
a1, . . . , an with ai �= aj if i �= j and {E1, . . . , En} ∈ Π such that
f =

∑n
i=1 aiχEi

and the following two norms may be considered on
ba(Σ)

(1) The variation norm ‖µ‖1 = |µ|(Ω) = sup{∑E∈π |µ(E)| : π ∈ Π}.
(2) The supremum norm ‖µ‖∞ = sup{|µ(E)| : E ∈ Σ}.
We may identify ba(Σ) with l∞0 (Σ)∗ by means of the algebraic iso-

morphism T defined by 〈Tµ, χE〉 = µ(E) for each µ ∈ ba(Σ) and
E ∈ Σ. Writing µ(f) instead of 〈Tµ, f〉, routine calculations give that
‖µ‖1 = sup{|µ(f)| : ‖f‖ ≤ 1} and

‖µ‖∞ = sup
{∣∣∣∣µ

( n∑
i=1

aiχEi

)∣∣∣∣ : {Ei}ni=1 ∈ Π,
n∑
i=1

|ai| ≤ 1
}
.

So we have ‖ · ‖1 = ‖ · ‖∗ and ‖ · ‖∞ = ‖ · ‖∗V , providing the inequalities
‖ · ‖∞ ≤ ‖ ·‖1 ≤ 4‖ · ‖∞. Moreover, the following linear isometries hold,

l∞0 (Σ)
∗ ∼= (ba(Σ), ‖ · ‖1), (l∞0 (Σ), ‖ · ‖V )∗ ∼= (ba(Σ), ‖ · ‖∞).

If Σ is a σ-algebra, the classical Nikodým boundedness theorem, cf.
[21, 23], establishes that if {µt : t ∈ I} is a subset of ba(Σ) such that
sup{|µt(E)| : t ∈ I} < ∞ for each E ∈ Σ, then sup{‖µt‖∞ : t ∈ I} <
∞. When A is a ring of subsets of a set Ω enjoying this property, A is
said to have property (N). As noticed by Schachermayer [81], property
(N) is equivalent to the barrelledness of the space l∞0 (A).
In the forthcoming sections we review a number of results about the

barrelledness properties of the space of simple functions, also covering
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the vector-valued case. We also include some results upon Boolean rings
with property (N) and give room to the study of the barrelledness of
some spaces of E-valued bounded functions (E usually normed) closely
related with the space l∞0 (A, E).

2. Strong barrelledness properties. We require recalling several
notions of barrelledness that are located between barrelledness itself
and the Baire property, many of which were originally introduced in
order to extend the classic Banach’s closed graph theorem. In the
previous section a closed graph theorem for barrelled spaces has been
stated. The closed graph theorem for lc Baire spaces given in [93]
demands the definition of quasi-Suslin spaces. A Hausdorff topological
space E is called quasi-Suslin [93] if there exist a Polish space X, i.e., a
complete metrizable separable topological space, and a map f from X
into the power set of E such that ∪{f(x) : x ∈ X} = E and if {xn} is a
sequence in X converging to x ∈ X and zn ∈ Txn for each n ∈ N, then
{zn} has a cluster point in Tx. If E is an lc Baire space, F a quasi-
Suslin lcs and T a linear map from E into F with closed graph, then
T is continuous. Current monographs covering strong barrelledness up
to 1995 are [41, 61, 69, 93].

To start with, let us mention that in 1972 Saxon [78] introduced
Baire-like (BL) spaces as those lc spaces E such that, given an increas-
ing sequence of closed absolutely convex subsets of E that covers E,
one of them is a neighborhood of 0. The closed graph theorem for BL
spaces states that each linear mapping with closed graph from a BL
space into an (LB)-space, i.e., a strict inductive limit of Banach spaces,
is continuous [78]. Like barrelled spaces, BL spaces are stable under the
formation of separated quotients, countable-codimensional subspaces,
arbitrary products, completions and satisfy the three-space problem
[41, Section 1.2]. Because of the Amemiya-Komura theorem [6], each
metrizable lcs is barrelled if and only if it is BL. Hence, if the algebra
Σ has property (N), the space l∞0 (Σ) is BL. A deep result of Saxon
[78], cf. [61, p. 91] and [41, p. 15], states that if E is barrelled and has
no copy of ϕ (the vector space K(N) endowed with its strongest locally
convex topology), then E is BL. If E is a BL space and F is a dense
subspace, Amemiya-Komura’s theorem gives that if F is barrelled then
F is BL. In 1973 Todd and Saxon [86] introduced unordered Baire-like
(UBL) spaces as those lc spaces E such that, given an arbitrary se-
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quence of closed absolutely convex subsets covering E, one of them is
a neighborhood of 0. The closed graph theorem for UBL spaces asserts
that each linear mapping with closed graph from a UBL space into an
inductive limit of countably many Fréchet spaces is continuous [86].
It is obvious that lcs Baire implies UBL implies BL implies barrelled.
UBL spaces have similar stability properties to BL spaces, cf. [41, Sec-
tion 1.3]. The BL and UBL spaces have been extended in the realm
of tvs by Ka̧kol [56], Pérez Carreras [67] and Kakol and Roelcke [57,
58]. Baire-hyperplane (BH) spaces were defined in 1979 by Valdiva as
those lcs that cannot be covered by any sequence of closed hyperplanes
[89]. BH spaces also enjoy good permanence properties, and it should
be noted that a BH space need not be barrelled, though each UBL
space is BH and barrelled. In 1981, Valdivia and Pérez Carreras [94]
introduced totally barrelled (TB) spaces as those lc spaces E such that,
given a sequence of vector subspaces of E that covers E, one of them
is barrelled and its closure is finite-codimensional in E. Later on, in
1982, Pérez Carreras and Bonet [68] proved that an lcs E is TB if and
only if, given a sequence of vector subspaces of E that covers E, one
of them is BL. TB spaces have the same stability properties as BL and
UBL spaces, cf. [41].

In order to state a closed graph theorem for TB spaces, we need
the notion of C-web [16]. Denoting by W (N) the language defined
by the infinite alphabet N including the empty word (the null length
word that we will denote by λ), i.e., W (N) = ∪{Nk : k ∈ N ∪ {0}},
let us call a web in a set X to a family W = {Cw : w ∈ W (N)} of
subsets of X such that X = Cλ and for each w ∈ W (N), if (w, n)
denotes the word in W (N) obtained by adding the letter n to the
word w, then Cw = ∪∞

n=1Cw,n. The web W is called increasing [41] if
Cw,n ⊆ Cw,n+1 for each (w, n) ∈ W (N)×N and absolutely convex [60]
if each set C ∈ W is absolutely convex. A strand of W is a sequence
of subsets {Cn1,... ,ni

}i where {ni} is a sequence in N. A C-web is a
web W in an lcs E with the property that, for each strand {Cn1,... ,ni

}i
of W there is a sequence {ρi} of positive numbers such that, for all
0 ≤ λi ≤ ρi and all xi ∈ Cn1,... ,ni

the series
∑∞
i=1 λixi converges in

E. An lcs containing a C-web is said to be a webbed space. The closed
graph theorem for TB spaces given in [69] ensures that for each linear
mapping T with closed graph from a TB space E into an lc space F
containing an absolutely convex C-web, there exists a vector subspace
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H of F dominated by a Fréchet space H(τ ) such that T (E) ⊆ H and
T : E → H(τ ) is continuous. It is easy to note that UBL implies TB
implies BL. In 1981 Saxon and Narayanaswami [80] proved that each
infinite-dimensional Fréchet space contains a dense TB subspace which
is not UBL. In 1983, Arias de Reyna [7] proved the following result,
solving thereby a problem posed in [94].

Theorem 2.1. If Σ is an infinite σ-algebra, then the space l∞0 (Σ) is
not TB.

The idea of the proof requires some knowledge of the Stone space
of a Boolean ring, cf. [25, 52, 83, 84], and runs as follows. Let
{Ωn} be a tree of infinite subsets of Ω formed by elements of Σ and
let Λ denote the algebra generated by the finite unions of elements
of {Ωn}. If SΣ and SΛ stand for the Stone spaces of Σ and Λ,
respectively, write E = {µ ∈ SΣ : µ(E) = 1} if E ∈ Σ and
Â = {λ ∈ SΛ : λ(A) = 1} if A ∈ Λ. Since the transpose of the
canonical injection from l∞0 (Λ) into l∞0 (Σ) is a continuous linear map
from l∞0 (Σ)

∗ (weak∗) into l∞0 (Λ)
∗ (weak∗), its restriction J to SΣ is a

continuous map from SΣ onto SΛ. According to [41, Propositions 6.6.2
and 6.6.3], this implies that there is a closed subset Z of SΣ with the
property that if G ∈ Σ verifies that G ∩ Z �= ∅, there is a p ∈ N with
J−1(Ω̂p) ∩ Z ⊆ G. The fact that J−1(Ω̂n) ∩ Z �= ∅ for each n ∈ N
enables us to define a sequence {Fn} of closed vector subspaces of l∞0 (Σ)
by setting Fn := {f ∈ l∞0 (Σ) : 〈µ, f〉 = 〈λ, f〉 ∀µ, λ ∈ J−1(Ω̂n) ∩ Z}.
By the property above the sequence {Fn} covers l∞0 (Σ). Moreover,
each Fn is infinite-codimensional since for each positive integer k it is
possible to choose k pairwise disjoint sets A1, . . . , Ak ∈ Λ such that
Fn ∩ sp ({χAi

: 1 ≤ i ≤ k}) = {0}. Hence l∞0 (Σ) is not TB.

If E and F are metrizable barrelled spaces, then E⊗π F is barrelled,
cf. [55]. Quite similar results for other barrelledness properties hold
[92], cf. [41]. Unlike barrelled spaces none of the classes mentioned so
far are stable under the formation of locally convex hulls. A wide class
of barrelled spaces enjoying this property is obtained by considering
inductive limits of Banach spaces, the so called ultrabornological spaces
(if we drop completeness and consider inductive limits of normed spaces
we generate the class of bornological spaces, being well known that
each sequentially complete bornological space is ultrabornological).
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Recently the interest on ultrabornological spaces has been recovered
since many useful noncomplete normed spaces of measurable functions
enjoy this property [18, 51]. A Banach disk is a closed absolutely
convex subset of a tvs whose linear span becomes a Banach space when
provided with the norm defined by its Minkowski functional. An lcs is
ultrabornological if and only if it is the locally convex hull of its Banach
disks [60] and each linear mapping with sequentially closed graph from
an ultrabornological space into a webbed space is continuous [16]. In
[31] it is shown that if E is an infinite-dimensional Banach space with
a Schauder basis, there is a dense subspace F of E which is TB and
ultrabornological but not UBL. In the particular case that E coincides
with l1 this result was already known, since [93, p. 277] proved that
the subspace F of l1 formed by the sequences whose support is a subset
of N of density zero is a TB ultrabornological space which is not UBL.
The subsets of N of density zero will be paid more attention at the end
of Section 4. Since each Banach disk of l∞0 (Σ) happens to be finite-
dimensional whenever Σ is an infinite algebra of subsets of Ω [20], we
have

Theorem 2.2 [20]. If Σ is an infinite algebra of subsets of Ω, then
l∞0 (Σ) is not ultrabornological.

This result implies that if Σ is an infinite algebra with property (N),
then l∞0 (Σ) is a nonultrabornological barrelled space although l∞0 (Σ) is
bornological since metrizable. Let us remark that the first examples of
bornological barrelled spaces which are not ultrabornological were given
by Valdivia [87]. Despite the above, l∞0 (Σ) still can be represented as
a projective limit of ultrabornological spaces. Indeed if � stands for
the family of all the ultrafilters on Ω and for each U ∈ U ∈ � we write
L(U) = {f ∈ l∞(Ω) : f(t) = f(s) ∀ t, s ∈ U} and L(U) = {L(U) : U ∈
U}, then each L(U) is a vector space such that l∞0 (Σ) coincides with
∩{L(U) : U ∈ �}. Since each L(U) is ultrabornological [32] and l∞0 (Σ)
is the locally convex kernel of the family {L(U) : U ∈ �}, we are done.
There exists an underlying relationship between strong barrelledness

properties and vector-valued measure theory that has been highlighted
in [39, 41], which adds new reasons for the interest in this kind of
properties to the aforementioned closed graph theorems. Both reasons
motivated the introduction of suprabarrelled (SB) spaces by Valdivia
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[88, 90] in 1978 (called (db) in [72, 80]) as those lc spaces E such
that, given an increasing sequence of vector subspaces of E that covers
E, one of them is dense and barrelled. The closed graph theorem for
SB spaces assures that each linear mapping from an SB space into an
(LF )-space, i.e., a strict inductive limit of Fréchet spaces, is continuous.
The above definition was generalized by Rodŕıguez Salinas [73] in 1980
by transfinite induction as follows. Calling barrelled of class 0 to the
barrelled spaces, for each successor ordinal α+1 a space E is said to be
barrelled of class α+1, given an increasing sequence of vector subspaces
of E that cover E, one of them is dense and barrelled of class α and,
for each limit ordinal α �= 0, a space E is said to be barrelled of class
α if E is barrelled of class β for all β < α, thus SB spaces becoming
the class of barrelled spaces of class 1. The study of the properties of
barrelled spaces of class n ∈ N and of class ω0, called ℵ0 in [41], as
well as distinguishing examples may be found in [38, 41], setting that
none of the following implications can be reversed

TB =⇒ Barrelled of class ℵ0 =⇒ Barrelled of class n+ 1 =⇒
=⇒ Barrelled of class n =⇒ BL =⇒ Barrelled.

In order to state a closed graph theorem for barrelled spaces of class n,
let us call p-sequence in a vector space L to a countable family {Ln1···np

:
n1, . . . , np ∈ N} of vector subspaces such that {Ln1 : n1 ∈ N} is an
increasing sequence covering L and, for each (n1, . . . , nq−1) ∈ Nq−1

with 1 < q ≤ p the sequence {Ln1···np−1np
: np ∈ N} is increasing and

verifies that
∞⋃
np=1

Ln1···np−1np
= Ln1···np−1 . If T is a linear mapping

with closed graph from a barrelled space E of class p into an lcs F
containing a p-sequence Wp such that each L ∈ Wp has a dominating
Fréchet space L(τL), there is an H ∈ Wp such that T (E) ⊆ H and
T : E → H(τH) is continuous [41].

In 1992 the authors introduced baireled spaces [42] as a class A of
BL spaces that is maximal in the sense that if E ∈ A and {En}
is an increasing sequence of vector subspaces of E covering E, one
of them belongs to A. Its definition is facilitated by calling linear
web [42] in an lcs E to any increasing web of E formed by vector
subspaces. Then baireled spaces [41] are those lcs E such that each
linear web in E contains a strand formed by BL spaces. Baireledness
is transmitted by dense subspaces and inherited by closed quotients,
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countable-codimensional subspaces and finite products, holding that
the topological product of arbitrarily many baireled spaces is baireled
whenever each product of countably many of them is [42]. In op.
cit. it is shown that baireled spaces are strictly located between TB
spaces and barrelled spaces of class ℵ0 giving distinguishing examples.
Non-TB spaces which are baireled are obtained by showing that if E
denotes a baireled metrizable space and F is a UBL space, then E⊗πF
is baireled [42, Proposition 4] and recalling that if E is the subspace of
l1 formed by all the scalar sequences whose support has density zero,
then E is a TB space [94, Example 1] such that E⊗π l2 is not TB [94,
Corollary 8.1], cf. [41, Lemma 4.5.1]. Non-baireled spaces which are
barrelled of class ℵ0 are obtained in each nonnormable Fréchet space
[42, Theorem 2] by using an old result of Eidelheit, cf. [41, Lemma
3.3.2], after showing that the space ω, product of ℵ0 copies of K,
contains a dense subspace E with the above property. This subspace
E is built up as the union of an increasing sequence of subspaces {Er},
where Er := ωr ×∏∞

i=r+1 Hi, r ∈ N, and each Hn is a dense subspace
of ωN ∼= ω which is barrelled of class n but not barrelled of class n+ 1
[41, Proposition 3.3.1]. Including baireled spaces in, the scheme above
is simplified by taking into account that every dense barrelled subspace
of a BL space is BL. Thus, if B0 denotes the class of BL spaces, then
a space E is barrelled of class n, or briefly E ∈ Bn, if and only if,
given an increasing sequence of vector subspaces of E covering E, one
of them belongs to Bn−1. So, for each n, we have

TB ⇒ Baireled⇒ Barrelled of class ℵ0 ⇒ Bn ⇒ Bn−1 ⇒ Barrelled.

Baireled spaces admit several interesting characterizations. Mimick-
ing the above notation, let us denote by Bα the class of barrelled spaces
of class α for each ordinal α ≥ ω0, then we have:

Theorem 2.3. Given a space E, the following assertions are
equivalent:

(i) [42] E is baireled.

(ii) [75] Each linear web in E contains a strand formed by dense
barrelled spaces.

(iii) [42] Each increasing sequence of subspaces of E covering E
contains a baireled space.
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(iv) [42] Each linear web in E contains a strand formed by baireled
spaces.

(v) [42] E belongs to a maximal class of BL spaces in the sense
explained above.

(vi) [75] E ∈ Bα for each ordinal number α.

(vii) E ∈ Bα for some ordinal α ≥ ω1.

(viii) Each linear web in E contains a strand formed by elements of
∪{Bα : α ≥ 0}.

The above theorem gathers and extends previous results of [42, 75],
implying that baireledness cannot be strengthened by any barrelledness
property of class α > ω1. As a simple consequence of [91, Theorems 1
and 2], we have the following closed graph theorem.

Theorem 2.4 [42]. Given a linear mapping T with closed graph from
a baireled space E into an lcs F containing an increasing absolutely
convex C-web, there exists a vector subspace H of F dominated by
a Fréchet space H(τ ) such that T (E) ⊆ H and T : E → H(τ ) is
continuous.

Baireled spaces have proven to be useful since López Pellicer [62] has
shown that l∞0 (Σ) is baireled whenever Σ is a σ-algebra of subsets of a
set Ω. This result answers in the positive a question posed in [42] and
improves previous results concerning strong barrelledness properties
of the space of simple functions, see [36, 37, 43, 74, 88] and [41].
Another class of lc spaces with strong barrelledness properties not
mentioned above having nice closed graph theorems, as for instance
Valdivia’s convex-Baire spaces [93], have been introduced elsewhere.
An account of some of these may be found in [41]. Barrelled spaces
of class n and baireled spaces have been defined in the realm of tvs in
[76, 77].

3. Baireledness of the space of simple functions. In this section
we are going to review the proof [62] of the baireledness of the space
l∞0 (Σ) whenever Σ is a σ-algebra of subsets of a nonempty set Ω. The
argument, which is highly technical, uses an original combinatorial in-
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strument along with some sliding hump methods inspired on Valdivia’s
seminal paper [88], going beyond the techniques previously developed
in [36, 43] in order to prove the barrelledness of class ℵ0 of the space
l∞0 (Σ). Firstly we look at the main ideas of [43]. These are split into an
algebraic part where the sliding hump arguments prevail and another
part where the topological structure of the space l∞0 (Σ) comes into
play, as in Theorem 3.2 below. Given A ∈ Σ, l∞0 (Σ|A) will stand for
the vector subspace of l∞0 (Σ) spanned by {χB : B ∈ Σ, B ⊆ A}, that
is, the vector space formed by all the Σ|A-simple functions where Σ|A
denotes the σ-algebra generated by restricting Σ to A, and F(Σ) will
stand for the family of finite-dimensional vector subspaces of l∞0 (Σ).

It is easy to show that if A ∈ Σ and no F ∈ F(Σ) satisfies
l∞0 (Σ|A) ⊆ E+F for a given vector subspace E of l∞0 (Σ), the following
properties are true:

(1) Given a partition of A by means of q members Q1, Q2, . . . , Qq of
Σ, there is some i ∈ {1, . . . , q} such that there is no F ∈ F(Σ) with
l∞0 (Σ|Qi

) ⊆ E + F .

(2) Given any q ∈ N and x1, x2, . . . , xr ∈ l∞0 (Σ), there exists a
partition of A by means of q members Q1, Q2, . . . , Qq of Σ such that
χQi

, /∈ sp (E ∪ {x1, x2, . . . , xr}), for 1 ≤ i ≤ q.

Given p ∈ N it is called a p-net any subset of Np whose elements
(m1,m2, . . . ,mp) are such that m1 takes infinitely many values; for
each of these m1,m2 takes infinitely many values; and for each of these
m1,m2, . . . ,mp−1, the pth coordinate takes infinitely many values mp.
Np is a simple example of a p-net. An exhaustive use of properties 1
and 2 above enables to show that if N (S) is a p-net containing a finite
set S ⊂ Np, {Es : s ∈ N (S)} is a family of vector subspaces of l∞0 (Σ)
and A ∈ Σ is such that no F ∈ F(Σ) satisfies l∞0 (Σ|A) ⊆ Es + F ,
s ∈ N (S), then given x1, x2, . . . , xr ∈ l∞0 (Σ) there are |S| pairwise
disjoint elements {Ms : s ∈ S} of Σ, contained in A, such that
χMs

/∈ sp (Es ∪ {x1, x2, . . . , xr}), s ∈ S. Moreover, there is no
F ∈ F(Σ) with l∞0 (Σ|A\∪w∈SMw

) ⊆ Es + F for each s ∈ N ∗(S), where
N ∗(S) is some p-net contained in N (S) such that S ⊂ N ∗(S). Setting
�w =

∑k
i=1 wi for each w = (w1, . . . , wk) ∈ W (N), then the following

lemma holds, implying Theorem 3.2 below.
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Lemma 3.1 [43]. Let {Es : s ∈ Np}, p ∈ N, be a family of infinite-
codimensional vector subspaces of l∞0 (Σ). Then there is a p-net

{(m(i1),m(i1, i2), . . . ,m(i1, i2, . . . , ip)) ∈ Np : i1, i2, . . . , ip ∈ N}

and a sequence {Mt : t ∈ Np+1} of pairwise disjoint elements of Σ
such that, setting p(t) := (m(i1),m(i1, i2), . . . ,m(i1, i2, . . . , ip)) for
each t = (i1, . . . , ip+1) ∈ Np+1, we have that χMt

/∈ sp (Ep(t) ∪ {χMr
:

r ∈ Np+1, �r < �t}).

Theorem 3.2 [43]. l∞0 (Σ) is barrelled of class ℵ0.

For the baireledness, some additional notation will be helpful. If
w = (n1, . . . , ni, . . . , nq) ∈ W (N), set |w| = q for the length of w and
Piw := (n1, . . . , ni), for 1 ≤ i ≤ |w| and, given T ⊆ W (N), write
PiT := {Piw : w ∈ T, |w| ≥ i}.

A nonempty subset T ⊂ W (N) is said to be a v-web if it verifies the
following three conditions:

(1) For each word w ∈ T and for each 1 ≤ i ≤ |w| there are infinitely
many words in T whose first i− 1 letters coincide with those of w and
whose ith letter is different in each one of these words.

(2) Given any word w ∈ T there is no longer word in T whose first
|w| − 1 letters coincide with those of w.
(3) For each sequence {wn} of words in T such that |wn| ≥ n for each

n ∈ N there are two consecutive words wp and wp+1 in the sequence
whose first p letters do not coincide.

If t ∈ W (N), then b(t) := {P1t, P2t, . . . , P|t|t} is the branch of t.
The set BT = ∪t∈T b(t) formed by the branches of the elements of
the v-web T is called the v-tree determined by T . One may see BT
as a tree with infinitely many vertices, each labeled by some word of
W (N), and a root (the empty word), i.e., an infinite arborescence,
such that each of his infinitely many branches has finite length and
each father vertex s ∈ BT \ T has infinitely many sons (s, k) belonging
to BT , but if a son belongs to T , then all his siblings also belong to T .
Each p-net in Np and ∪∞

i=1{i} × Ni are examples of v-webs. Infinite
subsets of N are also examples of v-webs which we will call trivial.
Note that any subset T ∗ of a v-web that satisfies condition 1 in the
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above definition is a v-web, too. Given a v-web T its v-tree BT satisfies
that, for each (n1, n2, . . . , ni) ∈ BT there are infinitely many p ∈ N
such that (n1, n2, . . . , ni−1, p) ∈ BT but if (n1, n2, . . . , ni) ∈ T no
(n1, . . . , ni−1, p, q) ∈ BT .
If {Et : t ∈ W (N)} is a linear web in an lcs E and T is a v-

web, then E = ∪{En : n ∈ P1T} and for each s ∈ PpT \ T ,
Es = ∪{Es,n : (s, n) ∈ Pp+1T}. So, using condition 3, we deduce
that E = ∪{Et : t ∈ T}. If the v-web T = T1∪T2 is trivial and T1 does
not contain any v-web, then T2 must contain some v-web. This can be
extended to any v-web by means of the following combinatorial lemma,
from which it follows that if a v-web T satisfies that T = T1∪T2∪· · ·∪Tp,
some Ti must contain a v-web.

Lemma 3.3 [62]. Let T be a v-web. If T0 ⊆ T does not contain any
v-web, then T \ T0 does.

The argument works as follows. When T is trivial, we set I1 := T \T0,
thus I1 becoming a v-web contained in T \ T0, and J1 := ∅. If T is
not trivial, then P1T ∩ T = ∅ and there is some a0 ∈ N such that
for each a1 ∈ J1 := {m ∈ P1T : m > a0} there is no v-web Ua1 with
{a1} × Ua1 ⊆ T0. In this case we set I1 := ∅. Given a1 ∈ J1, if there
exists a maximal infinite subsetMa1 ⊆ N such that {a1}×Ma1 ⊆ T \T0,
then we represent the set formed by the sons of a1 that belong to T \T0

by Ta1 := {a1} × Ma1 and write Ga1 := ∅ (sons of a1 that generate
grandsons of a1 in BT ). Otherwise, since J1 ⊆ P2T \ T , the vertex a1

has infinitely many sons, hence there is a maximal infinite subset N(a1)
of N such that (a1,m) ∈ P2T for each m ∈ N(a1). By the definition of
J1, (a1,m) /∈ T0 for infinitely many m ∈ N(a1) and, since the previous
case does not happen, (a1,m) /∈ T \ T0 for infinitely many m ∈ N(a1).
Hence (a1,m) /∈ T for any m ∈ N(a1). Let a0(a1) ∈ N(a1) be such
that for each a2 ∈ N(a1), a2 > a0(a1), there is no v-web Ua1,a2 with

{(a1, a2)} × Ua1a2 = {a1} × ({a2} × Ua1a2) ⊆ T0.

Then we take Ga1 := {(a1, a2) ∈ P2T : a2 ∈ N(a1), a2 > a0(a1)} and
Ta1 := ∅. Note that now Ga1 stands for an infinite set of sons of a1,
none of which belongs to T and from all of which a1 has got grandsons
in BT , and Ta1 stands for the set formed by the sons of a1 that belong
to T , none in this case.
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Writing I2 = ∪{Ta1 : a1 ∈ J1} and J2 = ∪{Ga1 : a1 ∈ J1}, we
proceed again with each vertex (a1, a2) ∈ J2. Then either there exists
an infinite Ma1a2 ⊆ N such that {(a1, a2)} ×Ma1a2 ⊆ T \ T0, in which
case we write Ta1a2 := {(a1, a2)}×Ma1a2 and Ga1a2 := ∅, or there is a
maximal infinite subset N(a1, a2) of N such that (a1, a2,m) ∈ P3T \ T
for eachm ∈ N(a1, a2). In this case there is some a0(a1, a2) ∈ N(a1, a2)
such that for each a3 ∈ N(a1, a2), a3 > a0(a1, a2), there is not
any v-web Ua1a2a3 with {(a1, a2, a3)} × Ua1a2a3 ⊆ T0. Then we set
Ga1a2 := {(a1, a2, a3) ∈ P3T : a3 ∈ N(a1, a2), a3 > a0(a1, a2)} which
is infinite and Ta1a2 := ∅. Take I3 = ∪{Ta1a2 : (a1, a2) ∈ J2} and
J3 = ∪{Ga1a2 : (a1, a2) ∈ J2}. Continuing in this way, if some Jk
were empty, the inductive process would end and I1 ∪ I2 ∪ · · · ∪ Ik
would be a v-web contained in T \ T0. If I = ∪∞

j=1Ij were empty, then
we would be able to determine a sequence {αn} in N such that each
(α1, α2, . . . , αn) ∈ Jn; therefore there exists a sequence {tn} in T such
that Pntn = (α1, α2, . . . , αn), contradicting condition 3 for T to be a
v-web. Hence I �= ∅, and I is a v-web contained in T \ T0.

Using the previous result together with some techniques of sliding
hump resembling those of the first stage, one gets the key Proposi-
tion 3.4 below, from which the baireledness of the space l∞0 (Σ) is, as
we are going to see, an almost straightforward consequence.

Proposition 3.4 [62]. Let {Ew : w ∈ W (N)} be a linear web in
;∞0 (Σ), and let T be a v-web. Then there exists some t ∈ T such that
Et is barrelled.

Theorem 3.5. The space l∞0 (Σ) is baireled.

The proof runs by contradiction, assuming that there is a linear web
{Ew : w ∈ W (N)} in l∞0 (Σ) none of whose strands is entirely formed
by BL subspaces. Since l∞0 (Σ) ∈ B1, there exists some b1 ∈ N such
that, for each n1 ≥ b1, En1 is barrelled (and therefore BL because
of metrizability) and dense. For each fixed a1 ≥ b1 either there is
no Ew barrelled and dense for w ∈ {a1} × N, in which case we set
Ca1 := {a1} ×Na1 (where Na1 is a cofinite subset of N such that Ew
is dense for each w ∈ Ca1) and Da1 := ∅, or there is a cofinite subset
Ma1 in N such that Ew is barrelled (hence BL) and dense for each
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w ∈ {a1}×Ma1 in which case we set Ca1 := ∅ and Da1 := {a1}×Ma1 .
Setting I1 := ∪{Ca1 : a1 ≥ b1} and J1 := ∪{Da1 : a1 ≥ b1}, note that
J1 �= ∅ since l∞0 (Σ) ∈ B2. We proceed in the same way with each
(a1, a2) ∈ J1 to build up Ca1,a2 and Da1,a2 , then I2 and J2. Going
on, we are able to build up in this way the sets In and Jn for each
n ∈ N, noting that each Jn �= ∅ since l∞0 (Σ) ∈ Bℵ0 ⊂ Bn. Now
set I = ∪∞

n=1In. If I = ∅, we may find a sequence {an} in N such
that Ea1,a2,... ,an

is barrelled and dense in l∞0 (Σ) for each n ∈ N, a
contradiction. If I �= ∅, it is easy to check that I fulfills conditions 1
and 2 of the definition of v-web, condition 3 being consequence of the
fact that there is no strand of barrelled subspaces in l∞0 (Σ). According
to Proposition 3.4, there exists t ∈ I such that Et is barrelled. This
contradicts the definition of I.

4. Rings with property (N). There are two common ways of
extending the classic Nikodým boundedness theorem. The first one
consists of determining a subfamilyM of a given σ-algebra Σ with the
property that pointwise boundedness on M of a set in ba(Σ) assures
that this set is uniformly bounded on Σ. The second alternative, far
from working into a σ-algebra of sets, is to investigate what Boolean
rings satisfy property (N), that is, what Boolean rings have an asso-
ciated space of simple functions which is barrelled. Concerning the
first line of research, let us mention that in 1951 Dieudonné [24] shows
that if X is a Hausdorff topological compact space, B is the σ-algebra
of Borel sets of X,U is the family of open sets of X and M is a set
of scalarly-valued measures on B, then {µ(A) : µ ∈ M,A ∈ B} is a
bounded set provided that {µ(U) : µ ∈ M} is bounded for each U ∈ U .
If X is a Hausdorff regular space and U is the family of all regular open
sets of X, a similar result was obtained by Gänssler in 1971 [49]. This
last result also holds for group-valued measures [13]. Other extensions
of Nikodým boundedness theorem for semigroup-valued measures can
be found in [15]. The baireledness of the space of simple functions pro-
vides the following remarkable extension of the Nikodým boundedness
theorem.

Theorem 4.1 [62]. If V = {Σw : w ∈ W (N)} is an increasing
web in a σ-algebra Σ, there exists a strand {Σn1n2...ni

}i in V such that
any family {µs : s ∈ S} ⊆ ba(Σ) which is pointwise bounded in some
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Σn1n2...ni
is uniformly bounded in Σ.

Now we will review some results about rings whose associated spaces
of simple functions are barrelled. Indeed, in 1981, Moltó [64] intro-
duced a class of Boolean rings, namely, algebras with property (f),
which satisfy the so-called Vitali-Hahn-Saks (VHS) property, contain-
ing some classes of algebras previously considered by Seever [82] and
Faires [30], named algebras with the interpolation (I) property. In
1984, Freniche introduced Boolean algebras with the subsequential in-
terpolation (SI) property [48], a new class of algebras containing alge-
bras with property (f), that also satisfy property (VHS). Afterwards,
in 1992, Gassó [50] defined a class of Boolean algebras, namely alge-
bras with the local interpolation (LI) property, which included those
algebras having property (f) as well as all known examples of algebras
with property (N) which failed to have property (VHS) [53, 81]. Other
classes of rings extending Nikodým’s boundedness theorem have been
introduced by Haydon [54], Aizpuru [4, 5] and Drewnowski et al. [26,
28]. Some examples of algebras of sets which fail to have property (N)
may be found in [81] and [41, pp. 131 135]. An intrinsic characteriza-
tion of those Boolean rings with property (N) is still unknown.

According to the Stone representation theorem each Boolean algebra
(A,+, ·) is isomorphic to the algebra (C,∆,∩) of all clopen sets of the
Stone space SA of the algebra, hence there is no loss of generality
considering only algebras of open and compact sets of some topological
space on which such a family of sets is a base of the topology. A
Boolean algebra A has property (VHS) [81] if given a sequence {µn}
of scalar bounded finitely additive measures on A such that {µn(A)}
converges for every A ∈ A, then {µn} is uniformly exhaustive, i.e., for
each sequence {An} of pairwise disjoint elements of A, given ε > 0
there is a k(ε) ∈ N such that supn |µn(Ai)| ≤ ε for each i ≥ k(ε). A
Boolean algebra A is said to have the property (I) if for each pair of
sequences {An} and {Bn} of pairwise disjoint elements in A and such
that Ai ∩ Bj = ∅ for each i, j ∈ N, there exists a B ∈ A such that
An ⊆ B for each n ∈ N and B ∩ Bn = ∅ for every n ∈ N. Clearly,
each σ-algebra has property (I). A Boolean algebra A is said to have
property (f) if for each pair of sequences {An} and {Bn} of pairwise
disjoint elements in A and such that Ai ∩ Bj = ∅ for each i, j ∈ N,
there exists a subsequence {Bnk

} of {Bn} which satisfies the following
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conditions:

(1) There exists some A ∈ A such that

(Bnk
⊆ A ∧Ak ∩A = ∅), for all k ∈ N.

(2) For each set J ⊆ N there is some AJ ∈ A with

(Bnk
⊆ AJ∀ k ∈ J) ∧ (Bnk

∩AJ = ∅∀ k ∈ N \ J).

A Boolean algebra A is said to have the property (SI) if for every
sequence {An} of pairwise disjoint elements in A and for each infinite
set M ⊆ N, there exists A ∈ A and an infinite set N ⊆ M such that
An ⊆ A if n ∈ N and An ∩ A = ∅ if n ∈ N \ N . If A is a Boolean
algebra with property (f), it is shown in [48] that A has property (SI).
The latter property implies property (VHS) and there exist algebras
with property (SI) which do not have property (f). If A is a Boolean
algebra which has property (VHS), then A also has property (N). This
may be seen as follows. Assume A is a Boolean algebra with property
(VHS) which does not have property (N). Then there is a pointwise
bounded family M of scalar bounded finitely additive measures on A
which are not uniformly bounded. This allows us to obtain a pairwise
disjoint sequence {En} of elements in A and a sequence {λn} ⊆ M
such that |λn(En)| > n for each n ∈ N. Setting µn := λn/n, it is clear
that µn ∈ ba(A) for each n ∈ N and limn µn(A) = 0 for each A ∈ A.
As A has property (VHS) the sequence {µn} is uniformly exhaustive,
so for ε = 1/2 there exists some k ∈ N such that supn |µn(Ei)| < 1/2
for each i ≥ k. Hence 1/2 > |µk(Ek)| > 1, a contradiction. This shows
that Freniche algebras have property (N) and hence their associated
spaces of simple functions are barrelled. If A is a Boolean algebra with
property (f), then l∞0 (A) is an SB space [65]. Ferrer et al. showed in
[46] that if A is a Boolean algebra with property (I), then l∞0 (A) is
barrelled of class ℵ0. Abraham introduced in [1] a class of Boolean
algebras enjoying property (VHS) that he called algebras with the
Vitali-Hahn-Saks-Nikodým-Saeki (VHSNS) property and showed that
each Boolean algebra with the property (SI) has property (VHSNS).
Therefore, the following scheme holds

(I) =⇒ (f) =⇒ (SI) =⇒ (VHSNS) =⇒ (VHS) =⇒ (N).
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As stated, a wide class of Boolean algebras with property (N) that
may fail to have property (VHS) was introduced in [50]. Given a
Boolean algebra A, denote by SA its Stone space, co (SA) the algebra,
isomorphic to A, of all clopen subsets of SA and identify A and co (SA).
A Boolean algebra A is said to have property (LI) if for each s ∈ SA
there exists a decreasing sequence (Tn(s)) of clopen neighborhoods of
s in SA in such a way that if {An} and {Bn} are two sequences of
pairwise disjoint elements in A with Ai ∩ Bj = ∅ for each i, j ∈ N
and An, Bn ⊆ Tn(s) for each n ∈ N, then there exists a subsequence
{Bnk

} of {Bn} which satisfies conditions 1 and 2 above. It is obvious
that each Boolean algebra with property (f) has property (LI). It is
more difficult to show that property (LI) implies property (N). Let
us glance at the argument. If Tn(s) is as in the definition of property
(LI) and {En} is a sequence of pairwise disjoint elements in A such that
En ⊆ Tn(s) for each n ∈ N, adapting some techniques of [64] it may be
shown that for each sequence {µn} of bounded finitely additive scalar
measures defined on A there exists a subsequence {Fn} of {En} such
that, if B denotes the σ-algebra {∪n∈NFn : N ⊆ N}, for each positive
integer n there exists a countably additive scalar measure λn on B
satisfying: (a) λn(E) = µn(E) for each E ∈ A∩B and (b) for all B ∈ B
there exists some AB ∈ A with µn(AB) = λn(B). Then, assuming by
contradiction that there exists a Boolean algebra A with property (LI)
which fails to have property (N), a point s ∈ SA may be obtained,
together with a sequence {Tn(s)} of clopen neighborhoods of s in SA,
two strictly increasing sequences of positive integers {ni} and {ki} and a
sequence {Ei} of pairwise disjoint elements of A such that Ei ⊆ Tki

(s)
and |µni

(Ei)| > i for each i ∈ N. The statement above provides
a subsequence {Epi

} of {Ep} and a sequence {λi} in ca (B), where
B = {∪i∈NEpi

: N ⊆ N}, such that λi(E) = µni
(E) for each E ∈ A∩B

and, given B ∈ B, there exists some AB ∈ A with λi(B) = µni
(AB)

for each i ∈ N. These facts imply that {λi} is pointwise bounded on B
and |λpi

(Epi
)| > pi for each i ∈ N. But, according to Nikodým’s

convergence theorem [21, p. 90], {λpi
} is uniformly exhaustive on

B. Hence there is a k such that supj |λj(Epi
)| < 1 for each i ≥ k,

which gives the contradiction pk < |λpk
(Epk

)| < 1. So we have that
(f)⇒ (LI)⇒ (N).

A Boolean algebra A is said to have property (G) if each weak∗ con-
vergent sequence in C(SA)∗ is weak convergent, where C(SA) denotes
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the Banach space of all continuous functions on SA provided with the
supremum norm. Let us remark that (N) �⇒ (G) [53, 81]. The classic
theorem of Dieudonné-Grothendieck which characterizes the relatively
compact sets of the Banach space rca(bo (SE)) of all regular Borel mea-
sures defined on the σ-algebra bo (SΣ) of the Borel sets in SΣ for a
σ-algebra Σ, see [21, p. 98], implies the well-known Groethendieck’s
theorem which establishes that each σ-algebra Σ has property (G). The
same argument shows that each Boolean algebra with property (VHS)
has property (G). Consequently, (VHS)⇒ (N) ∧ (G). The converse is
also true thanks to a theorem of Diestel, Faires and Huff [22]. So one
has the following.

Theorem 4.2. For each Boolean algebra, (VHS) ⇔ (N) ∧ (G).

A Boolean algebra A of clopen subsets in a compact totally discon-
nected space S is said to be up-down semi-complete [14] if, for each
sequence {An} of pairwise disjoint elements in A such that supn{An}
exists, in A, then supk{Ank

} exists for each strictly increasing subse-
quence {nk} ⊆ N. Although a Boolean up-down semi-complete algebra
need not have property (N), if A is a Boolean up-down semi-complete
algebra such that for each countably additive non-negative measure µ
defined on A and each sequence {An} of µ-null elements in A there
exists B ∈ A such that µ(B) > 0 and B ∩ An = ∅, for each n ∈ N,
then A has property (VHS) [14, Theorem 2.6]. Let us remark that
Haydon’s Boolean algebras [54] do have property (VHS) and that a
wide class of Boolean algebras with property (G) containing Haydon’s
class was introduced in [3].

It should be mentioned that the algebra J of Jordan subsets of the
interval [0, 1] has property (LI) which, as we know, implies that J has
property (N). However, J does not have property (VHS). Indeed, if λ
denotes the Lebesgue measure on [0, 1],

An := {(2i−1)/2n : 1 ≤ i ≤ 2n−1} and µn := 1/2n−1
2n−1∑
i=1

δ 2i−1
2n

for each n ∈ N , then {An} is a sequence of pairwise disjoint elements
of J and µn(E) → λ(E) for each E ∈ J . Since µn(An) = 1, then
{µn} is a pointwise convergent sequence of bounded scalar additive
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measures which is not uniformly exhaustive. Hence, according to the
Diestel-Faires-Huff theorem, J cannot have property (G). Historically,
this one was the first example, due to Schachermayer [81], of a Boolean
up-down semi-complete algebra with property (N) which does not have
property (G), answering in the negative the question (N)⇒ (G) raised
by Seever [82]. Another classical example of a Boolean algebra with
property (G) that fails to have property (N) is due to Talagrand [85].
In [34] it is shown that the space l∞0 (J ) is even barrelled of class ℵ0.
Other examples of Boolean algebras with property (LI) that fail to
have property (VHS) may be found in [50] and [34]. However, there
are classes of rings of sets with property (N) which seem not to be
included in any of the preceding classes. As stated in the theorem
below, one of these is the ring Z of the subsets of N of density zero,
that we are going to consider briefly. Recall that a subset A of N is
said to be of density zero if

lim
n→∞

|{m ∈ A : m ≤ n}|
n

= 0.

Theorem 4.3 [26]. The space l∞0 (Z) is barrelled.

The proof of this theorem is based upon the fact that the vector
subspace Z(c0) of c0 of all those elements whose support is a member
of Z is barrelled. In fact, if M is a subset of ba(Z) which is pointwise
bounded on Z and for each µ ∈ M , we denote by µc the countably
additive component of µ, i.e., µc(A) =

∑
n∈A µ({n}) for each A ∈ N,

we claim that the set M c = {µc : µ ∈ M} is uniformly bounded
on Z. The proof of this claim is carried out by identifying M c with a
σ(l1, l∞0 (Z))-bounded subset of l1 and showing thatM c is β(l1, l∞0 (Z))-
bounded. But if Z(c0) is barrelled, one only needs to show that M c

is σ(l1,Z(c0))-bounded, a fact that may be easily verified. Finally, if
µ ∈ M and we write µp = µ−µc for the finitely additive part of µ, it is
not difficult to establish that the set Mp = {µp : µ ∈ M} is uniformly
bounded over Z, which completes the proof. The barrelledness of Z(c0)
may be derived as a consequence of Auerbach’s lemma below, which is
interesting for itself since it provides a way to recognize the elements of
l1 based on absolute subseries convergence of coordinates whose support
has density zero. There are many generalizations of Auerbach’s lemma,
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see [28] and references therein. One of them, due to Pastéka [66], has
been used in [28] to extend Theorem 4.3 to the ideal R of all η-null
sets of any strongly nonatomic submeasure η defined on a σ-algebra of
subsets.

Lemma 4.4 [8]. Let ξ = (ξn) ∈ ω. If
∑
n∈A |ξn| < ∞ for each

A ∈ Z, then ξ ∈ l1.

Note that if the lemma does not hold, there is a sequence of positive
integers {ni}i with 2ni ≤ ni+1 and n1 = 1 such that

∑ni+1−1
j=ni

|ξj | > 2i
for each i ∈ N. Setting A1 := [1, n1) and splitting the subsequent
intervals [nk, nk+1), k ∈ N, one may obtain a sequence {Ai} of
pairwise disjoint finite subsets of N such that A = ∪∞

i=1Ai ∈ Z
and

∑
j∈Ai

|ξj | > 1 for each i ∈ N. Hence
∑
n∈A |ξn| = +∞, a

contradiction. We are ready for the final step.

Theorem 4.5. The space Z(c0) is ultrabornological.

Let us provide a sketch of the proof. Given A ∈ Z, denote by c0(A)
the vector subspace of c0 formed by those elements ξ ∈ c0 with support
contained in A. Since Z(c0) = ∪{c0(A) : A ∈ Z}, endowing Z(c0) with
the locally convex hull topology τ of {c0(A) : A ∈ Z}, then Z(c0) is
ultrabornological. In order to see that τ coincides with the topology
induced by c0 on Z(c0), it suffices to see that (Z(c0)(τ ))∗ = l1. Let
u be a continuous linear form on Z(c0)(τ ) and write ξn = 〈u, en〉 for
each n ∈ N, where en denotes the nth unit vector of c0. Continuity
of u|c0(A) on c0(A) implies that

∑
n∈A |ξn| < ∞ for each A ∈ Z, so

Lemma 4.4 gives that ξ = (ξn) ∈ l1. Hence the one-to-one linear map
T : (Z(c0)(τ ))∗ → l1 such that Tu = ξ is well defined. This map is
also onto since, given ξ = (ξn) ∈ l1, the linear form v on Z(c0) defined
by v(x) =

∑∞
n=1 ξnxn for x = (xn) ∈ Z(c0) is τ -continuous (because of

‖v|c0(A)‖∞ ≤ ‖ξ‖1 for each A ∈ Z) and satisfies that Tv = ξ.

Let us say that, using different ideas, it can be shown that l∞0 (Z) is
a barrelled space of class ℵ0 [40]. We do not know whether l∞0 (Z) has
property (VHS). On the other hand, Nikodým boundedness theorem
may also be considered for families of countably additive scalar mea-
sures. So a Boolean ring R is said to have the σ-Nikodým property [29]
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if every pointwise bounded subset M of ca(R) is uniformly bounded.
Clearly, property (N) implies σ-Nikodým property, there exist rings
with σ-Nikodým property that lack the property (N) [29, Examples
4.1 and 4.2].

5. The space of vector-valued simple functions. Throughout
this section Σ will stand for an algebra of subsets of a set Ω and, given
an lcs E, as usual l∞0 (Σ, E) will denote the linear space of all E-valued
Σ-simple functions defined on Ω endowed with the uniform convergence
topology. An lcs F is said to be nuclear if E⊗πF = E⊗εF for each lcs
E. Using the so-called property (B) of Pietsch [70], Freniche [47] gave
in 1984 necessary and sufficient conditions for l∞0 (Σ, E) to be barrelled
by means of the following result.

Theorem 5.1. l∞0 (Σ, E) is barrelled if and only if both l∞0 (Σ) and
E are barrelled and E is nuclear.

When E is a normed space, this is tantamount to saying that the
space l∞0 (Σ, E) is barrelled if and only if l∞0 (Σ) is barrelled and E
is finite-dimensional. Let us just illustrate the necessity of these
conditions in the particular case E = l1. Afterwards we will give a
simple argument when E is an arbitrary Banach space.

Suppose that X is a Banach space and set Q := acx {χEx : x ∈
X, ‖x‖ ≤ 1, E ∈ Σ}. Let ‖ · ‖Q be the norm defined by the gauge of Q
on l∞0 (Σ, X) (note that Q is bounded and absorbing). Let us denote by
B(l∞0 (Σ), X) the Banach space formed by the continuous bilinear forms
on l∞0 (Σ) × X endowed with the uniform convergence norm, which is
linearly isometric to the space L(l∞0 (Σ), X∗) of the continuous linear
mappings of l∞0 (Σ) into X∗ equipped with the topology of uniform
convergence of operators, and consider the one-to-one linear mapping
T : B(l∞0 (Σ), X)→ (l∞0 (Σ, X), ‖·‖Q)∗ defined by Tϕ(χEx) = ϕ(χE , x),
E ∈ Σ, x ∈ X and linearly extend to the whole of l∞0 (Σ, X). Let us see
that T is onto. In fact, given a continuous linear form u on (l∞0 (Σ, X), ‖·
‖Q), then ϕu(χE , x) := u(χEx) defines a bilinear form on l∞0 (Σ)×X.
This ϕu is continuous since, according to Section 1, each f ∈ l∞0 (Σ)
with ‖f‖ ≤ 1 may be represented as f =∑k

i=1 aiχAi
with

∑k
i=1 |ai| ≤ 4

and Ai ∈ Σ, 1 ≤ i ≤ k, leading to |ϕu(f, x)| ≤ 4‖u‖∗Q for each x ∈ X
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with ‖x‖ ≤ 1. Indeed, T is an isomorphism for if h =
∑n
i=1

χEi
xi ∈ Q

then |Tϕ(h)| ≤ ∑n
i=1 |ϕ(χEi

, xi)| ≤
∑n
i=1 ‖ϕ‖ · ‖χEi

‖ · ‖xi‖ ≤ ‖ϕ‖.
Note that if X is an infinite-dimensional Banach space with a

Schauder basis and l∞0 (Σ, X) is barrelled, then l∞0 (Σ, X)
∗ = (l∞0 (Σ, X),

‖ · ‖Q)∗ and therefore the norms ‖ · ‖ and ‖ · ‖Q are equivalent. In fact,
since the identity mapping from (l∞0 (Σ, X), ‖ · ‖Q) onto l∞0 (Σ, X) is
one-to-one and continuous, its transpose has a weak∗-dense range and
hence l∞0 (Σ, X)

∗ is algebraically isomorphic to a weak∗-dense subspace
of (l∞0 (Σ, X), ‖ · ‖Q)∗. Identifying topologically (l∞0 (Σ, X), ‖ · ‖Q)∗ and
B(l∞0 (Σ), X), select ϕ ∈ (l∞0 (Σ, X), ‖ · ‖Q)∗. Let {xn} be a Schauder
basis of X, and let Pn be the canonical projection on the first n co-
ordinates for each n ∈ N. Clearly {Pnx} converges to x for each
x ∈ X. So if we set ϕn(·, ·) := ϕ(·, Pn(·)) for each n ∈ N, then
{ϕn(f, x)} converges to ϕ(f, x) for each f ∈ l∞0 (Σ), x ∈ X, holding
that ϕn ∈ l∞0 (Σ, X)∗ since both norms, ‖ · ‖ and ‖ · ‖Q, are equiva-
lent on each l∞0 (Σ, Pn(X)) = l∞0 (Σ, sp ({x1, . . . , xn})) ∼= l∞0 (Σ)

n. As
l∞0 (Σ, X) is a barrelled space, l

∞
0 (Σ, X)

∗ is weak∗-sequentially complete
and so ϕ ∈ l∞0 (Σ, X)∗.

The previous statement gives that, assuming that Σ is an infinite
algebra, then l∞0 (Σ, l1) cannot be barrelled. Indeed, if {en} denotes
the canonical basis of l1 and {An} is an infinite partition of Ω by
nonempty elements of Σ, let us take some ωi ∈ Ai for each i ∈ N,
and let {e∗i } be the sequence of functional coefficients of the basis.
Writing Hi(f, ξ) = e∗i ξ · f(ωi), f ∈ l∞0 (Σ), ξ ∈ l1, i ∈ N, and
ψn =

∑n
i=1 Hi for each n ∈ N, if l∞0 (Σ, l1) were barrelled, given that

ψn ∈ B(l∞0 (Σ), l1) for each n ∈ N, the sequence {ψn} considered in
l∞0 (Σ, l1)

∗, would be uniformly bounded. This is a contradiction since,
choosing hn =

∑n
i=1 eiχAi

, then ψn(hn) = n for each n ∈ N.

If X is an arbitrary Banach space, then ;∞0 (Σ, X) ∼= ;∞0 (Σ) ⊗ε X
whilst (;∞0 (Σ, X), ‖ · ‖Q) ∼= ;∞0 (Σ) ⊗π X. If ;∞0 (Σ, X) is barrelled,
then ;∞(Σ)⊗ε X is barrelled and, since ;∞(Σ) has the approximation
property, ;∞(Σ)⊗εX = ;∞(Σ)⊗πX [55, p. 486]. So if Σ is an infinite
σ-algebra, it follows that ;∞⊗εX = ;∞⊗πX. Hence c0⊗εX = c0⊗πX
and, c0 being an Sp-space, 1 ≤ p < ∞, X is nuclear (op. cit.).

If Ω is a set, A a ring of subsets of Ω, µ : A → [0,+∞], a nontrivial
finitely additive measure defined on A and E an lcs, let us denote by
A0 the ideal of all µ-null sets in A and by l∞0 (µ,E) the quotient space
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l∞0 (A, E)/l∞0 (A0, E). Then one has the following results, analogous to
Theorems 5.1 and 2.2, where we write l∞0 (µ) instead of l

∞
0 (µ,K).

Theorem 5.2 [17]. l∞0 (µ,E) is barrelled if and only if l∞0 (µ) is
barrelled and E is barrelled and nuclear.

Theorem 5.3 [17]. If there exists an infinite sequence {Ωn} of
pairwise disjoint sets in A such that µ(Ωn) > 0, then l∞0 (µ,E) is not
ultrabornological.

6. Spaces of bounded vector-valued Σ-measurable functions.
Given an lcs space E and an algebra Σ of subsets of a nonempty set Ω,
Mendoza [63] shows that the vector space B(Σ, E) of all the functions
of Ω into E that are uniform limits of a sequence of Σ-simple E-valued
functions defined over Ω, endowed with uniform convergence topology,
is barrelled if and only if E is barrelled. If X is a normed space that
enjoys properties stronger than barrelledness; for instance, if X is BH,
the following holds.

Theorem 6.1 [35]. B(Σ, X) is a BH space if and only if X is a BH
space.

Hereafter we will work with a normed space X and a σ-algebra Σ and
will exhibit results similar to Mendoza’s concerning other related spaces
of bounded vector-valued Σ-measurable functions. We will denote by
K(Σ, X) the vector space over K of all bounded X-valued functions
defined on Ω for which there exists a countable partition {An} of Ω by
nonempty elements of Σ such that f is constant on each An endowed
with the supremum-norm, whereas l∞(Σ, X) will stand for the vector
space over K of all the X-valued functions defined over Ω that are
uniform limit of a sequence of elements of K(Σ, X), also endowed with
the supremum-norm. Let us point out that l∞(Σ, X̂) is the completion
of K(Σ, X), where X̂ stands for the completion of X. As in Section 5,
Q will stand for acx {χAx : x ∈ X, ‖x‖ ≤ 1, A ∈ Σ}. Due to the
fact that (l∞0 (Σ, X), ‖ · ‖Q) ∼= l∞0 (Σ) ⊗π X, if X is barrelled then the
space (l∞0 (Σ, X), ‖·‖Q) is barrelled. On the other hand, working with a
certain Banach disk, it can be shown that if {An} is a pairwise disjoint
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sequence of elements of Σ and T is a barrel inK(Σ, X), then there exists
m ∈ N such that T absorbs the closed unit ball of K(Σ|∪n>mAn

, X).
These two observations allow to conclude

Theorem 6.2 [33]. The space K(Σ, X) is barrelled if and only if X
is barrelled.

The strategy of the proof is as follows. The only if part is trivial
since, fixed any ω ∈ Ω, the linear mapping φ defined of K(Σ, X) onto
X by φ(f) = f(ω) is bounded. The converse proceeds by contradiction.
So, assuming that K(Σ, X) is not barrelled though X is, there is a
barrel T in K(Σ, X) which is not a neighborhood of 0 in K(Σ, X).
By recurrence we obtain a normalized sequence {Ωn} in Σ such that
(a) supp fn+1 ⊆ Ωn, (b) fn /∈ 2nT and (c) fn(t) = xn for all t ∈ Ωn.
Defining gn = fn − χΩn

xn for each n ∈ N, there must exist k ∈ N
such that χΩn

xn ∈ nT for each n ≥ k. So, gn /∈ nT for each n ≥ k.
The sequence {gn} generates a copy of c0 in the completion of K(Σ, X)
since its elements have pairwise disjoint supports. Noticing that this
copy is contained in K(Σ, X), there is an m ≥ k such that gm ∈ mT ,
a contradiction.

If we consider the vector space l∞(X) = K(2N , X) of all bounded
sequences in X provided with the supremum-norm, the previous theo-
rem shows that this space is barrelled if and only if X is. On the other
hand, since K(Σ, X) is a dense subspace of l∞(Σ, X), we obtain

Corollary 6.3 [33]. The space l∞(Σ, X) is barrelled if and only if
X is barrelled.

If l∞(Ω, X) stands for the vector space of all bounded X-valued func-
tions defined on Ω equipped with the supremum-norm, then l∞(Ω, X)
coincides with l∞(2Ω, X) whenever X is separable (the nonseparable
case will be considered in the next section). Consequently, assuming
X separable, l∞(Ω, X) is barrelled if and only if X does.

The above techniques also work with B(Σ, X) using the subspace
K(Σ, X) ∩ B(Σ, X) instead of K(Σ, X), thus obtaining Mendoza’s
result for a σ-algebra (for an algebra some appropriate modifications
are needed [35]). Furthermore, if X is a normed barrelled space of
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class n ∈ N, exploiting the previous techniques it can be shown that
B(Σ, X) is barrelled of class n [41, 45]. We do not know if B(Σ, X)
is baireled whenever X is. If I = (0, 1], let St (I,X) be the vector
subspace of l∞(I,X) formed by the step functions and let Reg (I,X)
be the (closed) vector subspace of l∞(I,X) formed by the regulated
functions, i.e., those that are uniform limit of a sequence of step
functions. Identifying St (I,X) with a subspace of B(Σ, X), Σ being
the algebra of all finite unions of right semi-closed intervals contained in
I, then St (I,X) = l∞0 (Σ, X) and Reg (I,X) coincides with B(Σ, X).
According to Mendoza’s theorem, Reg (I,X) is barrelled if and only
if X does, whereas according to Freniche’s theorem, St (I,X) is not
barrelled if X is infinite-dimensional. A bit more can be stated about
the space of step functions, since

Theorem 6.4 [35]. No St (I,X) space is barrelled.

Given a measure space (Ω,Σ, µ) and an lcs E, one may consider the
quotient space K(µ,E) of the vector space K(Σ, E), provided with the
uniform convergence topology, obtained by identifying those functions
which are equal almost everywhere with respect to µ. This space has
been studied in [19], assuming E is a DF-space. In particular, if X
is a normed space and the measure µ is σ-finite and atomless, then
K(µ,X) is barrelled. Finally, let us point out that some results given
in this section are valid for algebras with property (N) [44].

7. The space of bounded vector-valued functions. As in the
previous section, if Ω is some nonempty set and X a normed space,
we will denote by l∞(Ω, X) the vector space over K of all bounded
X-valued functions defined on Ω equipped with the supremum-norm.
In this section we are going to show that, assuming X is barrelled,
then l∞(Ω, X) is barrelled whenever |Ω| or |X| is nonmeasurable. This
result has been obtained by Drewnowski, et al. [27] and the proof
described here adapts their methods. Let us recall that a nonempty set
E is said to have measurable cardinal if there exists a free ultrafilter U
on E, i.e., such that ∩U = ∅, which is closed under the formation
of countable intersections. It is not known whether there is a set
with measurable cardinal. Extensive information about measurable
cardinals and ultrafilter theory may be found in [11, 12]. The key
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point of [27] is the following result, whose proof we sketch below.

Lemma 7.1. Let Σ be a σ-algebra of subsets of Ω and H a weak∗

bounded countable subset of l∞(Ω, X)∗. The mapping η : Σ→ [0,+∞]
defined by

η(A) = sup{|〈u, f〉| : u ∈ H, f ∈ l∞(Ω, X), ‖f‖ ≤ 1, supp f ⊆ A}
is a submeasure on Σ which satisfies the following:

(1) For each decreasing sequence {An} in Σ with η(An) = +∞ for
each n ∈ N, one has that η(∩∞

n=1An) = +∞.

(2) Each family A of pairwise disjoint elements of Σ such that
η(A) > 0 for each A ∈ A is countable.

(3) If η(Ω) = +∞, there exists a subset S of Ω such that the collection
U = {A ∈ Σ : A ⊆ S∧η(A) = +∞} is a Σ-ultrafilter on S closed under
the formation of countable intersections.

It is obvious that η(∅) = 0, η(A) ≤ η(B) for each A,B ∈ Σ with
A ⊆ B and η(A ∪ B) ≤ η(A) + η(B) for each A,B ∈ Σ. Thus η is a
submeasure on Σ.

1. Assume there is a decreasing sequence {An} in Σ with η(An) =
+∞ for each n ∈ N and η(∩∞

n=1An) < ∞. Setting Cn := An\∩∞
i=1Ai for

n ∈ N; due to the subadditivity of η one has that η(Cn) = +∞ for each
n ∈ N. Since η(Cn) > n there exists some un ∈ H and fn ∈ l∞(Ω, X)
with ‖fn‖ ≤ 1 and supp fn ⊆ Cn such that |〈un, fn〉| > n. The linear
map ϕ : l1 → l∞(Ω, X̂) defined by ϕ(ξ) =

∑∞
n=1 ξnfn is continuous

since ‖ϕ(ξ)‖ ≤ ‖ξ‖1 for each ξ ∈ l1. Given that
∑∞
n=1 ξnfn(ω) is a

finite sum for each ω ∈ Ω since supp fn ⊆ Cn and ∩∞
n=1Cn = ∅, then

ϕ is a continuous linear mapping from l1 into l∞(Ω, X). Consequently,
M := {u ◦ ϕ : u ∈ H} is a weak∗ bounded set in l∗1 ∼= l∞ and hence
sup{‖u ◦ ϕ‖∞ : u ∈ H} < ∞. But

‖un ◦ ϕ‖∞ = sup
ξ∈l1

‖ξ‖1≤1

|〈un ◦ ϕ, ξ〉| ≥ |〈un ◦ ϕ, en〉| = |〈un, fn〉| > n,

and consequently sup{‖u ◦ ϕ‖∞ : u ∈ H} = +∞, a contradiction.
2. Assume that there exists an uncountable family A of pairwise

disjoint elements of Σ such that η(A) > 0 for each A ∈ A. Then for
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each A ∈ A there is an fA ∈ l∞(Ω, X) with ‖fA‖ ≤ 1, supp fA ⊆ A
and uA ∈ H such that 〈uA, fA〉 > 0. Since |A| > ℵ0 there is a δ > 0
and an uncountable subfamily A1 ⊆ A such that 〈uA, fA〉 > δ for each
A ∈ A1 and, H being countable, there must exist u ∈ H, u �= 0 and
an infinite subfamily A2 ⊆ A1 such that u = uA for each A ∈ A2. Let
k ∈ N be such that kδ > ‖u‖ and choose k different sets {A1, . . . , Ak}
in A2. Then ‖∑k

i=1 fAi
‖ = max1≤i≤k ‖fAi

‖ ≤ 1, while on the other
hand

∥∥∥∥
k∑
i=1

fAi

∥∥∥∥ ≥
∣∣∣∣
〈 u

‖u‖ ,
k∑
i=1

fAi

〉∣∣∣∣ = 1
‖u‖

k∑
i=1

〈uAi
, fAi

〉 = kδ

‖u‖ > 1,

a contradiction.

3. Let G be the class of all the families A of pairwise disjoint elements
of Σ such that 0 < η(A) < ∞ for each A ∈ A. Consider in G
the ordering A ≤ B ⇔ (A ∈ A ⇒ A ∈ B). Then (G,≤) becomes
an inductive set and, according to Zorn’s lemma, there must exist a
maximal element D in G. Then, by virtue of 2, |D| ≤ ℵ0. Let P := ∪D
and note that P ∈ Σ. If η(P ) = +∞, then D must be an infinite family
since η is subadditive and 0 < η(A) < ∞ for each A ∈ D. Assuming
that D = {Dn : n ∈ N} and, setting An := ∪∞

i=nDi for each n ∈ N,
then {An} is a decreasing sequence in Σ such that η(An) = +∞ for
each n ∈ N. Consequently, 1 implies that η(∅) = η(∩∞

n=1An) = +∞,
a contradiction. Therefore, η(P ) < ∞.
Due to the fact that η(Ω) = +∞, then η(Ω \ P ) = +∞. Set

Q := Ω \ P and note that, if A ⊆ Q verifies that A ∈ Σ, then either
η(A) = 0 or η(A) = +∞. If there is no A ∈ Σ with A ⊆ Q such that
η(A) = η(Q \ A) = +∞ we set S := Q. Otherwise, we set A1 = A. If
there is no A′ ∈ Σ with A′ ⊆ A1 such that η(A′) = η(A1 \ A′) = +∞
we set S := A1. Otherwise we set A2 = A′. According to 1, this
process must stop with some Ap ∈ Σ, Ap ⊆ Q, such that for each
partition {B,C} of Ap with elements of Σ, then either η(B) = 0 and
η(C) = +∞ or η(B) = +∞ and η(C) = 0. We conclude by taking
S = Ap and noting that U is a Σ-filter on S. Moreover, U is a Σ-
ultrafilter on S since, for each partition {B,C} of S with elements of
Σ, then either B ∈ U or C ∈ U . According to 1, U is closed under the
formation of countable intersections.
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Theorem 7.2 [27]. Assume that Ω is a nonempty set and X is a
normed barrelled space. If |Ω| or |X| is nonmeasurable, then l∞(Ω, X)
is barrelled.

In fact, if l∞(Ω, X) is not barrelled there exists a weak∗ bounded
countable set H ⊆ l∞(Ω, X)∗ which is not uniformly bounded. This
means that η(Ω) = +∞. If S and U are, respectively the subset of Ω
and the ultrafilter on S determined in part 3 of the preceding lemma
with Σ = 2Ω, then for each ω ∈ Ω we have η({ω}) = sup{|〈u, xχ{ω}〉| :
x ∈ X, ‖x‖ ≤ 1, u ∈ H}. Setting hu(x) := 〈u, xχ{ω}〉 for each
x ∈ X, then hu ∈ X∗ for each u ∈ H. Barrelledness of X and
the fact that sup{|hu(x)| : u ∈ H} < ∞ for each x ∈ X imply
that sup{‖hu‖X∗ : u ∈ H} < ∞. So η({ω}) < ∞ for each ω ∈ Ω.
Therefore U is a free ultrafilter on S. Since U is closed under countable
intersections, |S| need be measurable, which implies that |Ω| must be
measurable.

If |X| were nonmeasurable, |f(S)| would be nonmeasurable for each
f ∈ l∞(Ω, X). If f ∈ l∞(Ω, X) with ‖f‖ ≤ 1 and supp f ⊆ S, it
may be seen that there is an A ∈ U such that f |A is constant. Since
|〈u, fχS\A〉| ≤ η(S \ A) = 0, then 〈u, f〉 = 〈u, fχA〉 for each u ∈ H.
But f being constant in A, there is an xf ∈ X with ‖xf‖ ≤ 1 such
that fχA = xfχA. So 〈u, f〉 = 〈u, xfχA〉 for each u ∈ H. Now the
linear map T : X → l∞(Ω, X) defined by Tx = xχS is an isomorphic
embedding of X into l∞(Ω, X), so if T ∗ denotes the adjoint map of T ,
the previous discussion implies that

sup{|〈T ∗u, x〉| : u ∈ H,x ∈ X, ‖x‖ ≤ 1} = η(S).

Then sup{|〈T ∗u, x〉| : u ∈ H,x ∈ X, ‖x‖ ≤ 1} = +∞, a contradic-
tion since T ∗(H) being a weak∗ bounded subset of X∗, is uniformly
bounded.

If |Ω| is measurable and X is a Banach space with |X| measurable,
then l∞(Ω, X) is barrelled, since it is a Banach space. Therefore, the
conditions required in Theorem 7.2 are not necessary. We do not know
if the previous theorem is true without any restriction on the cardinality
of the set Ω or the (barrelled) space X.
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15. J.L. De Maŕıa and P. Morales, A non-commutative version of the Nikodým
boundedness theorem, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 505 517.

16. M. De Wilde, Closed graph theorems and webbed spaces, Pitman Res. Notes
Math. Ser. 19, Longman Sci. Tech., Harlow, 1978.

17. S. Dı́az, L. Drewnowski, A. Fernández, M. Florencio and P.J. Paúl, Barrelled-
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de Gruyter & Co., Berlin, 1996, pp. 143 152.
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