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THE ADMISSIBLE DISTURBANCE FOR
DISCRETE NONLINEAR PERTURBED

CONTROLLED SYSTEMS

M. RACHIK, M. LHOUS AND A. TRIDANE

ABSTRACT. Consider the discrete perturbed controlled
nonlinear system given by

⎧⎨
⎩

xw(i + 1) = Axw(i) + f(ui + αi)

+ g(vi)
∑r

j=1
βj

i hj(xw(i)) i ≥ 0,

xw(0) = x0 + γ

and the output function yw(i) = Cxw(i), i ≥ 0, where
w = (γ, (αi)i≥0, (βi)i≥0), is a disturbance which disturbs
the system. The disturbance w is said to be ε-admissible if
‖yw(i)− y(i)‖ ≤ e, for all i ≥ 0, where (y(i))i≥0 is the output
signal corresponding to the uninfected controlled system. The
set of all ε-admissible disturbances is the admissible set E(ε).
The characterization of E(ε) is investigated and practical algo-
rithms with numerical simulations are given. The admissible

set E(ε) for discrete delayed systems is also considered.

1. Introduction. The characterization of admissible sets have im-
portant application in the analysis and design of closed-loop systems
with state and control constraints. During the control of a system we
are always confronted with the presence of certain undesirable param-
eters that come from the natural relationship which exists between a
system and its environment; let’s mention as examples fires, transitory
electric regimes, earthquakes, bacterial infecting, etc.

In order to face such problems, an important number of works have
been developed, see [1, 2, 4 10, 12]. We contribute in this direction
by exploring a technique which allows us to determine, among a class of
disturbances which excite discrete nonlinear controlled systems, those
which are ε-admissible.
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The linear uncontrolled perturbed systems have been dealt with by
Rachik et al. in [11]. Bouyaghroumni et al. have also studied the
bilinear case, see [3].

In this paper we consider the controlled perturbed nonlinear system
defined by
(1){
xw(i+ 1) = Axw(i) + f(ui + αi) + g(vi)

∑r
j=1 β

j
i hj(xw(i)) i ≥ 0,

xw(0) = x0 + γ

the corresponding output signal is

(2) yw(i) = Cxw(i), i ≥ 0

where A and C are respectively n× n and p× n matrices; xw(i) ∈ Rn

is the state variable, ui ∈ Rm and vi ∈ Rq are the control variables,
f : Rm → Rn and hj : Rn → Rn are continuous functions and
g : Rq → R is a given function. w = (γ, (αi)i≥0, (βi)i≥0), where
βi = (β1

i , β
2
i , . . . , β

r
i ), is an undesirable disturbance which infects the

system because of its connections to the environment. The output
signal corresponding to α = (αi)i≥0 = 0, β = (βi)i≥0 = 0 and γ = 0 is
simply denoted by (y(i))i≥0, i.e.,

(3) y(i) = Cx(i), i ≥ 0

where (x(i))i≥0 is the uninfected state given by

(4)
{
x(i+ 1) = Ax(i) + f(ui) i ≥ 0,
x(0) = x0 ∈ Rn.

For physical considerations, we suppose that all the disturbances α =
(αi)i≥0 and β = (βi)i≥0 susceptible of infecting our system have a finite
life; consequently in all this work we suppose that

α = (αi)i≥0 ∈ UI
m = {(γi)i≥0/γi ∈ Rm and γi = 0, ∀ i > I}

and

β = (βi)i≥0 ∈ UJ
r = {(λi)i≥0/λi ∈ Rr and λi = 0, ∀ i > J}
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where I and J are, respectively, the life of disturbances α = (αi)i and
β = (βi)i. The ε-admissible set E(ε) defined by

E(ε) = {w = (γ, α, β) ∈ Rn × UI
m × UJ

r /‖yw(i) − y(i)‖ ≤ ε, ∀ i ≥ 0}

The admissibility problem is also studied for discrete delayed systems.
Simple examples and numerical simulations are presented.

Remark 1. As an example of disturbances with “finite life,” we give
the following motivation. Let’s consider the temperature distributed in
an industrial oven, see Figure I, whose simplified mathematical model
is

(5)
∂T

∂t
(x, t) = α

∂2T

∂2x
(x, t) + βT (x, t) + γu(t)T (x, t), ∀ t ≥ 0.

where T (·, t) is the temperature profile at time t. We suppose that the
system is controlled via the flow of a liquid in an adequate metallic
pipeline (u(·) is the variable control), u(.) is applied to the system with
the object to establish

yu(t) = yd(t), ∀ t ≥ tf

where yu(.) is the output function corresponding to the control u(.) and
yd(.) is the desired output.

The associated initial condition is supposed to be homogeneous

T (x, 0) = T0(x), ∀x ∈ [0, 1]

and the boundary condition is also homogeneous

T (0, t) = T (1, t) = 0, ∀ t ≥ 0.

If we suppose that system (5) is thermically isolated, we should stop
supervising the system as soon as we achieve our objective, i.e., at time
tf . Then, from instant tf the evolution equation becomes

(6)
∂T

∂t
(x, t) = α

∂2T

∂2x
(x, t) + βT (x, t), ∀ t ≥ tf .
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FIGURE I.

In reality we should by no means ignore that there are some distur-
bances “e(t)” which affect the system and which emanate essentially
from

(i) The amount of heat preserved by the pipeline metal during a lap
of the limited time [tf , t1].

(ii) The delay “h existing between the stop control “u(t)” and its
effects on the system.

So the evolution equation of the system can be written as follows

(7)
∂T

∂t
(x, t) = α

∂2T

∂2x
(x, t) + βT (x, t) + γe(t)T (x, t), ∀ t ≥ tf

where
e(t) = 0 for t ≥ max(t1, tf + h).

A state space description. The equation (7) can be written

(8)
∂T

∂t
(x, t) = AT (x, t) + γe(t)T (x, t), ∀ t ≥ tf

where A is the operator α(∂2/∂2x) + β whose domain D(A) and
spectrum σ(A) are respectively given by

D(A) = {f ∈ L2(0, 1)/f ′′ ∈ L2(0, 1) and f(0) = f(1) = 0}
σ(A) = {λn = β − α(πn)2/n ∈ N∗}

the associated eigenfunctions are

ϕn(x) =
√

2 sin(nπx), n = 1, 2, . . . .
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Then we have

(9) T (x, t) =
∞∑

i=1

ai(t)ϕi(x)

by replacing (9) in (8) and we obtain

∞∑
n=1

ȧn(t)ϕn(x) =
∞∑

n=1

λnan(t)ϕn(x) +
∞∑

n=1

γe(t)an(t)ϕn(x)

which implies

ȧm(t) = λmam(t) + γe(t)am(t); m = 1, 2, . . . .

If we introduce the notations A = diag(λ1, λ2, . . . ), a(t) = (a1(t), a2(t),
. . . )� and B = γId, then equation (8) can be written as follows

(10)
{
ȧ(t) = Aa(t) + e(t)Ba(t) for all t > tf ,
a(0) = a0

where a0 = (a1(0), a2(0), . . . )� and ai(0) = 〈T (x, 0), ϕi(x)〉L2(0,1).

Spatial approximation. If we project the system (10) on a finite
dimensional subspace, we obtain

(11)
{
ȧN (t) = ANa

N (t) + e(t)BNa
N (t) for all t > tf ,

aN (0) = (a1(0), a2(0), . . . , aN (0))�

with AN =

( λ1 0

. . .
0 λN

)
, BN = γIN where IN is the N ×N matrix.

Sampling of time. In order to make the system abortable by a
computer we proceed to a sampling of time; this means we put

[tf ,∞[ =
∞⋃

i=0

[ti, ti+1]
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where {
t0 = tf

ti+1 = ti + ∆ for all i ≥ 0

with ∆ sufficiently small. If we use the approximation

ȧN (ti) =
aN (ti+1) − aN (ti)

∆

we will have

(12)
{
ȧN

i+1 = (∆AN + IN )aN
i + eiBNa

N
i for all i ≥ 0

aN
0 ∈ RN

where aN
i = aN (ti) and ei = e(ti). As e(t) = 0, for all t >

max(t1, tf +h), then (ei)i≥0 is null from a certain integer I (I is called
the age of disturbance).

2. Preliminary results. We define the operator Kβ
i and φβ(i, k)

for every β ∈ UJ
r by

Kβ
i = A+ g(vi)

r∑
j=1

βj
i hj , ∀ i ≥ 0

and
φβ(i, k) = Kβ

i K
β
i−1 . . .K

β
k if k ≤ i.

By convention we have φβ(i, k) = In if k > i where In is an n× n-unit
matrix. Then we can easily show that the solution of systems (1) and
(4) satisfies

xw(i) = φβ(i− 1, 0)xw(0) +
i−1∑
j=0

φβ(i− 1, j + 1)f(uj + αj), ∀ i ≥ 1

and

x(i) = Aix(0) +
i−1∑
j=0

Ai−1−jf(uj), ∀ i ≥ 1,

then for i = 0 we have

yw(0) − y(0) = Cγ
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and, for every i ≥ 1, we have

yw(i) − y(i) = Cxw(i) − Cx(i)
= C

[
φβ(i− 1, 0)xw(0) −Aix(0)

]
+

i−1∑
j=0

C
[
φβ(i− 1, j + 1)f(uj + αj) −Ai−1−jf(uj)

]
.

Thus, the difference between the observation (3) and (2) can be equiv-
alently rewritten in the form

yw(i) − y(i) =
i∑

j=0

Cψβ(i− 1, j)ξw
j

with

(13) ψβ(i, j)(x, y) = φβ(i, j)x−Ai−j+1y

and

(14)
{
ξw
j = (f(uj−1 + αj−1), f(uj−1)) for all j > 0,
ξw
0 = (xw(0), x(0)).

Consequently, the set E(ε) can be written as follows

E(ε)=
{
w=(γ, α, β) ∈ V/‖Cγ‖ ≤ ε;

∥∥∥ i∑
j=0

Cψβ(i−1, j)ξw
j

∥∥∥ ≤ ε, ∀ i≥1
}

where V = Rn × UI
m × UJ

r .

Since Us
q can be identified to Rq(s+1) by the canonical isomorphism

ϕ : Us
q −→ Rq(s+1)

(zi)i≥0 −→ (zi)T
i≤s

where (zi)T
i≤s is the vector of Rq(s+1) given by

(zi)i≤s =

⎡
⎣ z0...
zs

⎤
⎦
�

∈ Rq × Rq · · ·Rq︸ ︷︷ ︸
s+1-times



766 M. RACHIK, M. LHOUS AND A. TRIDANE

then

E(ε)=
{
w=(γ, (αi)i≥0, (βi)i≥0) ∈ M/‖Cγ‖ ≤ ε;

∥∥∥ i∑
j=0

Cψβ(i−1, j)ξw
j

∥∥∥ ≤ ε, ∀ i ≥ 1
}

with
M− Rn × Rm(I+1) × Rr(J + 1).

In order to characterize the set E(ε) by a finite number of functional
inequalities, we rewrite E(ε) as follows

E(ε) = R(ε) ∩ S(ε)

where

R(ε)=
{
w ∈ M/‖Cγ‖ ≤ ε;

∥∥∥ i∑
j=0

Cψβ(i−1, j)ξw
j

∥∥∥ ≤ ε, ∀ i ∈ {1, . . . , N}
}

and

S(ε) =
{
w ∈ M/

∥∥∥ i∑
j=0

Cψβ(i− 1, j)ξw
j

∥∥∥ ≤ ε, ∀ i ≥ N + 1
}

with N = max(I, J) + 1.

Let us define the functionals (Li)0≤i≤N by

L0 : M −→ Rn

w = (γ, α, β) �−→ γ

and, for i ∈ {1, 2, . . . , N}:

Li : M −→ Rn

w = (γ, α, β) �−→
i∑

j=0

ψβ(i− 1, j)ξw
j
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where ψβ(i, j) and ξw
j are defined respectively by equations (13) and

(14). Hence

(15) R(ε) = {w ∈ M/‖CLi(w)‖ ≤ ε; ∀ i ∈ {0, 1, . . . , N}}

since the set R(ε) is characterized by a finite number of inequalities, our
objective will be the characterization of the set S(ε), and consequently
E(ε), by the finite number of inequalities.

Exploiting the fact that αi = 0, for all i > I and βi = 0, for all i > J ,
we have

S(ε) =
{
w ∈ M/

∥∥∥ N∑
j=0

Cψβ(i− 1, j)ξw
j

∥∥∥ ≤ ε, ∀ i ≥ N + 1
}

=
{
w ∈ M/

∥∥∥C[ N∑
j=0

φβ(i− 1, N)φβ(N − 1, j)f(uj + αj)

−Ai−j−1f(uj)
]∥∥∥ ≤ ε, ∀ i ≥ N + 1

}
=

{
w ∈ M/

∥∥∥CAi−N
[ N∑

j=0

φβ(N − 1, j)f(uj + αj)

−AN−j−1f(uj)
]∥∥∥ ≤ ε, ∀ i ≥ N + 1

}
=

{
w ∈ M/

∥∥∥CAi−N
N∑

j=0

Cψβ(N − 1, j)ξw
J

∥∥∥ ≤ ε, ∀ i ≥ N + 1
}

=
{
w ∈ M/

∥∥∥CAk+1
N∑

j=0

Cψβ(N − 1, j)ξw
j

∥∥∥ ≤ ε, ∀ k ≥ 0
}

then

(16) S(ε) = {w ∈ M/‖CAk+1LN (w)‖ ≤ ε, ∀ k ≥ 0}.

Now we give some properties of the ε-admissible set.

Proposition 1.

i) E(ε) is a closed set.
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ii) If A is Lyapunov stable (the characteristic roots of A satisfy the
following conditions: |λ| ≤ 1 for every λ in the spectrum of A and
|λ| = 1 implies λ is simple), then 0 ∈ int E(ε).

Proof. i) Since L0 and Li are continuous maps and the set {x ∈
Rn/‖Cx‖ ≤ ε} is closed, we deduce that R(ε), defined by equation
(15), is closed.

On the other hand, we have S(ε) = L−1
N (T (ε)) where T (ε) is the

closed set given by T (ε) = {x ∈ Rn/‖CAk+1x‖ ≤ ε, for all k ≥ 0},
hence S(ε) is closed (because LN is a continuous map). So we conclude
that E(ε) = R(ε) ∩ S(ε) is a closed set.

ii) It is clear that 0 = Li(0) ∈ int ({x ∈ Rn/‖Cx‖ ≤ ε}), more-
over, (Li)0≤i≤N−1 are continuous maps; hence for every integer i ∈
{0, . . . , N−1}, there exists an open set Oi = L−1

i ({x ∈ Rn/‖Cx‖ < ε})
such that 0 ∈ Oi and Li(Oi) ⊂ {x ∈ Rn/‖Cx‖ ≤ ε}. This implies
that for every integer i ∈ {0, . . . , N − 1}, we have Oi ⊂ L−1

i ({x ∈
Rn/‖Cx‖ ≤ ε}). Consequently, 0 ∈ ∩N−1

i=0 Oi ⊂ ∩N−1
i=0 L−1

i ({x ∈
Rn/‖Cx‖ ≤ ε}) = R(ε), thus 0 ∈ intR(ε).

On the other hand, the Lyapunov stability of A implies the existence
of a constant ρ > 0 such that

‖CAk+1x‖ ≤ ρ‖x‖ for every x ∈ Rn and every k ∈ N,

hence

‖CAk+1LN (w)‖ ≤ ρ‖LN (w)‖, ∀w ∈M, ∀ k ∈ N.

Using the continuity of LN , we have

∀ ε > 0 ∃η > 0, ‖w‖ ≤ η ⇒ ‖LN (w)‖ ≤ ε/ρ

so for every w ∈ B(0, η) = {s ∈M/‖s‖ ≤ η} and every k ∈ N we have

‖CAk+1LN (w)‖ ≤ ρ‖LN (w)‖ ≤ ε.

Hence by equation (16) we have B(0, η) ⊂ S(ε) thus 0 ∈ intS(ε).
Consequently, 0 ∈ intR(ε) ∩ intS(ε), i.e., 0 ∈ int E(ε).
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3. The characterization of S(ε). In order to characterize the set
S(ε) by a finite number of inequalities, we rewrite it as follows

S(ε) = {w = (γ, (αi)i≤I , (βi)i≤J) ∈ M/LN (w) ∈ T (ε)}

where
T (ε) = {x ∈ Rn/‖CAi+1x‖ ≤ ε, ∀ i ≥ 0}.

For every k ∈ N, we define the set Sk(ε) and Tk(ε) by

Sk(ε) = {w = (γ, (αi)i≤I , (βi)i≤J) ∈ M/

‖CAi+1LN (w)‖ ≤ ε, ∀ i ∈ {0, 1, . . . , k}}
Tk(ε) = {x ∈ Rn/‖CAi+1x‖ ≤ ε, ∀ i ∈ {0, 1, . . . , k}}.

T (ε) and S(ε) are said to be finitely accessible if there exists k ∈ N
such that T (ε) = Tk(ε) and S(ε) = Sk(ε). We note k∗ the smallest
integer such that T (ε) = Tk∗(ε) and S(ε) = Sk∗(ε).

Remark 2. We have

T (ε) ⊂ Tk2(ε) ⊂ Tk1(ε), ∀ k1, k2 ∈ N such that k1 ≤ k2.

Proposition 2. T (ε) is finitely accessible if and only if Ti+1(ε) =
Ti(ε) for some i ∈ N.

Proof. If T (ε) is finitely accessible, then the equality Ti+1(ε) = Ti(ε)
holds for all i ≥ k∗. Conversely, if Ti+1(ε) = Ti(ε) for some i ∈ N, we
deduce that Ti(ε) is A-invariant (i.e., A(Ti(ε)) ⊂ Ti(ε)) which implies
that Ti(ε) is Ak-invariant for every k ∈ N, and so Ti(ε) ⊂ T (ε). Finally
we apply Remark 1 to end the proof.

It is desirable to establish simple conditions which make the set S(ε),
or T (ε), finitely accessible. Our main result in this direction is the
following

Theorem 1. Suppose the following assumptions hold

i) A is asymptotically stable (|λ| < 1 for every λ in spectrum of A).
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ii) The pair (C,A) is observable ([C�|A�C�| · · · |(A�)n−1C�] has
rank n).

Then S(ε) is finitely accessible.

Proof. Let x ∈ Tn−1(ε). Then ‖CAi+1x‖ ≤ ε for all i ∈ {0, 1, . . . ,
n− 1} which implies that

⎡
⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎦Ax ∈

n-times︷ ︸︸ ︷
Bp(0, ε) × · · · × Bp(0, ε)

where
Bp(0, ε) = {x ∈ Rp/‖x‖ ≤ ε}.

Hence Λ�ΛAc ∈ Λ�

n-times︷ ︸︸ ︷
(Bp(0, ε) × · · · × Bp(0, ε)) where Λ is the matrix is

given by

Λ =

⎡
⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎦ ∈ L(Rn,Rnp);

consequently,

(ΛT ΛA)(Tn−1(ε)) ⊂ Λ�
n-times︷ ︸︸ ︷

(Bp(0, ε) × · · · × Bp(0, ε)),

so for every x ∈ Tn−1(ε) there exists z ∈
n-times︷ ︸︸ ︷

(Bp(0, ε) × · · · × Bp(0, ε)) such
that Λ�ΛAx = Λ�z, which implies that

(17) 〈Λ�ΛAx,Ax〉 = 〈Λ�z,Ax〉, ∀x ∈ Tn−1(ε).

On the other hand, the observability of (C,A) implies that Λ�Λ is
coercive, i.e.,

∃α > 0/〈Λ�Λx, x〉 ≥ α‖x‖2, ∀x ∈ Rn.
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Then it follows from (17) that

α‖Ax‖2 ≤ (cste)‖Ax‖ × ‖z‖, ∀x ∈ Tn−1(ε),

and consequently

‖Ax‖ ≤ (cste)‖z‖, ∀x ∈ Tn−1(ε).

Then since

n-times︷ ︸︸ ︷
(Bp(0, ε) × · · · × Bp(0, ε)) is a bounded set, we deduce the

existence of a constant r > 0 such that

(18) ATk(ε) ⊂ Bn(0, r) = {x ∈ Rn/‖x‖ ≤ r}, ∀ k ≥ n− 1.

Using the asymptotic stability of A, it follows that there exists k0 ≥
n− 1 such that ‖CAk0+1‖ ≤ ε/r, hence

(19.) CAk0+1(Bn(0, r)) ⊂ Bp(0, ε)

Then we use (18) and (19) to deduce that

‖CAk0+2x‖ ≤ ε, ∀x ∈ Tk0(ε)

which implies that
x ∈ Tk0+1(ε);

consequently
Tk0(ε) ⊂ Tk0+1(ε).

Finally we use Proposition 2 to end the proof.

Using Proposition 2 we can establish a first formal algorithm to deter-
mine the smallest integer k∗ such that Tk∗(ε) = T (ε) and consequently
to characterize the set S(ε) by

S(ε) = Sk∗(ε) = L−1
N (Tk∗(ε)).

Algorithm I.

Step 1: Set k = 0
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Step 2: If Tk+1(ε) = Tk(ε) then set k∗ = k and stop, else continue.

Step 3: Replace k by k + 1 and return to step 2.

It is obvious that Algorithm 1 is not practical because it does not
describe how the test Tk+1(ε) = Tk(ε) is implemented; moreover, it
produces k∗ if and only if T (ε) is finitely accessible. In order to
overcome this difficulty, let Rp be endowed with the following norm

‖x‖ = max
1≤i≤p

|xi|, ∀x = (x1, . . . , xp) ∈ Rp.

The set Tk(ε) is then described as follows

Tk(ε) = {x ∈ Rn/Dj(CAi+1x) ≤ 0
for j = 1, 2, . . . , 2p and i = 0, 1, . . . , k}

where Dj : Rp → R are defined for every x = (x1, . . . , xp) ∈ Rp by

D2m−1(x) = xm − ε for m ∈ {1, 2, . . . , p}
D2m(x) = −xm − ε for m ∈ {1, 2, . . . , p}.

It follows from Remark 1 that

Tk+1(ε) = Tk(ε) ⇐⇒ Tk(ε) ⊂ Tk+1(ε)

so

Tk+1(ε) = Tk(ε) ⇐⇒ [∀x ∈ Tk(ε),
∀ j ∈ {1, 2, . . . , 2p} Dj(CAk+2x) ≤ 0]

or equivalently

sup
x∈Tk(ε)

Dj(CAk+2x) ≤ 0 ∀ j ∈ {1, 2, . . . 2p},

hence Algorithm I can be rewritten as follows.

Algorithm II.

Step 1: Let k = 0;

Step 2: For i = 1, . . . , 2p, do:
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Maximize Ji(x) = Di(CAk+2x){
Di(CAlx) ≤ 0,
i = 1, . . . , 2p, l = 1, . . . , k + 1.

Let J∗
i be the maximum value of Ji(x).

If J∗
i ≤ 0, for i = 1, . . . , 2p, then set k∗ := k and stop.

Else continue.

Step 3: Replace k by k + 1 and return to Step 2.

Remark 3. The optimization problem cited in Step 2 is a mathemat-
ical programming problem and can be solved by standard methods.

4. Examples. In this section we give two simple examples where
we present the set E(ε).

Example 1. Let A,C and ε be given by

A =
(

0.6 0
1 0.2

)
, C = (1, 1) and ε = 0, 3

then we use Algorithm II to establish that k∗ = 1.

We suppose that f = 0, r = 1, h1 : R2 → R2 :
(

x

y

)
↪→

(
x2+y2

xy

)
,

g(x) = sin(x) and J = 0. Then, for v0 = π/2 and x0 =
(

1

0

)
we have

E(ε) = R(ε) ∩ S(ε)

where

R(ε) =
{
(γ1, γ2, β0) ∈ R3/

∣∣γ1 + γ2

∣∣ ≤ 0.3,∣∣1.6γ1 + 0.2γ2 + β0[(γ1 + 1)2 + γ2
2 + γ2(γ1 + 1)]

∣∣ ≤ 0.3
}

S(ε) =
{
(γ1, γ2, β0) ∈ R3/∣∣1.16γ1 + 0.04γ2 + β0[1.6((γ1 + 1)2 + γ2

2) + 0.2γ2(γ1 + 1)]
∣∣

≤ 0.3,∣∣0.736γ1 + 0.008γ2 + β0[1.16((γ1 + 1)2 + γ2
2) + 0.04γ2(γ1 + 1)]

∣∣
≤ 0.3

}
.
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FIGURE 1. The set E(ε) corresponding to Example 1.

FIGURE 2. The set E(ε) corresponding to Example 2.
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Example 2. For A = 0.8, C = 5 and ε = 2, we obtain k∗ = 0. If
we take f = 0, r = 1, h1(x) = ex, g(x) = 1/x and J = 1. Then, for
v0 = 2, v1 = 1 and x0 = 1, we have

E(ε) = R(ε) ∩ S(ε)

where

R(ε) =
{

(γ, β0, β1) ∈ R3/|γ| ≤ 2,
∣∣∣5
2
β0e

γ+1
∣∣∣ ≤ 2,

|0.8 + 5β1e
0.8+(β0/2)eγ+1 | ≤ 2

}
S(ε) =

{
(γ, β0, β1) ∈ R3/

∣∣0.61 + 4β1e
0.8+(β0/2)eγ+1∣∣ ≤ 2

}
.

5. Admissible disturbances for discrete delayed nonlinear
controlled systems. This section is devoted to the characterization
of admissible disturbances for the discrete infected controlled nonlinear
delayed system given by

(20)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xw(i+ 1) =
∑d

j=0Ajx
w(i− j) + f(ui + αi)

+ g(vi + βi)
∑r

j=0 β
j
i hj(xw(i), xw(i− 1), . . . ,

xw(i− d)) i ≥ 0,
xw(0) = x0 + γ0,

xw(k) = θk + γk for k ∈ {−d,−d+ 1, . . . ,−1}.
The corresponding delayed output function is

(21) yw(i) =
t∑

j=0

Cjx
w(i− j), i ≥ 0,

where Aj ∈ L(Rn), Cj ∈ L(Rn,Rp), r, d and t are integers such that
t ≤ d, hj : Rn(d+1) → Rn and f : Rm → Rn are a continuous function
and g : Rq → R is a given function. (γ−d, γ−d+1, . . . , γ−1, γ0) ∈
(Rn)d+1 is a perturbation which infects the initial state (θ−d, θ−d+1,
. . . , θ−1, x0).

As before, we suppose that I and J are respectively the life of (αi)i≥0

and (βi)i≥0, where βi = (β1
i , β

2
i , . . . , β

r
i ) and we investigate the set E(ε)

of all ε-admissible disturbances

w=((γk)−d≤k≤0, (αi)i≥0, (βi)i≥0) ∈ (Rn)d+1×UI(N,Rm)×UJ (N,Rr),
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i.e.,

E(ε) = {w ∈ Rn(d+1) × UI
m × UJ

r /‖yw ∗ (i) − y(i)‖ ≤ ε, ∀ i ≥ 0},

where (y(i))i≥0 is the output function corresponding to the uninfected
controlled system, namely,

(22) y(i) =
t∑

j=0

Cjx(i− j), i ≥ 0

where

(23)

⎧⎪⎨
⎪⎩
x(i+ 1) =

∑d
j=0Ajx(i− j) + f(ui) i ≥ 0,

x(0) ∈ Rn

x(k) = θk for k ∈ {−d,−d+ 1, . . . ,−1}.

Consider the new state variables Xw
i and Xi defined in Rn(d+1) by

Xw(i) = (xw(i), xw(i− 1), . . . , xw(i− d))�, i ≥ 0
X(i) = (x(i), x(i− 1), . . . , x(i− d))�, i ≥ 0.

Let’s define the matrices Ã ∈ L(Rn(d+1)) and F by

(24) Ã =

⎛
⎜⎜⎜⎜⎜⎝

A0 A1 · · · · · · Ad

In 0n · · · · · · 0n

0n
. . . . . .

...
...

. . . . . . . . .
...

0n · · · 0n In 0n

⎞
⎟⎟⎟⎟⎟⎠ ,

and

F : Rq −→ Rn(d+1)

x −→ (f(x), 0n×m, . . . , 0n×m)�

where In is the n × n-unit matrix, On is the n × n-zero matrix and
0n×m is the n×n-zero matrix. Then it is easy to deduce from (20) and
(23) that

(25)

⎧⎨
⎩
Xw(i+ 1) = ÃXw(i) + F (ui + αi)

+ g(vi + βi)
∑r

j=0 β
j
i hj(Xw(i)) for all i ≥ 0,

Xw(0) = θ0 = W
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and

(26)
{
X(i+ 1) = ÃX(i) + F (ui) for all i ≥ 0,
X(0) = θ0

where

θ0 = (x0θ−1, . . . , θ−d)�, W = (ω0, ω−1, . . . , ω−d)�.

Moreover, if we consider the matrix

(27) C = (C0|C1| · · · |Ct |Op×n| · · · |Op×n︸ ︷︷ ︸
d−t-times

) ∈ L(Rn(d+1),Rp)

then, by (21) and (22) are given in terms of the new state variables
Xw(i) and X(i) by

yw(i) = CXw(i), ∀ i ≥ 0
y(i) = CX(i), ∀ i ≥ 0.

As above, define the set D̃(ε) by

E(ε) = R(ε) ∩ S(ε)

where

R(ε) = {w ∈ M/‖yw
i − yi‖ ≤ ε, ∀ i ∈ {0, . . . , N}}

and
S(ε) = {w ∈ M/‖yw

i − yi‖ ≤ ε, ∀ i ≥ N + 1}

with M = Rn(d+1) × Rm(I+1)+q(J+1) and N = max(I, J) + 1.

The set R(ε) is described by a finite number of equations while S(ε)
is not. So in the sequel, we will investigate the characterization of
S(ε) (and consequently E(ε)) by a finite number of equations (finite
accessibility), i.e., the existence of an integer k such that S(ε) = Sk(ε)
where

Sk(e) = {w ∈ M/‖yw(i) − y(i)‖ ≤ ε, ∀ i ∈ {0, . . . , k}}.
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Since the systems (20) and (25) are infected by perturbation (γ, (αi)i≥0,
(βi)i≥0) and have the same output functions yw(i), then we can use
results of Section 4 to characterize the set E(ε).

Now we develop conditions which are adequate to the delayed case,
under which the set S(ε) is finitely accessible. To realize this we
consider the two following situations

a) First case, p = n (i.e., the observation space and the state space
have the same dimension).

b) Second case, p < n (which is the usual one).

First case, p = n. In this case every Ci is an n× n matrix.

Proposition 3. Suppose the following assumptions hold

i) Ci commutes with Aj for all i and j such that 0 ≤ i ≤ t, 0 ≤ j ≤ d.

ii) ‖
∑d

i=0Aizi‖ ≤ ε for every (z0, . . . , zd) ∈ Bn(0, ε) × · · · ×Bn(0, ε)︸ ︷︷ ︸
(d+1)-times

where Bn(0, ε) = {x ∈ Rn/‖x‖ ≤ ε}, then S(ε) = Sd(ε) where d is the
number of delays in the state variable of system (20).

Proof. Applying techniques in Sections 3 and 4, we have

S(ε) = {w ∈ M/‖CÃi+1LN (w)‖ ≤ ε, ∀ i ≥ 0}
= {w ∈ M/LN (w) ∈ T (ε)}

where
T (ε) = {z ∈ Rn(d+1)/‖CÃi+1z‖ ≤ ε, ∀ i ≥ 0}

Ã, C are given respectively by (24) and (27), operator LN is defined in
a similar way, with appropriate changes, than the operator LN defined
in Section 3. We have

Sk(ε) = {w ∈ M/‖CÃi+1LN (w)‖ ≤ ε, 0 ≤ i ≤ k}
= {w ∈ M/LN (w) ∈ T k(ε)}

where

T̃k(ε) = {z ∈ Rn(d+1)/‖CÃi+1z‖ ≤ ε, 0 ≤ i ≤ k}.
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To prove the proposition it suffices to prove that T̃d(ε) = T̃d+1(ε).

For this, let z = (z0, z1, . . . , zd) ∈ Rn(d+1), then we have

CÃiz = ȳ(i), ∀ i ≥ 0

where (ȳ(i))i≥0 is the output function

ȳ(i) = CZ(i), i ≥ 0

and (Z(i))i≥0 is the solution of the system{
Z(i+ 1) = ÃZ(i) i ≥ 0,
Z(0) = z.

We have also

ȳ(i) =
t∑

j=0

Cjξ(i− j)

where (ξi)i≥0 is the solution of the following system{
ξ(i+ 1) =

∑d
j=0Ajξ(i− j) i ≥ 0,

ξ(−k) = zk for all k ∈ {0, 1, . . . , d}.

Let z = (z0, z1, . . . , zd) ∈ T̃d(ε), then

(28) CÃi+1z = ȳ(i+ 1) ∈ Bn(0, ε), ∀ i ∈ {0, . . . , d}.

On the other hand,

ȳ(d+ 2) =
t∑

j=0

Cjξ(d+ 2 − j)

=
t∑

j=0

Cj

d∑
k=0

Akξ(d+ 1 − k − j)

=
d∑

k=0

Ak

t∑
j=0

Cjξ(d+ 1 − k − j)

[using hypothesis i) cited in Proposition 4]

=
d∑

k=0

Aiȳ(d+ 1 − k);
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then it follows from hypotheses ii) and (28) that

‖ȳ(d+ 2)‖ ≤ ε,

and hence
T d(ε) ⊂ T d+1(ε)

or equivalently
T d(ε) = T d+1(ε).

Remark 4. After the statement of the proposition one could observe
that, in particular, in the case where the state-space dimension n and
the output-space dimension p are the same, and no delay appears,
d = t = 0, if the matrices A,C commute and A is Lyapunov stable,
then S(ε) is finite accessible and one has S(ε) = S0(ε).

Second case p < n. Since every Ci is a p × n matrix, we define
the matrix Ĉi =

(
Ci

0

)
as an n × n-matrix. If we introduce the new

observation variables ỹw(i) and ŷ(i) by

ŷw(i) =
(
yw(i)
0Rn−p

)
∈ Rn, ŷ(i) =

(
y(i)

0Rn−p

)
∈ Rn,

then clearly we have

ŷw(i) =
t∑

j=0

Ĉjx
w(i− j), ŷ(i) =

t∑
j=0

Ĉjx(i− j).

Consequently, the set T (ε) is given by

S(ε) = {w ∈ M/‖yw(i) − y(i)‖ ≤ ε, ∀ i ≥ 0}
= {w ∈ M/‖ŷw(i) − ŷ(i)‖ ≤ ε, ∀ i ≥ 0}.

Since Ĉi are n×n-matrices, we apply the results established in the first
case, p = n, to deduce the following proposition:

Proposition 4. Suppose the following hypotheses hold
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i) Ĉi commutes with Aj for all i and j such that 0 ≤ i ≤ t, 0 ≤ j ≤ d.

ii) ‖
∑d

i=0Aizi‖ ≤ ε for all (z0, . . . , zd) ∈ Bn(0, ε), . . . , Bn(0, ε)︸ ︷︷ ︸
(d+1)-times

.

Then S(ε) is finitely accessible, moreover S(ε) = Sd(ε).

6. Conclusion. In this paper the problem of the characterization
of the admissible disturbances set for discrete-time controlled systems
with some state and input constraints is considered. An efficient
algorithm for constructing the admissible set is given and numerical
simulation have been done for some examples. The case of controlled
discrete-time delayed systems have also been investigated.
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