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BIFURCATIONS OF BOUNDED SOLUTIONS
OF ORDINARY DIFFERENTIAL EQUATIONS

DEPENDING ON A PARAMETER

YU SHU-XIANG

ABSTRACT. In this paper, using the notion of an isolated
invariant set and an isolating block, an existence criterion
of bifurcation points of nonstationary bounded solutions for
planar systems depending on a parameter is given.

1. Introduction. Consider the one-parameter family of differential
systems in Rn

(1.1)
dx

dt
= F (x, λ).

Let F : Rn × R → Rn be continuous and assume that, for each λ ∈ R,
the solution of an initial value problem is unique.

Each zero of F is called a stationary solution of (1.1). Clearly, if
(x0, λ0) satisfies F (x0, λ0) = 0, then x0 is a critical point of the λ = λ0

system (1.1). In this paper we shall investigate bifurcation points of
nonstationary bounded solutions of (1.1), where a bounded solution
means that it is bounded both in the forward and backward time
directions.

Definition 1.1 [3]. A point (x0, λ0) ∈ Rn × R is said to be a
bifurcation point of nonstationary bounded solutions of the system
(1.1) if for any open neighborhood U of (x0, λ0) there is a nonstationary
solution of (1.1) included in U .

It follows directly from Definition 1.1 that if (x0, λ0) is a bifurcation
point, then x0 has to be a critical point of the λ = λ0 system (1.1).
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Therefore, without loss of generality we assume that (0, 0) ∈ Rn ×R is
a stationary solution of (1.1), i.e., F (0, 0) = 0, and x0 = 0 is a critical
point of the λ = 0 system (1.1). A problem is to find the conditions
which guarantee that the origin (0, 0) ∈ Rn × R is a bifurcation point
of nonstationary bounded solutions of (1.1). Recently, Izydorek and
Rybicki in [3] gave some sufficient conditions which guarantee that a
bifurcation point of stationary solutions of (1.1) is also a bifurcation
point of nonstationary bounded solutions. In the present paper, using
the concept of an isolated invariant set and a generalization of a result
about the existence of connecting orbits in [4], we shall give an existence
criterion of bifurcation points of nonstationary bounded solutions for
planar systems depending on a parameter.

2. The existence of connecting orbits. Consider the differential
system defined in the plane

(2.1)

dx

dt
= X(x, y),

dy

dt
= Y (x, y).

Let V = (X, Y ) be a C1-vector field and f(p, t) be a flow generated
by V . Let B be the closure of a bounded, connected open set in R2

with the boundary ∂B consisting of n mutually disjoint components
L1, . . . , Ln, each of which is a simple closed curve. Denote by L1 the
external boundary. We define three subsets b+, b−, τ as follows:

b+ = {p ∈ ∂B | ∃ ε > 0 with f(p, (−ε, 0)) ∩ B = ∅},
b− = {p ∈ ∂B | ∃ ε > 0 with f(p, (0, ε)) ∩ B = ∅},
τ = {p ∈ ∂B | V is tangent to ∂B at p}.

Definition 2.1 [2]. If b+ ∩ b− = τ and b+ ∪ b− = ∂B, then B is
called an isolating block for the flow defined by (2.1).

Definition 2.2. If a simple closed curve C is the union of alternating
nonclosed whole trajectories and critical points, and it is contained in
the ω(or α)-limit set of some trajectory, then we say that C is a singular
closed trajectory.
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In this paper we shall prove the following theorem which is a gener-
alization of Theorem 1 in [4].

Theorem 2.1. If the system (2.1) admits an isolating block B such
that the following two conditions are satisfied in B:

(i) there are precisely n critical points O1, . . . , On, n ≥ 2, and at
least one of them, say O1, is a repeller;

(ii) there are no closed trajectories and singular closed trajectories;

then there must be a trajectory in B running from O1 to another critical
point.

Proof of Theorem 2.1. The proof is completely analogous to the proof
of Theorem 1 in [4]. Consider any trajectory γ(p) originating from O1.
As t → +∞, γ(p) may tend to a critical point, or approach to infinity, or
tend to a set containing ordinary points. In the third case γ(p) cannot
be a separatrix, see [4]. Let G be the region of negative attraction of
the critical point O1, i.e., G = {p ∈ R2 | limt→−∞ f(p, t) = O1}. We
distinguish two cases:

(I) Each of the trajectories originating from O1 is not a separatrix.

(II) There is at least one trajectory originating from O1 being a
separatrix.

The first case can be excluded in a similar way as shown in the proof
of Theorem 1 in [4].

Consider now the second case. Since O1 is a repeller, we know
that there is in a small neighborhood of O1 a simple closed curve
transversal to the flow. Let ρ be such a curve. Suppose that there
are no trajectories joining O1 and Ok, k = 2, . . . , n. Then, using
the same argument used in [4], it can be proved that every trajectory
γ(p), where p ∈ ρ, must meet ∂B for increasing time and ρ is mapped
topologically onto ∂B by trajectories. Thus B is filled by these
trajectories originating from O1 together with O1. But this contradicts
the fact that the set {O2, . . . , On} ⊂ B. Hence Theorem 2.1 is proved.
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3. The existence of bifurcation points. Consider now the
differential system depending on a parameter

(3.1)

dx

dt
= X(x, y, λ),

dy

dt
= Y (x, y, λ).

Suppose the system (3.1) is defined in the region Ω = R2 ×R and that
X, Y ∈ C1 in x, y and λ in Ω.

Definition 3.1. A point (x0, y0, λ0) ∈ Ω is called a bifurcation point
of stationary solutions of (3.1) if (x0, y0) is an isolated critical point
of (3.1) for λ = λ0 and there are at least two branches of stationary
solutions of (3.1) emanating from it in the halfspace λ > λ0 or in the
halfspace λ < λ0.

Remark 3.1. By Definition 3.1 the point (x, y, λ) = (0, 0, 0) is a
bifurcation point of stationary solutions of (3.1) means that the origin
(x, y) = (0, 0) = O is an isolated critical point of (3.1) for λ = 0 and
there is a bounded connected region G in the xy-plane containing the
origin in its interior and a value λ1 > 0 such that for 0 < λ ≤ λ1, G
contains precisely n critical points Pi(λ), i = 1, . . . , n, n ≥ 2, and these
critical points move continuously with λ finally coalescing at λ = 0, i.e.,
P1(0) = · · · = Pn(0) = (0, 0) = O.

There is an example, e.g., [3, p. 268], which shows that a bifurcation
point of stationary solutions is not necessarily a bifurcation point of
nonstationary bounded solutions. In the present paper we shall give
the conditions such that a bifurcation point of stationary solutions of
(3.1) is also a bifurcation point of nonstationary bounded solutions, see
Theorem 3.1 below.

We shall prove the following theorem.

Theorem 3.1. Suppose that the system (3.1) satisfies the following
two conditions:

(i) the point (x, y, λ) = (0, 0, 0) is a bifurcation point of stationary
solutions;

(ii) at least one of the points Pi(λ), λ = 1, . . . , n, is a repeller;
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then the point (x, y, λ) = (0, 0, 0) is a bifurcation point of nonstationary
bounded solutions of (3.1).

Proof of Theorem 3.1. The following proof proceeds by reduction
to absurdity. Suppose that the point (x, y, λ) = (0, 0, 0) is not a
bifurcation point of nonstationary bounded solutions of (3.1). Then
by Definition 1.1 we know that there is an open neighborhood U of the
point (0, 0, 0) such that there are no nonstationary bounded solutions of
(3.1) included in U . This implies that there is an open neighborhood
G1(⊂ G) of the origin O = (0, 0) and a value λ2(≤ λ1) such that
G1 × [0, λ2] ⊂ U , hence for 0 ≤ λ ≤ λ2 there are no nonstationary
bounded trajectories of (3.1) in G1. In particular, for 0 ≤ λ ≤ λ2 there
are no closed trajectories and singular closed trajectories of (3.1) in
G1. Since the origin O = (0, 0) is an isolated critical point of the λ = 0
system (3.1), there is an open neighborhood G2(⊂ G1) of the origin
O such that O is its unique critical point in G2, where G2 denotes
the closure of G2. By G2 ⊂ G1, it follows that the orbit γ(p) of the
λ = 0 system (3.1) originating from each point p ∈ ∂G2, where ∂G2

denotes the boundary of G2, cannot be contained completely in G2.
Therefore, G2 is an isolating neighborhood of the λ = 0 system (3.1)
[1, pp. 3 4]. Since G2 contains no nonstationary bounded orbits of the
λ = 0 system (3.1), the critical point O is the maximal invariant set
contained in G2. Moreover, there is a value λ3(≤ λ2) such that G2 is
also an isolating neighborhood of (3.1) for 0 ≤ λ ≤ λ3 [1, p. 4]. It is
easy to see that G2 × [0, λ3] ⊂ G1 × [0, λ2] ⊂ U . By the condition (i) of
Theorem 3.1 and Remark 3.1, we know that there is a value λ4(≤ λ3)
such that for 0 < λ ≤ λ4, n critical points Pi(λ), i = 1, . . . , n, lie in
the interior of G2. Let Sλ denote the maximal invariant set of (3.1)
for 0 < λ ≤ λ4 in G2. Clearly, we have Pi(λ) ∈ Sλ, i = 1, . . . , n.
We now can prove that, for any λ ∈ (0, λ4] the system (3.1) has a
nonstationary bounded orbit in G2. In fact, by [2, p. 53], we know
that for the isolated invariant set Sλ and the isolating neighborhood
G2, one can construct an isolating block Bλ for Sλ which lies in G2.
Obviously, Bλ ⊂ G2 ⊂ G1. As stated above, for 0 ≤ λ ≤ λ2, there are
no closed trajectories and singular closed trajectories of (3.1) in G1.
Thus, for 0 ≤ λ ≤ λ4, there are no closed trajectories and singular
closed trajectories of (3.1) in Bλ. By Sλ ⊂ Bλ together with the
condition (ii) of Theorem 3.1, it follows that Bλ contains precisely n



1196 S.-X. YU

critical points Pi(λ), i = 1, . . . , n, n ≥ 2, and there is at least one, say
P1(λ), that is a repeller. Therefore, Theorem 2.1 implies that there
must be a trajectory Tλ in Bλ running from P1(λ) to another critical
point. Tλ is just a nonstationary bounded orbit in G2. Clearly Tλ ⊂ U .
This is a contradiction. Hence, Theorem 3.1 is proved.

Remark 3.2. If we replace assuming that there is at least one repeller
in Theorem 3.1 by assuming that there is at least one attractor, then
the conclusion of Theorem 3.1 also holds.

In fact, if we make a change t → −t in the system (3.1), then we
get a new system (3.1)′ which satisfies the conditions of Theorem 3.1.
It follows that the point (x, y, λ) = (0, 0, 0) is a bifurcation point
of nonstationary bounded solutions of (3.1)′. But the new system
(3.1)′ and the old system (3.1) have the same bifurcation points of
nonstationary bounded solutions. Hence the conclusion of Remark 3.2
follows.

Remark 3.3. In the existence theorem of [3] it is required that the
function F (x, λ) is analytic and the critical points Pi(λ), i = 1, . . . , n,
are nondegenerate, i.e., where the linearized system has a nonzero
Jacobian. However, Theorem 3.1 does not have this restriction in the
present paper.
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