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SPACE-LIKE EINSTEIN KÄHLER SUBMANIFOLDS
IN AN INDEFINITE COMPLEX HYPERBOLIC SPACE

YONG-SOO PYO

ABSTRACT. The purpose of this paper is to study space-
like Einstein Kähler submanifolds with restricted full immer-
sions and parallel second fundamental forms in an indefinite
complex hyperbolic space.

1. Introduction. The theory of semi-definite complex submanifolds
of a semi-definite complex space form is one of the most interesting
research subjects in differential geometry and it is studied by many
geometers from the various points of view, see [1 3, 10 12] and [14],
for instance.

As one of such studies, in their paper [10], Nakagawa and Takagi clas-
sified completely locally symmetric Kähler submanifolds of a complex
projective space. In particular, it is seen that complex submanifolds
whose second fundamental form are parallel of a complex projective
space are all Einstein. Conversely, Einstein Kähler submanifolds of
a complex space form do not satisfy necessarily the result that the
second fundamental form is parallel, and it is seen in [10] that there
exist many Einstein Kähler submanifolds of a complex projective space
whose second fundamental form are not necessarily parallel. Further-
more, Romero [13] and Umehara [15] independently proved the in-
definite version and they found that there exists a full holomorphic
isomorphic immersion of an indefinite complex space form Mn

s (c) into
an indefinite complex space form Mn+p

s+t (c′).

On the other hand, Einstein Kähler submanifolds of a complex
projective space whose second fundamental form are parallel were
investigated by Nakagawa [9]. He proved the following
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Theorem A. Let M be an n(� 2)-dimensional Einstein Kähler sub-
manifold immersed in a complex projective space CPn+p(c) of constant
holomorphic sectional curvature c. If the immersion is full and if the
second fundamental form of M is parallel, then the following hold:

(1) If p < n
2 , then p = 1 and M is locally a complex quadric Qn.

(2) If p � 1
2n(n + 1), then p = 1

2n(n + 1) and M is locally CPn( c
2 ).

The purpose of this paper is to investigate the space-like version of
Theorem A, namely to prove the following

Theorem. Let M be an n(� 2)-dimensional space-like Einstein
Kähler submanifold of an indefinite complex space form Mn+p

p (c) of
constant holomorphic sectional curvature c < 0. If the immersion is full
and if the second fundamental form of M is parallel, then the following
hold:

(1) If p < n
2 , then p = 1 and M is locally a complex quadric Qn.

(2) If p � 1
2n(n + 1), then p = 1

2n(n + 1) and M is locally CHn( c
2 ).

2. Indefinite Kähler manifolds. We begin by recalling basic
formulas on indefinite Kähler manifolds. Let M be a complex n(� 2)-
dimensional connected semi-definite Kähler manifold equipped with
the semi-definite Kähler metric tensor g and almost complex structure
J . For the semi-definite Kähler structure {g, J}, it follows that J is
integrable and the index of g is even, say 2s, 0 � s � n. In the case
where s is contained in the range 0 < s < n, the structure {g, J} is said
to be indefinite Kähler structure and M is called an indefinite Kähler
manifold. In particular, in the case where s = 0 or n, it is said to be
Kähler structure.

Let M ′ be a complex (n+p)-dimensional connected indefinite Kähler
manifold of index 2p, n � 2, p > 0. Then we can choose a local
field {EA} = {E1, . . . , En, En+1, . . . , En+p} of unitary frames on a
neighborhood of M ′. This is a complex frame field on the neighborhood
of M ′ which is orthonormal with respect to the indefinite Kähler metric
g′, that is, g′(EA, EB) = εAδAB, where

εA = 1 or − 1, according to whether 1 � A � n or n + 1 � A � n + p.

Its dual field ω′
0 = {ωA} = {ω1, . . . , ωn, ωn+1, . . . , ωn+p} with respect
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to the unitary frame {EA} consists of complex-valued 1-forms of type
(1,0) on M ′ such that ωA(EB) = εAδAB, and ω1, . . . , ωn+p, ω̄1, . . . , ω̄n+p

are linearly independent, where ω̄A denotes the complex conjugate of
ωA. It is called the canonical form with respect to the unitary frame
{EA}. The indefinite Kähler metric g′ of M ′ can be expressed as
g′ = 2

∑
A εAωA ⊗ ω̄A, where the Latin capital indices A and B run

over the range 1, . . . , n + p. Associated with the frame field {EA},
there exist complex-valued forms ω′ = {ωAB} and Ω′ = {ΩAB} the
connection form and the curvature form on M ′, respectively. They
satisfy the following structure equations of M ′.

dωA +
∑
B

εBωAB ∧ ωB = 0, ωAB + ω̄BA = 0,(2.1)

dωAB +
∑
C

εCωAC ∧ ωCB = ΩAB,(2.2)

ΩAB =
∑
C,D

εCεDR′
ĀBCD̄ωC ∧ ω̄D,(2.3)

where R′
ĀBCD̄

denotes the components of the Riemannian curvature
tensor R′ of M ′. The equations (2.1) and (2.2) means that the skew-
symmetry of ΩAB, which is equivalent to the symmetric condition

(2.4) R′
ĀBCD̄ = R̄′

B̄ADC̄.

By the exterior derivative of (2.1) and (2.3), the first Bianchi formula

∑
B

εBΩAB ∧ ωB = 0

is given, which implies the further symmetric relations

(2.5) R′
ĀBCD̄ = R′

ĀCBD̄ = R′̄
DCBĀ = R′̄

DBCĀ.

Now, relative to the frame field chosen above, the Ricci tensor S′ of
M ′ can be expressed as follows:

(2.6) S′ =
∑
A,B

εAεB(S′
AB̄ωA ⊗ ω̄B + S ′̄

ABω̄A ⊗ ωB),
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where S′
AB̄

=
∑

C εCR′̄
CCAB̄

= S ′̄
BA

= S̄′
ĀB. The scalar curvature r′

of M is also given by

(2.7) r′ = 2
∑
A

εAS′
AĀ.

The indefinite Kähler manifold M ′ is said to be Einstein if the Ricci
tensor S′ is given by

(2.8) S′
AB̄ =

r′

2(n + p)
εAδAB.

Next, the components R′
ĀBCD̄E

and R′
ĀBCD̄Ē

relative to the frame
field {EA} of the covariant derivative of the Riemannian curvature
tensor R′ are obtained by

∑
E

εE(R′
ĀBCD̄EωE + R′

ĀBCD̄Ēω̄E) = dR′
ĀBCD̄

(2.9)

−
∑
E

εE(R′̄
EBCD̄ω̄EA + R′

ĀECD̄ωEB + R′
ĀBED̄ωEC + R′

ĀBCĒω̄ED).

The second Bianchi formula is given by

(2.10) R′
ĀBCD̄E = R′

ĀBED̄C.

Let M be an n-dimensional semi-definite Kähler manifold of index 2s,
0 � s � n, with almost complex structure J . A plane section P of the
tangent space TxM of M at any point x is said to be nondegenerate,
provided that the restriction of gx|TxM to P is nondegenerate. It is
easily seen that P is nondegenerate if and only if it has a basis {X, Y }
such that g(X, X)g(Y, Y ) − g(X, Y )2 �= 0. The plane P is said to be
holomorphic if it has a basis {X, JX} for the plane P . It is also trivial
that the plane P is nondegenerate if and only if it contains a vector X
with g(X, X) �= 0. For the non-degenerate plane P spanned by X and
Y , the sectional curvature K(X, Y ) of P is usually defined by

K(X, Y ) =
g(R(X, Y )Y, X)

g(X, X)g(Y, Y ) − g(X, Y )2
.
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It is well known that the sectional curvature of the non-degenerate plane
P is independent of the choice of the basis {X, Y } for the plane. So, it is
denoted by K(X, Y ) = K(P ). Moreover, the sectional curvature H(P )
of the non-degenerate holomorphic plane P is called the holomorphic
sectional curvature, which is denoted by H(P ) = K(P ) = K(X, JX) =
H(X) for any nonzero vector X in P .

The indefinite Kähler manifold M is said to be of constant holomor-
phic sectional curvature if its holomorphic sectional curvature H(P ) is
constant for any nondegenerate holomorphic plane P and any point on
M . Then M is called an indefinite complex space form, which is de-
noted by Mn

s (c), provided that it is of constant holomorphic sectional
curvature c, of complex dimension n and of index 2s, 0 < s < n. It is
seen in Barros and Romero [4] that the standard models of indefinite
complex space forms are the following three kinds: the indefinite com-
plex projective space CPn

s (c), the indefinite complex Euclidean space
Cn

s or the indefinite complex hyperbolic space CHn
s (c), according to

whether c > 0, c = 0 or c < 0. For any integer s, 0 < s < n, it is also
seen by [4] that they are complete simply connected indefinite complex
space forms of dimension n and of index 2s.

The components R′
ĀBCD̄

of the Riemannian curvature tensor R′ of
the n-dimensional indefinite complex space form M ′ = Mn

s (c) are given
by

(2.11) R′
ĀBCD̄ =

c

2
εBεC(δABδCD + δACδBD).

3. Space-like complex submanifolds. This section is concerned
with space-like complex submanifolds of an indefinite Kähler manifold.
First of all, the basic formulas for the theory of space-like complex
submanifolds are prepared. Let (M ′, g′) be an (n + p)-dimensional
connected indefinite Kähler manifold of index 2p(> 0), and let M be
an n(� 2)-dimensional connected space-like complex submanifold of
M ′. Then M becomes the Kähler manifold endowed with the induced
metric tensor g. We can choose a local field {EA} = {Ei, Ex} =
{E1, . . . , En+p} of unitary frames on a neighborhood of M ′ in such a
way that, restricted to M , E1, . . . , En are tangent to M and the others
are normal to M . Here and in the sequel, the following convention
on the range of indices is used throughout this paper, unless otherwise
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stated.
A, B, . . . = 1, . . . , n, n + 1, . . . , n + p,

i, j, . . . = 1, . . . , n,

x, y, . . . = n + 1, . . . , n + p.

With respect to the frame field {EA}, let {ωA} = {ωi, ωx} be its
dual frame field. Then the indefinite Kähler metric tensor g′ of M ′

is given by g′ = 2
∑

A εAωA ⊗ω̄A, where εi = 1 and εx = −1. The
canonical form {ωA} and the connection form {ωAB} with respect
to the unitary frame field {EA} of the ambient space M ′ satisfy the
structure equations

dωA +
∑
B

εBωAB ∧ ωB = 0, ωAB + ω̄AB = 0,(3.1)

dωAB +
∑
C

εCωAC ∧ ωCB = Ω′
AB,(3.2)

Ω′
AB =

∑
C,D

εCεDR′
ĀBCD̄ωC ∧ ω̄D,(3.3)

where {Ω′
AB}, respectively R′

ĀBCD̄
, denotes the curvature form, respec-

tively the components of the indefinite Riemannian curvature tensor R′,
of M ′.

Now restricting these forms to the submanifold M , we have

(3.4) ωx = 0,

and the induced Kähler metric tensor g of M is given by g = 2
∑

i εiωi⊗
ω̄i. Then {Ei} is a local unitary frame field with respect to the
induced metric and {ωi} is a canonical form with respect to {Ei},
which consists of complex valued 1-forms of type (1.0) on M . Moreover,
ω1, . . . , ωn, ω̄1, . . . , ω̄n are linearly independent. It follows from (3.4)
and Cartan’s lemma that the exterior derivatives of (3.4) give rise to

(3.5) ωxi =
∑

j

εjh
x
ijωj, hx

ij = hx
ji.

The quadratic form α =
∑

i,j,x εiεjεxhx
ijωi ⊗ ωj ⊗ Ex with values in

the normal bundle on M in M ′ is called the second fundamental form
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of the submanifold M . From the structure equations for M ′, it follows
that the structure equations for M are similarly given by

dωi +
∑

j

εjωij ∧ ωj = 0, ωij + ω̄ji = 0,(3.6)

dωij +
∑

k

εkωik ∧ ωkj = Ωij,(3.7)

Ωij =
∑
k,l

εkεlRījkl̄ωk ∧ ω̄l.(3.8)

Moreover, the following relationships are obtained.

dωxy +
∑

z

εzωxz ∧ ωzy = Ωxy,(3.9)

Ωxy =
∑
k,l

εkεlRx̄ykl̄ωk ∧ ω̄l,(3.10)

where {Ωxy} is called the normal curvature form of M . For the
Riemannian curvature tensors R and R′ of M and M ′, respectively,
it follows from (3.1), (3.5) and (3.8) that we have the Gauss equation

(3.11) Rījkl̄ = R′̄
ijkl̄ −

∑
x

εxhx
jkh̄x

il,

and by means of (3.5) and (3.10), we have

(3.12) Rx̄ykl̄ = R′
x̄ykl̄ +

∑
j

εjh
x
kj h̄

y
jl.

The components Sij̄ of the Ricci tensor S and the scalar curvature r
of M are given by

Sij̄ =
∑

k

εkR′̄
kkij̄ − hij̄

2,(3.13)

r = 2
( ∑

j,k

εjεkR′̄
jjkk̄ − h2

)
,(3.14)

where hij̄
2 = hj̄i

2 =
∑

k,x εkεxhx
ikh̄x

kj and h2 =
∑

j εjhjj̄
2.
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Next, the components hx
ijk and hx

ijk̄
of the covariant derivative of hx

ij

are given by

(3.15)
∑

k

εk(hx
ijkωk + hx

ijk̄ω̄k)

= dhx
ij −

∑
k

εk(hx
kjωki + hx

ikωkj) +
∑

y

εyhy
ijωxy.

Then, substituting dhx
ij in this definition into the exterior derivative of

(3.5) and using (3.1), (3.4), (3.5), (3.6), (3.7) and (3.15), we have

(3.16) hx
ijk = hx

ikj,
hx

ijk̄ = −R′
x̄ijk̄

from the coefficients of ωj ∧ ωk and ωj ∧ ω̄k.

Similarly, the components hx
ijkl and hx

ijkl̄
, respectively hx

ijk̄l
and hx

ijk̄l̄
,

of the covariant derivative of hx
ijk, respectively hx

ijk̄
, can be defined by

(3.17)
∑

l

εl(hx
ijklωl + hx

ijkl̄ω̄l)

= dhx
ijk −

∑
l

εl(hx
ljkωli + hx

ilkωlj + hx
ijlωlk) +

∑
y

εyhy
ijkωxy,

and

(3.18)
∑

l

εl(hx
ijk̄lωl + hx

ijk̄l̄ω̄l)

= dhx
ijk̄ −

∑
l

εl(hx
ljk̄ωli + hx

ilk̄ωlj + hx
ijl̄ω̄lk) +

∑
y

εyhy

ijk̄
ωxy.

Differentiating (3.15) exteriorly and using the properties d2 = 0, (3.6),
(3.7), (3.9), (3.13), (3.15) and (3.16), we have the following Ricci
formula for the second fundamental form on M .

(3.19) hx
ijkl = hx

ijlk, hx
ijk̄l̄ = hx

ijl̄k̄

from the coefficients of ωk ∧ ωl and ω̄k ∧ ω̄l, respectively, and

(3.20) hx
ijkl̄ − hx

ijl̄k =
∑

r

εr(Rl̄kir̄h
x
rj + Rl̄kjr̄h

x
ri) −

∑
y

εyRl̄kyx̄hy
ij
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from the coefficients of ωk ∧ ω̄l.

In particular, let the ambient space M ′ be an (n + p)-dimensional
indefinite complex space form Mn+p

p (c′) of constant holomorphic sec-
tional curvature c′ and of index 2p(> 0). Then we get

Rījkl̄ =
c′

2
εjεk(δijδkl + δikδjl) −

∑
x

εxhx
jkh̄x

il,(3.21)

Sij̄ =
c′

2
(n + 1)εiδij − hij̄

2,(3.22)

r = c′n(n + 1) − 2h2,(3.23)
hx

ijk̄ = 0(3.24)

and

(3.25)
hx

ijkl̄ =
c′

2
(εkhx

ijδkl + εih
x
jkδil + εjh

x
kiδjl)

−
∑
r,y

εrεy(hx
rih

y
jk + hx

rjh
y
ki + hx

rkhy
ij)h̄

y
rl.

4. Examples of space-like Einstein Kähler submanifolds.
We give in this section some examples of space-like Einstein Kähler
submanifolds of an indefinite complex hyperbolic space CHn+p

p (c),
c < 0, whose second fundamental forms are parallel or not parallel.

Example 4.1. For an indefinite complex hyperbolic space CHn+1
1 (c),

if {z1, . . . , zn+2} is the usual homogeneous coordinate system of
CHn+1

1 (c), then the equation zn+2 = 0 defines a totally geodesic space-
like complex hypersurface identifiable with CHn(c). So, it is Einstein
and it is trivial that its second fundamental form is parallel.

A semi-definite complex hyperbolic space CHn
s (−c), c > 0, is ob-

tained from a semi-definite complex projective space CPn
n−s(c) by re-

versing the sign of its semi-definite Kähler metric. By taking into ac-
count the fact, the previous discussion shows that CHn

s (−c) is totally
geodesic complex hypersurface of both CHn+1

s (−c) and CHn+1
s+1 (−c).

Example 4.2. For the homogeneous coordinate system {z1, . . . ,zn+2}
of CPn+1

s (c), an indefinite complex quadric Qn
s 0 < s < n, is an indef-
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inite complex hypersurface of CPn+1
s (c) defined by the equation

−
s∑

j=1

zj
2 +

n+2∑
k=s+1

zk
2 = 0.

Then Qn
s is a complete complex hypersurface of index 2s, and moreover,

in the similar way to Kobayashi and Nomizu [7, Chapter 11, Example
10.6], it is Einstein and then the Ricci tensor S satisfies

S =
c

2
ng, hij̄

2 = − c

2
εiδij .

Note that Qn can be also considered as a complete space-like Einstein
complex hypersurface of CHn+1

1 (c), c < 0. In this case, in particular,
the second fundamental form of Qn is parallel because it is of codimen-
sion one.

Remark 4.1. In his paper [14], Smyth showed that a complete
Einstein complex hypersurface M of a complex space form Mn+1(c)
is totally geodesic or c > 0 and M is the complex quadric Qn.

Remark 4.2. An indefinite Einstein complex hypersurface of an
indefinite complex space form is investigated in detail by Montiel and
Romero [8].

The following example was also given by them.

Example 4.3. Let us consider an indefinite complex hypersurface
M = M2n

n of CP 2n+1
n+1 (c) defined by the equation

n+1∑
j=1

zjzn+1+j = 0

in the usual homogeneous coordinate system of CP 2n+1
n+1 (c). It is a

complete complex hypersurface of index 2n, which is denoted by Q∗
n.

It is easily seen that the Ricci tensor S satisfies

S = c(n + 1)g, hij̄
2 = − c

2
εiδij
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and hence it is Einstein, so the second fundamental form is parallel.

A same discussion as that in Example 4.3 shows that it is also
an indefinite complete Einstein complex hypersurface of CH2n+1

n (−c),
whose second fundamental form is parallel.

Example 4.4. For the homogeneous coordinate systems {z1, · · · , zs,
zs+1 · · · , zn+1} of CPn

s (c) and {w1, · · · , wt, wt+1 · · · , wm+1} of CPm
t (c),

a mapping f of CPn
s (c) × CPm

t (c) into CP
N(n,m)
R(n,m,s,t)(c) with

N(n, m) = n + m + nm, R(n, m, s, t) = s(m − t) + t(n − s) + s + t

is defined by
f(z, w) = (zawu,zrwx,zbwy,zswv),

where
a, b, . . . = 1, . . . , s; r, s, . . . = s + 1, . . . , n + 1,

x, y, . . . = 1, . . . , t; u, v, . . . = t + 1, . . . , m + 1.

Then f is a well-defined holomorphic mapping and it is seen that f
is also an isomorphic imbedding, which is called an indefinite Segre
imbedding. In the case of n = m, it is Einstein and the Ricci tensor S
satisfies

S =
c

2
(n + 1)g.

The second fundamental form is not necessarily parallel. In particular,
if s = t = 0, then f is a classical Segre imbedding, see Nakagawa and
Takagi [10]. This example is due to Ikawa, Nakagawa and Romero [6].
If n �= m, then it is not Einstein, but its Ricci tensor is parallel. So,
the second fundamental form is not parallel.

As the simple case in the definite product ones, CP 1(c)×CP 1(c) is the
complex quadric Q2 in CP 3(c). In the indefinite case, however, we can
consider two product manifolds CP 1

1 (c)×CP 1
1 (c) and CP 1

1 (c)×CP 1(c)
which are mutually different complex quadric in CP 3

2 (c). In fact, it is
seen in Montail and Romero [8] that they are denoted by Q2

2 and Q∗
1,

respectively.

By using the fact that an indefinite complex hyperbolic space
CHn

s (−c) is obtained from CPn
n−s(c) by changing the Kähler metric

to its negative. Another indefinite Segre imbedding

f : CHn
s (−c) × CHm

t (−c) −→ CH
N(n,m)
S(n,m,s,t)(−c)
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is given, where

S(n, m, s, t) = (n − s)(m − t) + st + s + t.

In the case where n = m, it is Einstein and the Ricci tensor S satisfies
S = − c

2 (n + 1)g. In particular, for s = t = 0, we have a holomorphic
isometric imbedding f of CHn(−c) × CHm(−c) into CH

N(n,m)
nm (−c).

It is easily seen that the Ricci tensor on the complex submanifold
with parallel second fundamental form is also parallel. We give here
some examples complex submanifolds of a complex projective space
whose second fundamental forms are parallel. These submanifolds are
completely classified by Nakagawa and Takagi [10] and their geometric
properties are also completely determined.

Example 4.5. Let M be an n-dimensional compact irreducible Her-
mitian symmetric space with Kähler metric under the canonical imbed-
ding into a complex projective space CPn+p(c). Then the degree of the
imbedding coincides with the rank of M as a symmetric space. This
shows that the following six kinds of compact irreducible Hermitian
symmetric spaces:

CPn(= SU(n + 1)/S(U(n) × U(1)),
Qn(= SO(n + 2)/SO(n)× SO(2)), n � 3,

SU(s + 2)/S(U(s) × U(2)), s � 3,

SO(10)/U(5),
E6/Spin(10) × T,

E7/E6 × T

admit Kähler imbeddings with parallel second fundamental form into
CPn+p(c), where U(n), SU(n) and SO(n) denote the unitary group,
the special unitary group and the special orthogonal group, respec-
tively, and E6, Spin (10) and T denote the exceptional group, the spin
group and the torus group, respectively. The above six spaces are Ein-
stein, their dimensions are n, n, 2s, 10, 16 and 27, respectively, and their
scalar curvatures are given by cn(n + 1), cn2, 2cs(s + 2), 80c, 192c and
486c, respectively. If the imbedding is full, then the codimension p is
0, 1, 1

2 (s2 − s), 5, 10 and 28, respectively.
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Example 4.6. We give another example of complex submanifold
of an N -dimensional complex projective space CPN (c) of constant
holomorphic sectional curvature c. Define a mapping f of CPn1(c1) ×
· · · × CPnr(cr) into CPN (c) by

(z1
0 , . . . , z1

n1
, . . . , zr

0 , . . . , zr
nr

)

−→ (z1
0 · · · zr

0 , . . . , z1
i1 · · · zr

ir
, . . . , zr

n1
· · · zr

nr
),

iα = 0, 1, . . . , nα, α = 1, . . . , r,

where N = (n1 + 1) · · · (nr + 1) − 1 and (zα
0 , . . . , zα

nα
) are complex

homogeneous coordinates of CPnα(cα). Then it is easy to see that f
induces a Kähler imbedding of a Kähler manifold CPn1(c1) × · · · ×
CPnr(cr) into CPN (c) if and only if c1 = · · · = cr = c.

In particular, the Kähler manifold CPn1(c)×· · ·×CPnr(c) is Einstein
if and only if n1 = · · · = nr = n. The scalar curvature r of
CPn1(c) × CPn2(c) is given by

r = c{n1(n1 + 1) + n2(n2 + 1)}.
And moreover, we see h2 = cn1n2 and N = (n1 + 1)(n2 + 1) − 1.

In their paper [10], Nakagawa and Takagi proved the following clas-
sification theorem.

Theorem 4.1. Let M be an n-dimensional complete complex sub-
manifold imbedded into an N-dimensional complex projective space
CPN (c) with parallel second fundamental form. If M is irreducible,
then M is congruent to one of six kinds of complex submanifolds
imbedded into CPN (c) with parallel second fundamental form given
in the above Example 4.5. If M is reducible, then M is congruent
to (CPn1 × CPn2 , f) given in Example 4.6 for some n1 and n2 with
n = n1 + n2. The corresponding local version is true.

Example 4.7. Calabi [5] classified completely a Kähler imbedding
of simply connected complex space forms into complete simply con-
nected space forms. He gave a full Kähler imbedding of CPn(c) into
CPN(p)(pc) by

(z0, . . . , zn) →
(
z0

p, . . . ,

√
p!

p0! · · · pn!
z0

p0 · · · zn
pn , . . . , zn

p
)
,
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where N(p) = n+pCp − 1, nCm denotes the number of possible combi-
nations of n objects taken m at a time, (z0, . . . , zn) are homogeneous
coordinates of CPn(c) and p0, . . . , pn range over all nonnegative inte-
gers with p0 + · · · + pn = p, which is called a p-canonical imbedding.

On the other hand, Romero [13] and Umehara [15] independently
proved the indefinite version and they found that there exists a full
holomorphic isometric immersion of an indefinite complex space form
Mn

s (c) into an indefinite complex space form Mn+p
s+t (c′).

Aiyama, Nakagawa and Suh [3] obtained the following local property
of the above immersion.∑

x

hx
i1···ik

h̄x
j1···jl

=

⎧⎪⎪⎨
⎪⎪⎩

0 for all k �= l,
1

2k−1
Πk−1

r=1(c′ − cr)εi1 · · · εik∑
τ δτ(i1)j1 · · · δτ(ik)jk

for k = l,

where
∑

τ denotes the summation on all permutations τ with respect
to the indices i1, . . . , ik. By this formula, it is easily seen that the 2-
canonical imbedding of CPn(c) into CPN(2)(2c) has the parallel second
fundamental form but the second fundamental form of CPn(c) is not
parallel for the p(� 3)-canonical imbedding.

5. Parallel second fundamental forms. Let M be an n(� 2)-
dimensional space-like complex Einstein submanifold of an indefinite
complex space form M ′ = Mn+p

p (c) of constant holomorphic sectional
curvature c. Assume that the second fundamental form is parallel. We
denote by A the p×p-matrix defined by (Ax

y) and H the p× 1
2n(n+1)-

matrix defined by (hx
(jk))j�k

, where Ax
y =

∑
i,j hx

ij h̄
y
ij . Under the above

assumption, making use of (3.23), we can simplify the equation (3.25)
as follows:

(5.1) AH =
1
2n

(cn2 − 2r)H

because εi = 1 and εx = −1. By the definition of the matrices A and
H, we see that A = HH∗, where the symbol ∗ denotes the complex
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conjugate and transpose operator, namely, H∗ = tH̄. From (5.1), we
have

(5.2) A2 =
1
2n

(cn2 − 2r)A.

Since the matrix A is a positive semi-definite Hermitian one, it implies
that cn2 − 2r � 0. This means that the matrix A has at most two
different eigenvalues 0 and 1

2n (cn2 − 2r).

We investigate here a property concerning the rank of matrices A and
H. We denote by rankA the rank of the matrix A. At any point x in
M we put q(x) = rank A(x). Then the following result is verified.

Lemma 5.1. Let M be an n(� 2)-dimensional space-like complex
Einstein submanifold of Mn+p

p (c). If the second fundamental form on
M is parallel and if M is not totally geodesic, then for any point x in
M , we have

(5.3) q(x) = rank H(x) =
n

2r − cn2
{cn(n + 1) − r}.

Proof. Suppose that there exists a geodesic point x in M , namely,
there is a point x at which all eigenvalues are zero. The assumption
that the second fundamental form is parallel implies that the scalar
curvature r is constant, and hence we have r = cn(n + 1) on M ,
from which together with (3.23) again it follows that M is totally
geodesic. Accordingly, by the assumption of this lemma, there do not
exist geodesic points. In other words, the matrix A has at least one
positive eigenvalue λ = 1

2n (cn2 − 2r). Since any point x in M is not a
geodesic one, we see that rank (AH) = rankH by (5.1), which yields
that rank H � rank A. On the other hand, because of A = HH∗, we
have rankA � rank H. Thus we obtain rank H = rank A. The first
equality of the formula in Lemma 5.1 follows from this property. In
fact, since a positive eigenvalue λ(x) of the matrix A at point x is
given by

λ(x) =
1
2n

(cn2 − 2r)

and the scalar curvature r is constant on M , the eigenvalue λ is constant
on M , so that the multiplicity q of λ is constant on M . Thus we have
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the rank q of A is also constant on M and it is easily seen that the
rank of the matrix A is equal to that of the matrix H at any point in
M and it satisfies

qλ = Tr A = −h2 = −1
2
{cn(n + 1) − r}

by (3.23).

This completes the proof.

Now we give an information for the range of the scalar curvature r on
M . Since the second fundamental form of M is parallel, putting k = l
in (3.25) and then summing up with respect to k, we have

(5.4) c(n + 2)hx
ij − 2

{∑
r

(hir̄
2hx

rj + hjr̄
2hx

ri) +
∑

y

εyAx
yhy

ij

}
= 0.

Transvecting εxh̄x
ij to this equation and then summing up with respect

to i, j and x, we get

(5.5) c(n + 2)h2 − 4h4 − 2Tr A2 = 0,

where h4 =
∑

i,j hij̄
2hjī

2. The matrix (hjk̄
2) is a negative semi-

definite Hermitian one, whose eigenvalues λjs are nonpositive real
valued functions on M . This yields that

(5.6) h4 =
∑

j

λj
2 � 1

n

( ∑
j

λj

)2 =
1
n

(
Tr H

)2 =
1
n

h2
2,

where the equality holds if and only if λ = λj for any index j, namely,
we have

(5.7) hjk̄
2 = λδjk.

This means that the equality (5.6) holds on M if and only if M is
Einstein. On the other hand, the matrix A is a positive semi-definite
Hermitian one of order p. Thus its eigenvalues µxs are all nonnegative
real-valued functions on M and hence we have

(5.8) Tr A2 =
∑

x

µx
2 � 1

p

( ∑
x

µx

)2

=
1
p

(
Tr A

)2 =
1
p
h2

2,
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where the equality holds if and only if µ = µx for any index x, that is,
the matrix A satisfies A = µIp, where Ip denotes the identity matrix
of order p.

Making use of these properties, we can prove

Lemma 5.2. Let M be a space-like complex submanifold of Mn+p
p (c).

If the second fundamental form on M is parallel and if M is not totally
geodesic, then the scalar curvature r satisfies

(5.9) r � c

n + 2p
n2(n + p + 1),

where the equality holds if and only if M is Einstein.

Proof. By (5.5), (5.6) and (5.8), we have

c(n + 2)h2 − 4
n

h2
2 − 2

p
h2

2 � 0,

where the equality holds if and only if M is Einstein because if the
equality holds at a point, then the fact that the squared norm h2 is
constant implies that it holds on M and the matrix A satisfies A = µIp.
Hence we obtain

{cnp(n + 2) − 2(n + 2p)h2}h2 � 0.

The squared norm h2 of the second fundamental form α on M is
negative constant because the second fundamental form α on M is
parallel and M is not totally geodesic. So, we have

(5.10) h2 � c

2(n + 2p)
np(n + 2),

where the equality holds if and only if M is Einstein. Hence the
assertion (5.9) is derived by (3.23) and (5.10).

Next, we give another information about the restriction of the scalar
curvature on M .
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Lemma 5.3. Let M be a space-like complex submanifold of Mn+p
p (c),

c < 0. If the second fundamental form on M is parallel, then the scalar
curvature r satisfies

(5.11) r � c

2
n(n + 1),

where the equality holds if and only if M is a complex space form
Mn( c

2 ).

Proof. First, we introduce a tensor field F of type (0,4) with
components Fījkl̄ defined by

Fījkl̄ =
∑

x

εxhx
jkh̄x

il −
c

4
(δijδkl + δikδjl).

Then we get

(5.12)
∑

i,j,k,l

Fījkl̄F̄ījkl̄ = TrA2 + c TrA +
c2

8
n(n + 1) � 0,

where the equality holds on M if and only if we have∑
x

εxhx
jkh̄x

il =
c

4
(δijδkl + δikδjl)

on M . By (2.11) and (3.21), if the above equality holds on M , then it
is seen that M is a complex space form Mn( c

2 ) of constant holomorphic
sectional curvature c

2 . From (5.6) and (5.12), we can eliminate the term
Tr A2 in (5.5) and then we obtain the following inequality

{4h2 − cn(n + 1)}(4h2 + cn) � 0,

where the equality holds if and only if M is a complex space form Mn( c
2 )

because h2 is constant. Since the holomorphic sectional curvature of
the ambient space is assumed to be negative, we see 4h2 + cn < 0, so
we have

h2 � c

4
n(n + 1),

where the equality holds if and only if M is a complex space form
Mn( c

2 ). Hence the assertion (5.11) is proved by (3.23) and the above
equation.
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6. Proof of Theorem. Let M be an n(� 2)-dimensional space-
like Einstein Kähler submanifold of an indefinite complex space form
M ′ = Mn+p

p (c), c < 0. Assume that the second fundamental form α
on M is parallel. Under this assumption, we give an information for
the range of the scalar curvature r on M .

Lemma 6.1. Let M be an n(� 2)-dimensional space-like Einstein
Kähler submanifold of Mn+p

p (c), c < 0. If M is not totally geodesic
and if the second fundamental form on M is parallel, then we have

(6.1) r � cn2 or r � c

4
n(3n + 2).

Proof. Since M is Einstein, the Ricci tensor S satisfies

(6.2) Sjk̄ =
r

2n
δjk,

where r is the scalar curvature, it follows from εi = 1, (3.22) and (6.2)
that

(6.3) hjk̄
2 =

∑
l,x

εxhx
jlh̄

x
lk =

1
2n

{cn(n + 1) − r}δjk.

On the other hand, we have by (3.25)

c(εkhx
ijδkl + εih

x
jkδil + εjh

x
kiδjl)

− 2
∑
r,y

εy(hx
rih

y
jk + hx

rjh
y
ki + hx

rkhy
ij)h̄

y
rl = 0

because the second fundamental form of M is parallel. Transvecting
εxh̄x

imh̄z
jk to this equation and then summing up with respect to x, i, j

and k, we obtain

c
(
2

∑
j

hjm̄
2h̄z

jl +
∑

x

εxh̄x
mlA

x
z

)
− 2

∑
j,y

εyhjm̄
2Ay

z h̄y
jl

− 4
∑

i,j,k,r,x,y

εxεyh̄x
mrh

y
rih̄

z
ijh

x
jkh̄y

kl = 0.
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We denote by Hx a symmetric matrix defined as (hx
jk) of order n. Then

we can reform the above equation as follows:

(6.4)
∑
x,y

εxεyH̄xHyH̄zHxH̄y

=
1

8n2
{2r2 − cn(3n + 2)r + c2n2(n2 + 2n + 2)}H̄z,

where we have used (5.1) and (6.3).

Now we define a tensor field G with components Gxyz by

Gxyz = HxH̄yHz + HzH̄yHx

− 2
cn3 − (n − 2)r

{cn(n + 1) − r}(Ax
yHz + Az

yHx).

By the direct and complicated calculation, it follows from (5.2), (6.3)
and (6.4) that we obtain

∑
x,y,z

εxεyεzG
xyzḠxyz(6.5)

=
1

8n3{cn3 − (n − 2)r} (n + 2){cn(3n + 2) − 4r}

× (cn2 − r){cn(n + 1) − r}{cn(n + 2) − r}I.

Since M is not totally geodesic, we have by (3.23)

cn(n + 1) − r < 0.

And taking account of this inequality, we get

cn(n + 2) − r < cn(n + 2) − cn(n + 1) = cn < 0,

cn3 − (n − 2)r < cn3 − c(n − 2)n(n + 1)c = cn(n + 2) < 0.

Using the above three equations, we have by (6.5)

{cn(3n + 2) − 4r}(cn2 − r) � 0

because the lefthand side of the equation (6.5) is nonpositive.

This completes the proof.
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Moreover, we obtain by (5.3)

(6.6) r =
c

n + 2q
n2(n + q + 1).

If r � cn2, then the above equation implies that q � 1, namely, we
have q = 1. And if r � c/4n(3n + 2), then we have q � n

2 . Thus we
obtain

(6.7) q = 1 or q � n

2
.

Lemma 6.2. Let M be an n(� 2)-dimensional space-like Einstein
complex submanifold of Mn+p

p (c), c < 0. If it is not totally geodesic,
then there exists an (n + q)-dimensional totally geodesic submanifold
M ′ in Mn+p

p (c) in which the given submanifold M is immersed, where
q = rankA > 0.

Proof. For the unitary frame {Eα} = {Ej , Ey} at any point x, we
define the normal space to M at x, which is denoted by Nx

Nx =
{∑

y

ξyEy : ξy ∈ C
}

,

where C is the complex field. We define a mapping f of Nx × Nx into
C by

f(Y, Z) =
∑
y,z

Ay
z ξ̄yηz, Y =

∑
y

ξyEy, Z =
∑

z

ηzEz.

Let Hp be a set of all Hermitian matrices of order p, which is considered
as a complex vector space. Then the unitary group U(p) operates Hp

as follows:

For any Hermitian matrix H in Hp and any unitary matrix U in U(p),

U(H) = U∗HU,

where ∗ denotes the complex conjugate and transpose operator. Since
the matrix A is invariant under U(p), the mapping f is well-defined and
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it is a positive semi-definite Hermitian form of order q, so that it can be
normalized. This means that we can new unitary frame {Ei, Eα, Eλ}
such that

(6.8) ωαi �= 0, ωλi = 0,

where the range of indices is as follows:

i, j, . . . = 1, . . . , n,

α, β, . . . = n + 1, . . . , n + q,

λ, µ, . . . = n + q + 1, . . . , n + p.

By definition of hλ
ijk, we have

∑
α hα

ijωλα = 0. It implies that

(6.9) ωλα = 0

for any indices α and λ. From (6.8) and (6.9), we can define a
distribution DM defined by

ωλ = 0, ωλi = 0, ωλα = 0.

Then it follows from the structure equations on Mn+p
p (c) that we obtain

dωλ = −
∑

j

ωλj ∧ ωj −
∑
α

ωλα ∧ ωα −
∑

µ

ωλµ ∧ ωµ

≡ 0 (mod ωλ, ωλi, ωλα),

dωλi = −
∑

j

ωλj ∧ ωji −
∑
α

ωλα ∧ ωαi −
∑

µ

ωλµ ∧ ωµi + Ωλi

≡ 0 (mod ωλ, ωλi, ωλα),

dωλα = −
∑

j

ωλj ∧ ωjα −
∑

β

ωλβ ∧ ωβα −
∑

µ

ωλµ ∧ ωµα + Ωλα

≡ 0 (mod ωλ, ωλi, ωλα).

Therefore, the distribution DM is of dimensional (n+q) and it becomes
completely integrable. For any point x, we consider the maximal
integral submanifold M ′(x) of M through x. Then M ′(x) is of (n+ q)-
dimensional and it is totally geodesic in Mn+p

p (c) by the construction.
Moreover, M is immersed in M ′(x).
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This completes the proof.

Now we are in a position to prove the main theorem stated in the
Introduction.

The immersion of M into Mn+p
p (c) is said to be full if M cannot

be immersed in (n + p′)-dimensional totally geodesic submanifold in
Mn+p

p (c), where p > p′ > 0. The first assertion of the theorem follows
immediately from (6.7) and Lemma 6.2 and the rigidity theorem due
to Montiel and Romero [8] for an Einstein semi-Kähler hypersurface in
an indefinite hyperbolic space.

Next, we shall prove another case. In this case, we may suppose p = q
because of the full immersion. By the assumption of the theorem, we
have p = q � 1

2n(n+1). We denote by r(q) the right hand side of (6.6),
namely, we see r = r(q). We can regard r(q) as the function with one
variable q and then it is easily seen that it is monotonic increasing with
respect to q because c is negative, and hence

r = r(q) � c

2
n(n + 1),

from which together with (5.11), it follows that

r =
c

2
n(n + 1).

By taking account of Lemma 5.3 and (6.6), p = 1
2n(n + 1) and M is a

complex space form Mn( c
2 ) of constant holomorphic sectional curvature

c
2 .

This completes the proof.

Problem 6.1. Does there exist an n(� 2)-dimensional space-
like Einstein Kähler submanifold of an indefinite complex space form
Mn+p

p (c), c < 0, n
2 < p < 1

2n(n + 1) ?

Remark 6.1. Is the estimate of the codimension in the assertion (1) of
the theorem best possible? As seen in Example 4.6, the product man-
ifold CH

n
2 (c) × CH

n
2 (c) is a space-like Einstein complex submanifold

CHn+p
p (c), where p = 1/4n2. So, if n = 2, then p = 1. However, it

means essentially that it is complex quadric.
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Remark 6.2. Let M = Mn
s (c) be a complex n-dimensional semi-

definite Kähler manifold of constant holomorphic sectional curvature
c and of index 2s, and let MN

S (c′) be a complex N -dimensional semi-
definite complete simply connected complex space form of constant
holomorphic sectional curvature c′ and of index 2S. Then a holomor-
phic isometric immersion f : Mn

s (c) → MN
S (c′) is said to be full if

f(Mn
s (c)) is not contained in a totally geodesic submanifold of MN

S (c′).
It is seen in [13] that Mn

s (c), c > 0, admits a full holomorphic isometric
immersion into MN

S (c′), c′ > 0, if and only if c′ = kc for some positive
integer k,

N = n+kCk − 1 =: N(n, k)

and

S =
[ k+1

2 ]−1∑
j=0

s+2jC2j+1 n−s+k−2j−1Ck−2j−1 =: S(n, s, k) if s > 0,

where [k+1
2 ] denotes the greatest integer less than or equal to 1

2 (k +1),
and S = 0 and if s = 0. The local version is true.

Changing the Kähler metric of Mn
n (c), c > 0, by its opposite, we have

that there exists a full holomorphic isometric immersion of Mn(−c),
c > 0, into M

N(n,k)
S′(n,k)(−kc), c > 0, where S′(n, k) = N(n, k)−S(n, n, k).

It is seen that

N(n, 2) − n = S′(n, 2) =
1
2
n(n + 1)

and
N(n, k) − n > S′(n, k) if k > 2.

This means that there exists only one full holomorphic isometric immer-
sion of Mn(c), c < 0, into Mn+p

p (c′), c′ < 0, as space-like submanifolds
except for the trivial immersion as a totally geodesic one. In this case,
we see k = 2 and p = 1

2n(n + 1).

Remark 6.3. In their paper [3], Aiyama, Nakagawa and Suh proved
the following fact. Let M be a space-like complex submanifold with
constant scalar curvature r of Mn+p

p (c), c < 0. If r > c
2n(n + 1), then

M is a complex space form Mn( c
2 ) and p � 1

2n(n + 1).
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