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ON THE STRONG LAW FOR
ASYMPTOTICALLY ALMOST NEGATIVELY

ASSOCIATED RANDOM VARIABLES

TAE-SUNG KIM, MI-HWA KO AND IL-HYUN LEE

ABSTRACT. In this paper the Hajeck-Renyi type inequal-
ity for asymptotically almost negatively associated (AANA)
random variables is derived and the strong law of large num-
bers is obtained by applying this inequality. The strong laws
of large numbers for weighted sums of AANA random vari-
ables are also considered.

1. Introduction. Let (Ω,F ,P) be a probability space and
{X1, . . . , Xn} a sequence of random variables defined on (Ω,F ,P). A
finite family {Xi, 1 ≤ i ≤ n} is said to be negatively associated (NA) if
for any disjoint subsets A,B ⊂ {1, . . . , n} and any real coordinatewise
nondecreasing functions f : RA → R and g : RB → R,

Cov (f(Xi; i ∈ A), g(Xj; j ∈ B)) ≤ 0.

Infinite family of random variables is negatively associated (NA) if
every finite subfamily is negatively associated (NA). This concept was
introduced by Joag-Dev and Proschan [8]. A sequence {Xn, n ≥ 1} of
random variables is called asymptotically almost negatively associated
(AANA) if there is a nonnegative sequence q(m) → 0 such that

(1) Cov (f(Xm), g(Xm+1, . . . , Xm+k))

≤ q(m)(Var (f(Xm))Var (g(Xm+1, . . . , Xm+k)))1/2

for all m, k ≥ 1 and for all coordinatewise increasing continuous
functions f and g whenever the righthand side of (1) is finite. This
definition was introduced by Chandra and Ghosal [2, 3].

The family of AANA sequences contains negatively associated (in
particular, independent) sequences (with q(m) = 0 for all m ≥ 1)
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and also some sequences of random variables which do not deviate
much from being negatively associated. Condition (1) is clearly sat-
isfied if the R2,2-measure of dependence (see [1]) between σ(Xm) and
σ(Xm+1, Xm+2, . . . ) converges to zero. The following is a nontrivial
example of an AANA sequence. It is possible to construct similar ex-
amples, but we shall not discuss this topic any more here. Let {Yn}
be i.i.d. N(0, 1) variables, and define Xn = (1 + a2

n)−1/2(Yn + anYn+1)
where an > 0 and an → 0. Note that {Xn} is not NA (indeed, it is
associated and 1-dependent). We shall show that the correlation coeffi-
cient between U = f(Xm) and V = g(Xm+1, . . . , Xm+k) is dominated
in absolute value by am. It suffices to prove this under the additional
hypotheses EU = 0 = EV , EU2 = 1 = EV 2. Then

(Cov (U, V ))2 ≤ (Cov (U,E(U | Xm+1, . . . , Xm+k)))2

≤ E(E(U | Xm+1, . . . , Xm+k))2

≤ E(E(U | Ym+1, . . . , Ym+k+1))2

≤ E(E(U | Ym+1))2

=
∫ ∞

−∞

( ∫ ∞

−∞
f(x)

(
ψm(x, y)
φ(x)

− 1
)
φ(x) dx

)2

φ(y) dy

where ψm(x, y) is the conditional density of Xm given by Ym+1 = y
and φ(x) is the density of N(0, 1). By the Cauchy-Schwarz inequality,
the last integral is at most

∫ ∞

−∞

∫ ∞

−∞

(
ψm(x, y)
φ(x)

− 1
)2

φ(x) dxφ(y) dy = a2
m,

(see [2]).

Hajeck-Renyi [7] proved that if {Xn, n ≥ 1} is a sequence of inde-
pendent random variables with EXn = 0 and EX2

n < ∞, n ≥ 1 and
{bn, n ≥ 1} is a positive nondecreasing real sequence, then for any
ε > 0 and for any positive integer m < n,

(2) P

(
max

m≤j≤n

∣∣∣∣
∑j

i=1Xi

bj

∣∣∣∣ ≥ ε

)
≤ ε−2

( n∑
j=m+1

EX2
j

b2j
+

m∑
j=1

EX2
j

b2m

)
.

Since then, this inequality has been the concern of many authors (e.g.,
[4, 6] for martingales, [9] for negatively associated random variables,
[5] for associated random variables).



ON THE STRONG LAW 981

In this paper we will extend (2) to AANA random variables and
use this inequality to prove the strong law of large numbers. We also
consider almost sure convergences for weighted sums of AANA random
variables.

2. The Hajeck-Renyi type inequality for AANA random
variables. From the definition of AANA random variables (see (1))
we easily obtain the following lemma.

Lemma 2.1. Let {Xn, n ≥ 1} be a sequence of asymptotically almost
negatively associated (AANA) random variables and {an, n ≥ 1} a
sequence of positive numbers. Then {anXn, n ≥ 1} is also a sequence
of AANA random variables.

Lemma 2.2 [2, 3]. Let {X1, . . . , Xn} be a sequence of mean zero,
square integrable random variables such that (1) holds for
1 ≤ m < k+m ≤ n and for all coordinatewise increasing continuous
functions f and g whenever the righthand side of (1) is finite. Let
A2 =

∑n−1
m=1 q

2(m) and σ2
k = EX2

k , k ≥ 1. Then, for ε > 0,

(3) P

{
max

1≤k≤n

∣∣∣∣
k∑

i=1

Xi

∣∣∣∣ ≥ ε

}
≤ 2ε−2(A+ (1 +A2)1/2)2

n∑
k=1

σ2
k.

Theorem 2.3. Let {bn, n ≥ 1} be a sequence of positive nondecreas-
ing real numbers and {X1, . . . , Xn} a sequence of mean zero, square
integrable random variables such that (1) holds for 1 ≤ m < k+m ≤ n
and for all coordinatewise increasing continuous functions f and g
whenever the righthand side of (1) is finite. Let A2 =

∑n−1
k=1 q

2(k)
and σ2

k = EX2
k , k ≥ 1. Then, for ε > 0,

(4) P

{
max

1≤k≤n

∣∣∣∣
∑k

i=1Xi

bk

∣∣∣∣ ≥ ε

}
≤ 8ε−2(A+ (1+A2)1/2)2

n∑
k=1

σ2
k

b2k
.

Proof. First note that {X1/b1, . . . , Xn/bn} is a sequence of mean
zero, square integrable AANA random variables by Lemma 2.1. Thus
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{X1/b1, X2/b2, . . . } satisfies

(5) Cov (f(b−1
m Xm), g(b−1

m+1Xm+1, . . . , b
−1
m+kXm+k))

≤ q(m)[Var (f(b−1
m Xm))Var (g(b−1

m+1Xm+1, . . . , b
−1
m+kXm+k))]1/2

for 1 ≤ m < k+m ≤ n and for all coordinatewise increasing continuous
functions f and g whenever the righthand side of (5) is finite. Without
loss of generality, setting b0 = 0, we get

k∑
j=1

Xj =
k∑

j=1

( j∑
i=1

(bi − bi−1)
Xj

bj

)

=
k∑

i=1

(bi − bi−1)
∑

i≤j≤k

Xj

bj
.

Since

(6)

b−1
k

k∑
j=1

(bj − bj−1) = 1

{∣∣∣∣
∑k

j=1Xj

bk

∣∣∣∣ ≥ ε

}
⊂

{
max
1≤i≤k

∣∣∣∣
∑

i≤j≤k

Xj

bj

∣∣∣∣ ≥ ε

}
.

From (6) we have

{
max

1≤k≤n

|∑k
j=1Xj |
bk

≥ ε

}
⊂

{
max

1≤k≤n
max
1≤i≤k

∣∣∣∣
∑

i≤j≤k

Xj

bj

∣∣∣∣ ≥ ε

}

=
{

max
1≤i≤k≤n

∣∣∣∣
∑
j≤k

Xj

bj
−

∑
j<i

Xj

bj

∣∣∣∣ ≥ ε

}

⊂
{

max
1≤k≤n

∣∣∣∣
∑

1≤j≤k

Xj

bj

∣∣∣∣ ≥ ε

2

}
.

Hence by Lemma 2.2 the desired result (4) follows.

From Theorem 2.3, we can get the following more generalized Hajeck-
Renyi type inequality.
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Theorem 2.4. Let {bn, n ≥ 1} be a sequence of positive non-
decreasing real numbers and {Xn, n ≥ 1} a sequence of mean zero,
and square integrable AANA random variables such that (1) holds for
1 ≤ m < k +m ≤ n and for all coordinatewise continuous functions f
and g whenever the righthand side of (1) is finite. Let A2 =

∑n−1
k=1 q

2(k)
and σ2

k = EX2
k , k ≥ 1. Then for ε > 0 and for any positive integer

m < n, we have

(7) P

{
max

m≤k≤n

∣∣∣∣
∑k

j=1Xj

bk

∣∣∣∣ ≥ ε

}

≤ 32ε−2(A+ (1 +A2)1/2)2
( n∑

j=m+1

σ2
j

b2j
+

m∑
j=1

σ2
j

b2m

)
.

Proof. By Theorem 2.3 we have

P

{
max

m≤k≤n

∣∣∣∣
∑k

j=1Xj

bk

∣∣∣∣ ≥ ε

}

≤ P

{∣∣∣∣
∑m

j=1Xj

bm

∣∣∣∣ ≥ ε

2

}
+ P

{
max

m+1≤k≤n

∣∣∣∣
∑k

j=m+1Xj

bk

∣∣∣∣ ≥ ε

2

}

≤ P

{
1
bm

max
1≤k≤m

∣∣∣∣
k∑

j=1

Xj

∣∣∣∣ ≥ ε

2

}
+ P

{
max

m+1≤k≤n

∣∣∣∣
∑k

j=m+1Xj

bk

∣∣∣∣ ≥ ε

2

}

≤ 32ε−2(A+ (1 +A2)1/2)2
( m∑

j=1

σ2
j

b2m
+

n∑
j=m+1

σ2
j

b2j

)
.

Hence the proof is complete.

3. Strong laws of large numbers for AANA random vari-
ables.

Theorem 3.1. Let {bn, n ≥ 1} be a sequence of positive nondecreas-
ing real numbers and {Xn, n ≥ 1} a sequence of mean zero, square inte-
grable random variables such that (1) holds for 1 ≤ m < k+m ≤ n and
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for all coordinatewise increasing continuous functions f and g when-
ever the righthand side of (1) is finite. Let σ2

k = EX2
k , k ≥ 1, and

Sn =
∑n

i=1Xi. Assume

∞∑
k=1

q2(k) <∞,(8)

∞∑
k=1

σ2
k

b2k
<∞.(9)

Then, for any 0 < r < 2,

(A) E(supn(|Sn|/bn)r <∞,

(B) 0 < bn ↑ ∞ implies Sn/bn → 0 a.s., as n→ ∞.

Proof. Put B2 =
∑∞

k=1 q
2(k) <∞.

(A) Note that

E

(
sup

n

|Sn|
bn

)r

<∞ ⇐⇒
∫ ∞

1

P

(
sup

n

|Sn|
bn

> t1/r

)
<∞.

By Theorem 2.3, it follows from (8) and (9) that

∫ ∞

1

P

(
sup

n

|Sn|
bn

> t1/r

)
dt

≤ 8
∫ ∞

1

t−2/r dt(B + (1 +B2)1/2)2
∞∑

k=1

σ2
k

b2k
<∞

≤ 8(B + (1 +B2)1/2)2
∞∑

k=1

σ2
k

b2k

∫ ∞

1

t−2/r dt <∞.

Hence the proof of (A) is complete.

(B) By Theorem 2.4 we get

P

{
max

m≤k≤n

|Sk|
bk

≥ ε

}
≤ 32ε−2(B+(1+B2)1/2)2

( n∑
j=m+1

σ2
j

b2j
+

m∑
j=1

σ2
j

b2m

)
.
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But, by assumptions (8) and (9), we have

(10)

P

{
sup
k≥m

|Sk|
bk

≥ ε

}
= lim

n→∞P

{
max

m≤k≤n

|Sk|
bk

≥ ε

}

≤ 32ε−2(B + (1+B2)1/2)2
( ∞∑

j=m+1

σ2
j

b2j
+

m∑
j=1

σ2
j

b2m

)
.

By the Kronecker lemma and (9) we get

(11)
m∑

j=1

σ2
j

b2m
−→ 0 as m→ ∞.

Hence, by combining (9), (10) and (11) we have

lim
n→∞P

{
sup
k≥n

|Sk|
bk

≥ ε

}
= 0,

i.e., Sn/bn → 0 a.s. as n→ ∞.

Corollary 3.2. Let {Xn, n ≥ 1} be a sequence of mean zero, square
integrable random variables such that (1) holds for 1 ≤ m < k+m ≤ n
and for all coordinatewise increasing continuous functions f and g
where the righthand side of (1) is finite. Assume B2 =

∑∞
k=1 q(k)

2<∞.
Then, for 0 < t < 2,

P

(
sup
k≥m

|Sk|
k1/t

≥ ε

)
≤ 32ε−2(B + (1+B2)1/2)2

2
2−t sup

k
σ2

km
(t−2)/t,

for all ε ≥ 0, m ≥ 1, where

Sn =
n∑

j=1

Xj and σ2
n = Var (Xn), n ≥ 1.

Corollary 3.3. Let {Xn, n ≥ 1} be a sequence of mean zero,
square integrable AANA random variables such that (1) holds for
1 ≤ m < k+m ≤ n and for all coordinatewise increasing continuous
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functions f and g whenever the righthand side of (1) is finite. Assume
that ∞∑

k=1

q2(k) <∞ and sup
n
σ2

n <∞,

where σ2
n = Var (Xn), n ≥ 1. Then, for 0 < t < 2,

(A) Sn/n
1/t → 0 a.s. as n→ ∞,

(B) E supn(|Sn|/n1/t)r<∞ for any 0<r<2, where Sn =
∑n

j=1Xj.

4. Strong laws of large numbers for weighted sums of AANA
random variables. Finally, we consider an almost convergence of
weighted sums of AANA random variables as applications of Theo-
rem 3.1.

Theorem 4.1. Let {ani, 1 ≤ i ≤ n, n ≥ 1} be a sequence of real
numbers with ani = 0, i > n, supn≥1

∑n
i=1 |ani| <∞ and {bn, n ≥ 1} a

sequence of positive nondecreasing real numbers such that 0 < bn ↑ ∞
and let {Xn, n ≥ 1} be a sequence of mean zero, square integrable
AANA random variables satisfying (8) and (9). Then, as n→ ∞,

n∑
i=1

aniXi

bn
−→ 0 a.s.

Proof. Define

Sk =
k∑

j=1

Xj

bk
,

cnj =
bj
bn

(anj − anj+1) for 1 ≤ j ≤ n− 1,

and
cnn = ann.

Then

(12)
n∑

j=1

anjXj

bn
=

n∑
j=1

cnjSj ,
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(13)
n∑

j=1

|cnj | ≤ 2 sup
n≥1

n∑
j=1

|anj |,

(14) lim
n→∞ |cnj | = 0 for every fixed j.

It follows from (13) and (14) that we have, for every sequence of real
numbers dn with dn → 0, n→ ∞,

(15)
n∑

j=1

cnjdj → 0 as n→ ∞.

Hence from Theorem 3.1(B), (12) and (15), the desired result follows.

Theorem 4.2. Let {ani, 1 ≤ i ≤ n, n ≥ 1} be a sequence of
real numbers with ani = 0, i > n supn≥1

∑n
i=1 |ani| < ∞, and let

{Xn, n ≥ 1} be a sequence of mean zero, square integrable AANA
random variables with supn σ

2
n < ∞ and

∑∞
k=1 q

2(k) < ∞ where
σ2

n = EX2
k , n ≥ 1. Then, for 0 < t < 2,

(16)
n∑

i=1

aniXi

n1/t
−→ 0 a.s.

Proof. By putting bn = n1/t from Corollary 3.3 and Theorem 4.1, the
result follows and the proof is omitted.

From Theorem 2 of [2] we can obtain the following Marcinkiewicz
strong law of large numbers for sums of AANA random variables.

Theorem 4.3. Let {Xn, n ≥ 1} be a sequence of identically
distributed AANA random variables with EX1 = 0, E|X1|t < ∞ for
0 < t < 2 and satisfying (1). Let

∑∞
k=1 q

2(k) <∞. Then

n∑
j=1

Xj

n1/t
−→ 0 a.s.
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Theorem 4.4. Let {ani, 1 ≤ i ≤ n, n ≥ 1} be a sequence of
real numbers with supn≥1

∑n
i=1 |ani| < ∞, and let {Xn, n ≥ 1} be

a sequence of identically distributed AANA random variables with
EX1 = 0 and E|X1|t < ∞ for 0 < t < 2 and satisfying (1). Let
B2 =

∑∞
k=1 q

2(k) <∞. Then, for 0 < t < 2 as n→ ∞,

(17)
n∑

i=1

aniXi

n1/t
−→ 0 a.s.

Proof. Basically, using the ideas in the proof of Theorem 4.1 and
Theorem 4.3 we can obtain (17) and the proof is omitted.
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